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We extend, via a reformulation in terms of Poisson brackets, the method developed previously

(Rey et al., J. Phys. Chem. A, 2009, 113, 8949) allowing analysis of the pathways of an excited

molecule’s ultrafast vibrational relaxation in terms of intramolecular and intermolecular

contributions. In particular we show how to ascertain, through the computation of power and

work, which portion of an initial excess molecular energy (e.g. vibrational) is transferred to

various degrees of freedom (e.g. rotational, translational) of the excited molecule itself and its

neighbors. The particular case of bend excess energy relaxation in pure water is treated in detail,

completing the picture reported in the work cited above. It is shown explicitly, within a classical

description, that almost all of the initial water bend excitation energy is transferred—either

indirectly, via Fermi resonance centrifugal coupling to the bend-excited water’s rotation, or

directly via intermolecular coupling— to local water librations, only involving molecules in the

first two hydration shells of the vibrationally excited water molecule. Finally, it is pointed out

that the Poisson bracket formulation can also be applied to elucidate the microscopic character of

solvation and rotational dynamics, and should prove useful in developing a quantum treatment

for energy flow in condensed phases.

I. Introduction

Vibrational relaxation of small molecules in the liquid phase

has a long history,1–7 with considerable progress during the

last several decades fueled by the interplay of numerical

simulations and time-dependent spectroscopy.8–11 Water has

naturally attracted special interest in this regard. Initial efforts

here focused, for both theoretical and technical reasons, on

vibrational relaxation of the stretches in isotopically substituted

water molecules, and an extensive literature is available.8,12

Ultrafast spectroscopy advances have shifted the focus in

the last few years towards pure water. Among other advances,

experiments have been able to address energy (population)

relaxation of the water bend vibration which is generally

regarded as the last step of the vibrational relaxation ladder,13

and (high frequency) librational i.e. hindered rotation relaxation.

Population relaxation times are extremely short in both cases,

approximately 200 fs for the bend and less than 50 fs for

librations.14 In this limit, the dynamics is well described by a

harmonic approximation,15 which combined with the equivalence

between harmonic classical and quantum dynamics, suggests that

a classical description of these processes should constitute a

reasonable approach. Indeed, in the first theoretical studies of

bend relaxation16,17 good agreement was found between

experimental results and fully classical simulations.

Of course, interest lies not just in reproducing the experimental

time, but also in obtaining information, as yet not experimentally

accessible, on the relaxation and energy transfer pathways. To

this end, classical simulations are particularly convenient. In

principle, the simplest, direct way to address such mechanistic

issues is to track the different contributions to the system’s total

energy during a nonequilibrium simulation, with the hope that

from their time evolution a picture of the relaxation pathways

will emerge. Unfortunately, this approach is subject to important

difficulties if, for instance, the accepting modes relax on a time

scale considerably shorter than that of the initially excited mode,

as occurs for water bending relaxation.16 There is then little or no

significant buildup of energy in these modes so that, even though

they are actually channeling the excess energy, this energy flow’s

footprint is extremely feeble. As a result, the fit of observed time

dependent excess energy evolution with phenomenological

kinetic equations17 is subject to considerable ambiguities, as

is any indirectly inferred energy transfer mechanism, since it is

not directly addressed.

It was shown in ref. 17 how these difficulties could be

circumvented by building on previous work on vibrational
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relaxation of diatomics.18 Basically, one first computes the

energy derivative (power), followed by its integral (work). The

mathematical structure of power (force times velocity) allows

one to pinpoint which molecule or mode is channeling energy

from the excited molecular mode to/from the mode of interest,

since the force can be partitioned in contributions from

different neighbors and velocities can be ascribed to particular

modes of motion. After integration (work), one can determine

unambiguously the total energy transferred to each neighbor

or internal mode. This approach was applied to water bend

relaxation,17 and it was shown that the main pathway is

intramolecular transfer via 2 : 1 Fermi resonance to self-

(hindered) rotation mediated by the centrifugal coupling

mechanism. With the computation of the power exerted

by external water molecules it was possible to determine,

for instance, that the portion of energy directly transferred

to its neighbors (that is, the part not transferred to internal

rotation) was mainly taken up by the two water molecules

with their oxygens hydrogen-bonded to the excited water

molecule.

However, an important issue not addressed was the identity

of the specific accepting modes within the neighboring water

molecules. Thus, it was not determined whether this energy

was transferred to potential energy of interaction, hindered

rotation of each neighbor, or neighboring water translation. It

is the purpose of the present work to elucidate these aspects

and, to this end, we include a detailed discussion of how the

expressions for power and work can be manipulated very

conveniently via a Poisson bracket formulation to yield the

desired information.

The organization of the remainder of this paper is as

follows. In Section II, we present the basic theoretical Poisson

bracket formulation. Application to bend relaxation in pure

liquid water is the subject of Section III. Concluding remarks

are offered in Section IV. Several extensions of the formulation

are given in an Appendix.

II. Theory

Here we derive the formulas required to compute the excited

molecule’s energy transferred to the degrees of freedom of

choice. We show that the Poisson bracket formulation of

classical mechanics is particularly transparent in this connection

and, as a bonus, sets the stage for a future extension to a

quantum formalism. The first subsection is devoted to rewriting

the equations developed in ref. 17 for the relaxation of water

bending in terms of this language. In the following subsection

these equations are extended in order to pinpoint the specific

modes to which energy is transferred. The main formulas for

bending relaxation are then summarized.

A. Power and Poisson brackets

We commence with the standard Hamiltonian formulation

in terms of a portion corresponding to the system of interest

(H1, which can be subpartitioned if necessary) plus its

coupling (V, here assumed to be purely configurational) to

the environment (H2)

H = H1 + V + H2. (1)

The energy flux (power) is the time derivative of H1 which,

as for any dynamic variable not explicitly time-dependent as

assumed here, can be expressed in terms of Poisson brackets19

P1 �
dH1

dt
¼ ½H1;H�: ð2Þ

Before dealing with the water bend problem it is useful to

treat several much simpler problems first, for purposes of

orientation and for subsequent employment in the bend energy

flow treatment. A simplest application is that of a system of

point particles in three dimensions. If H1 represents the energy

of a given particle (purely kinetic, H1 = K1), then

dH1

dt
¼ ½H1;H� ¼ ½K1;V � ¼ �

@K1

@~p1
� @V
@~r1
¼~v1 � ~F1; ð3Þ

i.e. the standard textbook formula. Since
-

F1 (external force on

particle 1) can be partitioned in terms of the various forces

exerted on it (
-

F1 =
P

i>1

-

Fi1), it is straightforward to track the

contribution of each neighbor. It is this additive property

which lends most of its utility to the present approach, as we

seek to pinpoint the specific pathways through which excess

energy is transferred.

In practice, one is interested in the time variation of this

excess energy (here K1(t) � K1(0)) so that, instead of power,

the integrated form (work) is more convenient

DK1ðtÞ � K1ðtÞ � K1ð0Þ ¼
Z t

0

~F1 �~v1dt �W solvent
1 ¼

X
i41

Wi1;

ð4Þ

where, again, the last term reflects the fact that work on

particle 1 (Wsolvent
1 ) results from the contribution of each

neighbor (Wi1).

A second application is that of rotational relaxation for a

system of rigid molecules. In this case we identify H1 = KR
1

(i.e. rotational energy of molecule 1), while H2 will contain the

total kinetic energy of the neighbors plus translational energy

of the rotationally excited molecule. With {
-
ri} denoting

the position vectors of the excited molecule’s atoms, we

have19 (summation over repeated indexes will be adopted

throughout)

dH1

dt
¼ ½KR

1 ;H� ¼ ½KR
1 ;V � ¼ �

@KR
1

@~pi
� @V
@~ri

¼ ð~o�~riÞ � ~Fi ¼ ~o �~t;
ð5Þ

i.e. the well-known torque times angular velocity formula.

As the main object of this subsection, we rederive the formulas

for relaxation of water bending (obtained in ref. 17) from the

different, Poisson bracket perspective. Our model is that of a

water molecule with fixed oxygen–hydrogen bond lengths and

variable bending angle, summarized in the Hamiltonian20

Hmol = KT + KR +Hv � 1
2
M

-
v2CM + 1

2
mi(~o � -

ri)
2

+ 1
2
mi

-
v2i + U(y), (6)

i.e. center of mass (CM) kinetic energy, plus rotational kinetic

energy, plus vibrational energy, which comprises the last two

terms. Coriolis coupling cancels out for this model,17 and

therefore what follows is valid for diatomic molecules as well.
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We make the identification H1 = Hv, while H2 will contain

the rest of the molecules plus rotation and translational energy

of the excited molecule. Applying again eqn (2) we obtain

dHv

dt
¼ ½Hv;H� ¼ ½Hv;KR� þ ½Hv;V �; ð7Þ

where the only two surviving terms are easily interpretable: the

first one ([Hv, KR]) corresponds to centrifugal coupling, while

the second one ([Hv, V]) represents the effect of external forces

on vibrational motion (the only contribution for point particles,

see eqn (3)), i.e.

½Hv;V � ¼ �
@Hv

@p

@V

@q
¼ � _q

@V

@q
ð8Þ

where q denotes the bending degree of freedom (with generalized

momentum p). It can be written as well in terms of the forces on

each of the atoms (denoted by index i) in the central water

molecule,

½Hv;V � ¼ � _q
@V

@q
¼ � _q

@V

@~ri
� @~ri
@q
¼ ~Fi �~vi; ð9Þ

in which velocities are defined as ~vi � @~ri
@q

_q, and therefore corre-

spond to the moving molecular frame, the Eckart frame.21

We can also expand the centrifugal coupling term in eqn (7)

to recover the formulas given in ref. 17. We recall that

KR = 1
2
Iio

2
i , (10)

so that

½Hv;HR� ¼ �
@Hv

@p

@KR

@q
¼ � 1

2
_q
@Ii
@q

o2
i ; ð11Þ

which shows the Fermi coupling17 between vibration (term

linear in
:
q) and rotation (quadratic dependence on angular

velocity) referred to in the Introduction. Finally, we obtain for

the vibrational energy derivative

dHv

dt
¼ ½Hv;KR� þ ½Hv;V� ¼ ~Fi �~vi �

1

2
_q
@Ii
@q

o2
i ; ð12Þ

whose first and final components represent the expression used

in our previous work.17

B. Transfer to specific modes of surrounding molecules

The formulas developed thus far will allow us to ascertain to

which internal mode(s) of the excited molecule and to which

neighbouring molecules energy is being transferred. In addition,

one would like to know—and this our main, novel goal—the

specific accepting mode (i.e. rotation, translation, or other modes)

on the neighboring molecules. In the following, we proceed in a

general fashion, pausing at various points to illustrate some of the

key ideas and relations.

The time evolution of the potential energy of interaction

plays a crucial role in mediating energy transfer.22 One can

track its involvement by computing its time derivative, much

in the same way as was done in eqn (2) for H1,

dV

dt
¼ ½V ;H� ¼ ½V ;H1� þ ½V ;H2�; ð13Þ

so that

½H1;V � ¼ �
dV

dt
þ ½V;H2�: ð14Þ

The utility of this relation can be illustrated at the outset

with the point particle in 3 dimensions case with H1 = K1.

Using eqn (14) in conjunction with eqn (3), and noting the

change in sign upon transposition of the members of a Poisson

bracket, we obtain

dH1

dt
¼ ½H1;V � ¼ �

dV

dt
� ½H2;V � ¼ �

dV

dt
þ @H2

@~pi
� @V
@~ri

¼ � dV

dt
�~vi � ~F1i: ð15Þ

The integral form reads

DK1ðtÞ ¼ �DVðtÞ �
X
i41

W1i; ð16Þ

which summarizes the basic idea: a change in the initially

excited particle’s kinetic energy is turned into a potential

energy of interaction plus a work on each one of its neighbors

(note that this work differs from that in eqn (4): now it is

exerted by particle 1 on particle i, W1i, as opposed to the work

of i on 1, Wi1). One can think in terms of a liquid at

equilibrium, and where particle 1 is subjected to an initial

kick: since equilibrium will be reached again after a transient,

we will have (after a thermal average) hDV(t)i - 0 and,

therefore, only the sum over the work terms will survive.

From this sum it will be possible to extract which percentages

of the initial kinetic energy are channeled (on the average)

through each neighbor.

We now extend this approach to include the vibrational

degree of freedom described at the end of Section 2. To this

end, it is convenient to consider first the entire molecule and then

extract the vibrational energy behaviour. TakingH1 =Hmol, the

molecular Hamiltonian in eqn (6), and applying the same

approach as for the point particle case (see eqn (13) and (14)),

we find

dHmol

dt
¼ ½Hmol;H� ¼ ½Hmol;V � ¼ �

dV

dt
� ½H2;V�; ð17Þ

where H2 contains only the molecule’s solvent neighbors, and

therefore we can write

½H2;V � ¼ �
@H2

@pj

@V

@qj
¼ _qjF1j �

X
j

P1j ð18Þ

involving a sum of powers where F1j denotes the force of molecule

1 on mode j of the solvent molecules external to that molecule.

This power can be expressed in terms of different modes, of which

a most natural one is as a sum over each molecule j, i.e.

½H2;V� ¼
X
j41

P1j ¼
X
j41

X
ja

~vja � ~F1ja ; ð19Þ

with ja denoting the atoms in molecule j, and
-

F1ja
the total force of

molecule 1 on atom ja.

In its integrated form eqn (17) can be written

DEmolðtÞ ¼ �DVðtÞ �
X
j41

W1j ; ð20Þ

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

t P
ol

ite
cn

ic
a 

de
 C

at
al

un
ya

 o
n 

04
 S

ep
te

m
be

r 
20

12
Pu

bl
is

he
d 

on
 2

0 
Fe

br
ua

ry
 2

01
2 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
2C

P2
35

55
B

View Online

http://dx.doi.org/10.1039/c2cp23555b


This journal is c the Owner Societies 2012 Phys. Chem. Chem. Phys., 2012, 14, 6332–6342 6335

in which the last term is the time integral of the last term of

eqn (19). Eqn (20) is formally identical to eqn (16), although

here the term on the left side (DEmol) contains contributions

from all internal degrees of freedom of the excited molecule.

Indeed, if it is expanded into its constituent terms, and the

potential energy increment is transferred to the left side, we

obtain

DKT þ DKR þ DEv þ DV ¼ �
X
j41

W1j ; ð21Þ

which is a central formula of this paper. Section III will be

devoted to its application to an initial excitation of the water

bend, for which we rearrange it as

DEv ¼ �DV � DKT � DKR �
X
j41

W1j ; ð22Þ

where the first three terms on the right will tend to zero after a

short transient (similar to DKT in the point particle case), while

the last term will allow for the analysis of relaxation pathways

to the excited molecule’s neighbors. Before addressing that

aspect, we remark that similar rearrangements can be used to

address energy flow resulting from other molecular excitations,

e.g. rotational and electronic, to be discussed in Section IV.

It remains to show how the work can be partitioned into

different modes of the molecules surrounding the central

molecule of interest. A most natural choice for the accepting

modes is that of translations plus rotations of the excited

molecule’s neighboring molecules, although this does not

preclude other choices. We recall from eqn (19) that each

power contribution can be written as

P1j ¼
X
ja

~vja � ~F1ja ; ð23Þ

where the velocities are now defined in the laboratory frame,

and
-

F1ja
is the force of molecule 1 on atom ja (of molecule j).

If for simplicity we limit ourselves to the case in which the

neighboring molecules are rigid, then

-
vja =

-
vCMj + ~oj � -

rja, (24)

which when substituted in eqn (23) results in

P1j ¼
X
ja

ð~v CM
j þ~oj �~rjaÞ � ~F1ja ¼~vCM

j � ~F1j þ~oj �~t1j �PT
1j þPR

1j ;

ð25Þ

i.e. the sum of the power of molecule 1 on translation of

molecule j (PT
1j), plus the corresponding power on rotation (PR

1j).

C. Bend vibrational relaxation

We can now write down the full expression that will be used in

Section III to study bend relaxation. We simply need to

integrate eqn (25) and substitute into eqn (22), to find

DEv ¼ �DV � DKT � DKR �
X
j41

ðWT
1j þWR

1j Þ: ð26Þ

where the explicit expressions for the work terms are

WT
1j ¼

Z t

0

~vCM
j � ~F1jdt ð27Þ

WR
1j ¼

Z t

0

~oj �~t1jdt ð28Þ

Again, only the the sum on the right side of eqn (26) will

survive, after the excited molecule has lost all its excess energy,

allowing us to ascertain the modes through which energy is

channeled. Alternate derivations of eqn (26), and generalizations

thereof, are provided in the Appendix.

III. Bend vibrational relaxation in liquid water

With our key theoretical result eqn (26) in hand, we now

exploit it for bend relaxation in pure liquid water, extending

the results reported in ref. 16 and 17.

A. Computational details

The various molecular and simulation parameters are the same

as in our previous works16,17 and we just summarize the main

aspects. The rigid SPC/E model25 has been adopted for all

water molecules except one, for which (in addition) bending

motion has been allowed,16 keeping the oxygen–hydrogen

bond lengths at a fixed value. All simulations have been run

with an in-house code using 200 molecules. The time step is

1 fs, the mean temperature 300 K, the box size is 18.179 Å, and

the cut-off distance is half the box length. The Ewald sum

correction has been included for Coulomb forces. Equations

of motion have been integrated with the ‘‘RATTLE’’

algorithm.26

Simulations consist of a long trajectory from which, every

2 ps, the instantaneous configuration is taken as the initial one

for a separate nonequilibrium run. For each one of these

nonequilibrium trajectories, the instantaneous bending angle

is left unchanged and vibrational kinetic energy is added, so

that a total energy of 3
2
�hob is placed in the bending mode,27

where ob is the unperturbed harmonic bend frequency. No

resampling of rotational/translational velocities is done for

any of the molecules. Each nonequilibrium trajectory is run

for 3 ps, without temperature control, while the quantities to

be analyzed (energy, power, work) are computed. Given

the long equilibration run required, velocities are resampled

(except for the flexible molecule) right after each initial

configuration (for the nonequilibrium runs) is stored (i.e. every

2 ps), in order to avoid potential artifacts associated with long

simulation times.28,29 Temperature control is maintained30

during the equilibration runs. The results reported correspond

to an average over a total of 10 000 trajectories (compared to

2000 in our previous work17), corresponding to ten independent

equilibration runs. We note that sampling of initial conditions is

simpler in this work compared to ref. 17, a point to which we

will return in Section III G.

B. Bend energy relaxation overview

Fig. 1 displays the core numerical results of this work,

obtained after averaging each term in our central formula

(26). All functions have been normalized, taking a unit value

for the excess vibrational energy at the initial time.

We note first that, as reported in ref. 16 and 17, the water

bend vibrational energy decays monotonically with a time
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constant of approximately 265 fs (computed from the time

integral), in reasonable accord with experimental findings

(170 � 15 fs14,31). The rest of the functions displayed, as

described in the Theory section, can be grouped into two

different classes: those that go through a transient and finally

decay to zero—here the change in potential energy (DV), and the

changes in the excited water molecule’s translational (DKT) and

rotational (DKR) energies—and those that reach a plateau—

here the summed works (
P

j>1W
T
1j and

P
j>1W

R
1j) done by the

excited molecule on its water neighbors, now discussed.

C. Work contributions

Of the two work contributions just identified, clearly the work

on the hindered rotational motion of the neighboring water

molecules stands out in Fig. 1. We see that the corresponding

curve plateaus at approximately 0.95, i.e. almost all the excess

water bend energy is channeled through the hindered rotations

of its neighbors. In our previous works this conclusion regarding

the neighboring water librations was indirectly inferred: in ref. 17

it was concluded from the fit of a simplified phenomenological

model to the time dependent excess energies. Another, more

indirect inference was made in the related case of HOD bend

relaxation in D2O; a semiclassical calculation showed no

differences between simulations performed with rigid or flexible

molecules, so that no transfer between bendings occurred, and thus

it was assumed that librations constituted the main relaxation

channel.13 We believe the present demonstration is the first time in

which the transfer from bending motion into rotations is shown

unambiguously (stemming from such basic formula as torque times

angular velocity). A detailed study in terms of the contribution of

the different solvation shells will be given below.

We pause to note that Fig. 1 shows that transfer to translational

motion is markedly inefficient compared to transfer to rotation,

with only about 5% of the energy channeled through this

mode. This result might be considered somewhat puzzling at

first sight, from the perspective of energy equipartition at

equilibrium, where the average rotational and translational

kinetic energies for a water molecule would be equal. It is

important to note, though, that these results should not be

interpreted as meaning that all excess vibrational energy

transferred into rotational energy stays that way. Rotational

(and translational) energy relax on extremely short timescales16,17

(of the order of 50 fs), so that any excess energy they might

receive is almost immediately transferred into other modes. The

picture is one in which almost all excess energy within the excited

molecule is transferred into hindered rotations of its neighbors

(with the major portion of it first channeled through self-rotation

of the bend-excited molecule, i.e. the process is basically one of

rotational relaxation), but is immediately redistributed into

progressively distant hydration shells. At each step of this

process, the rotational channel prevails (a detailed investigation

of rotational relaxation per se is under way23), but a portion

of the energy is transferred to translations as well, so that

equipartition between rotational and translational energy will

be finally achieved.

D. Transient terms

Turning to the functions in Fig. 1 that go through a transient

before vanishing, their involvement differs considerably. First,

translational energy of the initially bend-excited water mole-

cule (DKT) is apparently not involved in the process of vibra-

tional relaxation; within the statistical indeterminacy of our

calculation the results are compatible with zero. Of course,

these are averaged results, so that they do not preclude the

possibility that KT’s contribution is not totally negligible for

some trajectories. This result for KT is consistent with that

discussed in the preceding paragraph on transfer from rotation

to translation. The only transfer to translation is to/from the

excited water’s neighbors, as there is no internal coupling

(between rotation and translation). Since the neighboring

molecules absorb energy mainly through their rotational

motion, and it has been shown that transfer from rotation to

translation is highly inefficient, no substantial increase in

translational energy of the central molecule should be expected

resulting from excited rotations on immediate neighbors.

The situation is different for the bend-excited water molecule’s

rotational kinetic energy (DKR) in Fig. 1, for which we observe a

transient increase for times shorter than approximately 50 fs, as

already reported in ref. 16 and 17. Again, the fast relaxation of this

mode of motion explains the feeble maximum, reaching

E10% of the total initial energy, a very modest increase

considering that most of the total initial excess energy is

channeled through it by the intramolecular Fermi resonance

bend-rotation centrifugal coupling.17

Finally, the potential energy increment (DV) is the most

marked of all the transient contributions, reaching up to 20%

of the initial excess energy. As should be expected, a blow-up

at short times, see Fig. 2, shows that DV has the fastest rise

among all functions displayed, i.e. the very initial transfer is

into potential energy, which results in a subsequent transfer

into the other intermolecular modes, precluding any further

Fig. 1 Energy balance for bend relaxation in water. The functions

displayed correspond to the terms in eqn (26), see Section III. Red line:

DEv (shifted upwards); black: DV; purple: DKT for the initially excited

molecule; orange: DKR; green: work on translation of neighbors; blue:

work on rotation of neighbors.
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increase in potential energy.Moreover, it is noteworthy thatDV’s
decrease is the slowest of all the transient contributions, and

crosses the vibrational energy relaxation energy at approximately

1.5 ps, exhibiting a slowly decaying behavior at longer times. The

situation is thus one in which, after all the intramolecular water

modes (vibrational, rotational) that have been excited (directly

and via Fermi resonance) have relaxed, there is still a feeble

signature remaining for the excited water’s interaction energy

with its neigbors, lasting for a few picoseconds.

E. Hydration shell dependence of the work

We now address the work performed on translations and

rotations as a function of the distance to the initially bend-

excited water molecule. To this end, we partition the water

molecules surrounding the initially excited molecule in terms

of the latter’s hydration shells, defined from the oxygen–oxygen

radial distribution function, displayed in Fig. 3. The first shell is

defined as the one comprising the four closest water molecules

at any given instant, a definition which (on the average)

corresponds to the first minimum of the radial distribution

function (located at E3.3 Å); the second shell is defined as

consisting of all molecules enclosed within the second minimum

(E5.7 Å) excluding those in the first shell; finally, the third shell

is bounded by E5.7 Å. While this distance is close to the box

size, the use of the Ewald sum allows the determination of

contributions from longer distances as well. Fig. 4 displays the

results for the work done on rotations for each of the shells just

defined (we recall that unity corresponds to the total initial

energy). The shape of all the curves is rather similar, but their

respective contribution differs widely: work on the four first

hydration shell water molecules accounts for almost 60% of the

total work on rotation, that on the water molecules in the

second shell represents roughly 35%, while the third shell and

beyond account for 4% and 2%, respectively. Clearly, most of

the energy is transferred locally. Although the total work on

translation is minimal (E5%) the pattern is even more clearcut

than for the work on rotation, as shown in Fig. 5; here almost

all energy transfer is into the four first hydration shell molecules,

with transfer into the second shell and beyond being compatible

with zero (the results are subject to considerable statistical noise,

given the tiny contribution of translation).

Given the dominance of the first hydration shell for the

work on rotation and translation, it is of interest to ascertain

the participation of each of the water molecules involved.

Fig. 2 Short time blow up of energy balance. The same colors as in Fig. 1.

Fig. 3 Oxygen–oxygen radial distribution function. Vertical colored

lines define the limits of each hydration shell. The dashed line for the

first shell indicates that it is defined from the four closest water

molecules at each instant (which on average results in the distance

denoted by red vertical bar).

Fig. 4 Work (normalized) on rotational motion of water molecules

within each hydration shell. Black line: total work on rotation; red:

work on rotation of four closest molecules; blue: on the second

hydration shell; green: on the third hydration shell; purple: on

molecules beyond the third shell.
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To this end, we partition these molecules into two groups: the

pair of molecules, denoted 1 and 2 (see Fig. 6) hydrogen-

bonded to the hydrogens of the central molecule, and those,

denoted 3 and 4, hydrogen-bonded to the oxygen of the central

molecule. It is found that work on rotation is almost evenly

shared by all four molecules, with approximately 56% of it

exerted on molecules 1 and 2, and the rest exerted on mole-

cules 3 and 4, as shown in Fig. 7. This result is consistent with

related results reported in ref. 17: it was shown that most of

the energy channeled by Fermi resonance excited self-rotation

is transferred to molecules 3 and 4, while that directly trans-

ferred from the central water’s excited bend into external water

molecules is taken up by molecules 1 and 2. Therefore, given

that here we are dealing with the total energy transferred into

its neighbors, the addition of both pathways results in that all

four neighbors receive a similar flux of energy. In contrast, the

work on translation (not shown), and which we recall was

mainly done on the first shell, is basically exerted on molecules

1 and 2, with that on molecules 3 and 4 being compatible

with zero.

F. Temperature dependence

Recent experiments32 have addressed the effect of temperature on

vibrational relaxation, with the main finding being an inverse

behavior, i.e. bend relaxation slows down with increasing tempera-

ture. We have performed a preliminary exploration of this issue,

running simulations similar to the ones previously discussed at a

temperature of 360 K. It is indeed found that relaxation is slower

(285 fs vs. 265 fs at 300 K), so that the present model captures this

effect as well. It must be said, though, that the slowdown is

substantially smaller than found experimentally (174 fs at 295 K,

vs. 250 fs at 348 K). From our calculations (see Fig. 8) it seems that

both the intramolecular and intermolecular mechanisms are

slightly less efficient during the initial stages, so the slowdown

could not be attributed to a single mechanism. In addition, at

longer times the intramolecular mechanism slightly diminishes its

weight compared to the intermolecular one, although not changing

the overall behavior (centrifugal coupling dominating vibrational

relaxation). In order to explain this behavior we first note that, for

the intramolecular mechanism, hydrogen bond weakening upon

temperature increase will cause a downshift of librational overtone

frequencies of the excited molecule, and therefore a less optimal

overlap with the bending frequency (see for instance Fig. 11 and 17

in ref. 17), although it is also true that the bend frequency also

decreases slightly with temperature. A similar phenomenon might

be at work for the intermolecular mechanism: while higher

frequencies will be more populated, a redshift of water librational

frequencies of the solvent will cause a less optimal transfer. From

the long time behaviour found in our simulations, it would seem

like this latter effect is less important. Given the subtle balance of

effects just decribed, and the fact that the model does not fully

capture the rate of temperature variation, we do not pursue a

further scrutiny at present, since this issue should probably be

addressed with a more accurate model.

Fig. 5 Work (normalized) on translational motion of water mole-

cules within each hydration shell. Black line: total work on translation;

red: work on translation of four closest molecules; blue: on the second

hydration shell; green: on the third hydration shell; purple: on

molecules beyond the third shell.

Fig. 6 Sketch of the numbering of molecules around the ‘‘central’’

(bend excited) water molecule. The two water molecules directly H-bonded

(blue dotted lines) to the hydrogens of the excited water molecule are

referred as 1 and 2, while the other two waters donating H-bonds (orange

dotted lines) to the excited water molecule are referred as 3 and 4.

Fig. 7 Work (normalized) on rotational motion of water molecules

within the first hydration shell. Black line: total work on the first

hydration shell; red: work on molecules 1 and 2 (those hydrogen-

bonded to the hydrogens of the initially bend-excited molecule); green:

the same for molecules 3 and 4.
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G. Initial conditions and bend energy transfer

Before we summarize the results of this section, we need to

address some aspects related to the generation of initial

conditions for the nonequilibrium trajectories reported within.

As mentioned in the Computational Details section, there are

some differences in the present approach compared to our

previous contributions,16,17 particularly concerning the generation

of the water bending angle at the initial time. Here, bending

motion is allowed (during the long equilibration run) for the

water molecule that will be subject to vibrational excitation, while

in our previous works all molecules were kept rigid. A trivial

advantage of this new procedure is that one does not need to

sample an initial angle17 to start a nonequilibrium trajectory; here

we simply add vibrational kinetic energy to a given configuration,

up to the total bend vibrational energy.

The basic reason to change to the present procedure,

though, is a different one, the small but noticeable effect that

angle sampling can have on the behavior of potential energy of

interaction change DV, one of the basic functions monitored in

this work (see e.g. Fig. 1). This subtle effect can be traced back

(as explained below) to the fact that the bend angle for the

SPC/E water model is 1091 while that for a molecule in which

bending is allowed is E1051: while the shape of the angle

distribution obtained here (from which results the mean angle

just referred to) and the one used in ref. 17 (corresponding to

one of the three different sets examined there, referred to as

‘‘thermal distribution’’) are identical, the position of the peak

differs (see ESIw). In ref. 17’s procedure, each nonequilibrium

run was started from a configuration obtained with a rigid

molecule simulation, so that the surrounding water molecules

are initially equilibrated to the aforementioned SPC/E angle of

the central water; we denote the mean potential interaction

energy in this case as hVi1091. When the relaxation process for

the now free to bend central water is complete, the surrounding

water molecules will have equilibrated to a smaller angle, with

potential interaction energy hVi1051. Although the difference is

small, hVi1091 is slightly larger, due to the fact that the SPC/E

angle is not the optimal one for a flexible molecule. In

consequence, at long times one obtains hDV(t)i - hVi1051 �
hVi1091 r 0, so that the potential energy increment does not

tend to zero as required, a behaviour which was not noticed

previously since this function was not required in ref. 17.

This artifact is removed by the simple equilibration procedure

followed in the present work, which assures that hDV(t)i -

hVi1051 � hVi1051 = 0. Since we are now starting each

configuration from a more optimal configuration (in what

concerns solute–solvent interaction), the present procedure

has an impact on the balance of the intermolecular and

intramolecular mechanisms that channel the initial water bend

excitation energy, and transfer to neighboring molecules is

slightly more favored than it was in the description of ref. 17.

The quantitative conclusions of ref. 17 are only slightly altered

though: the weight of intramolecular transfer to self-rotation

(centrifugal mechanism) is reduced from 2/3 (66%) of the

initial excess water bend energy to about 3/5 (59%, see Fig. 8)

and, correspondingly, intermolecular transfer from the excited

water molecule to the surrounding water molecules is increased

from 1/3 of the initial excess energy to roughly 2/5. No

appreciable differences are found with the overall vibrational

relaxation time reported here and previously.16

H. Synthesis for water bend energy relaxation

By merging the present results with those in ref. 16 and 17, we

can provide a rather detailed picture of the relaxation process

following excitation of the bending motion of a given water

molecule in liquid water. First, as was already established in

ref. 17, one can distinguish two different channels for the

initial decrease in bend vibrational energy:

� An intramolecular transfer into hindered self-rotation via

a 2 : 1 Fermi resonance resulting from centrifugal coupling,

which dominates the process. Our present estimation, refined

by an improved initial condition sampling (Section III G), is

that roughly 3/5 of the initial energy is channeled through this

mechanism. Most of this energy is taken up by rotational

motion around the principal axis parallel to the HH direction,

which has the lowest moment of inertia, and therefore the

highest librational frequency.17 This energy is then quickly

transferred, with a relaxation time E50 fs, into immediate

neighbors. Approximately half of this energy is transferred to the

four immediate neighbors that constitute the first hydration shell

(preferentially to the two water molecules hydrogen bonded to

the oxygen of the excited molecule—molecules 3 and 4 in Fig. 6),

while the other half is transferred to outer shells. It has been

shown here (Section III E) that this energy appears as hindered

rotational motion of the energy-accepting waters.

� A direct, intermolecular transfer into neighboring water

molecules accounts for 2/5 of the initial water bend excitation

energy. Again, most of this energy (approximately two thirds)

is transferred to the first hydration shell, although now it is

molecules 1 and 2 in Fig. 6 which mainly channel it. Direct

transfer to outer shells is thus less important than the one

found for self-rotation. It has been shown here (Section III B)

Fig. 8 Comparison of water bend vibrational relaxation mechanisms

at different temperatures. Solid green line: vibration to self-rotation

transfer at 300 K; dashed green line: the same at 360 K; blue line:

direct transfer to neighbors at 300 K; red line: the same at 360 K.
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that this energy appears as hindered rotational motion of the

energy-accepting waters.

The combined effect of these two processes results in an

overwhelming transfer of energy into hindered rotational

motion of its neighbors. We find that roughly 95% of the

energy is transferred into librations, with the rest being

transferred into translational motions (see Fig. 1). While we

have implicated transfer into librations previously,17 as also

had been suggested in the experimental studies,14 we believe

this is the first time in which it is shown unambiguously. In

addition, this transfer is rather limited in its spatial extension:

roughly 60% of the energy is transferred into the four immediate

water neighbors, and almost all energy is transferred to the two

first hydration shells. Direct transfer to molecules beyond two

molecular diameters is practically inexistent (see Fig. 4 and 5).

Accordingly, one could sum up the present results by stating that

water bend vibrational relaxation is rather local, being limited to

the two first hydration shells and proceeding through transfer to

local librations of the very same molecule at the initial stage and

of close neighbors immediately after. Since most of the energy is

initially transferred into self-rotation, and the process is basically

rotational relaxation after this step, this suggests that a similar

picture might also apply to pure rotational relaxation.23

A question not addressed here is whether the rapid librational

excitation and relaxation would have consequences in experimental

anisotropy measurements. Available experimental evidence14

suggests that the answer is no, but direct simulation of

experimental measures would nonetheless be useful, if only

to indicate why there appears to be no effect. A related

question which deserves attention is whether rotational excitation

would have any significant impact on the jump mechanism/

timescale of water reorientation.34 Both these issues are left for

future investigation.

In line with the feeble participation of translational motions

of the exited water’s neighbors in the energy flow, it is also

found that transfer to self-translation, mediated by indirect

interaction via potential energy with its neighbors, is nil

(see Fig. 1). In comparison, the potential energy—due to its

important role in mediating intermolecular transfer—shows a

considerable increase of up to a fifth of the total initial energy.

In addition, it decays slowly, lasting after the excess internal

molecular energy has fully decayed (see Fig. 1 and 2).

IV. Concluding remarks

Via an extension and reformulation in terms of Poisson

brackets of the power and work methodology developed

previously,17 we have explicitly shown that bend vibrational

energy of an excited water molecule in liquid water is ultimately

transferred to the hindered rotational (librational) motion of its

neighbors in the first two hydration shells. Since Section III H

has provided a perspective of these new results within the

context of the complete picture of the water bend relaxation,

we devote the remainder of this section to indicating how the

basic formulation can be exploited for other relaxation

problems.

The basic Poisson bracket formalism we have developed

within can be used to study energy transfer paths for mole-

cular excitations other than the vibrational (bending) one

studied here. Two illustrations based on eqn (21) (or its alter

ego eqn (22)) will suffice to expose the central ideas. For a

purely rotational excitation of a molecule, and assuming that no

high frequency vibration of the molecule is excited (DEv = 0,

rigid molecule approximation), rearrangement of eqn (21) gives

DKR ¼ �DV � DKT �
X
j41

W1j ; ð29Þ

in which case there are transients in the energy transferred to the

center of mass kinetic energy (DKT) of the molecule and the

intermolecular potential energy of interaction with the molecule’s

neighbors (DV). The remaining work terms can be partitioned,

as in e.g. eqn (26), into contributions for the librational

and translational motions of the surrounding molecules. The

application of this formula to rotational excitation in pure

water will be reported elsewhere.23

The same approach can be used for solvation energy

relaxation. In this scenario, it is the interaction potential

energy of the central molecule which is initially subject to a

nonequilibrium perturbation, as for instance by means of a photo-

induced electronic transition which results in a nonequilibrium

solvation energy, studied via time-dependent fluorescence

experiments and via simulation.33 Again ignoring the excited

molecule’s vibrational energy for simplicity, rearrangement of

eqn (21) gives

DV ¼ �DKR � DKT �
X
j41

W1j ; ð30Þ

from which one can determine to which solvent neighbors the

excess energy is transferred. Note that, as opposed to the

situation for the kinetic energy discussed in our first illustration,

it is now the averaged kinetic energy increments that will decay

to zero after a transient. This solvation dynamics problem will

be analyzed in a separate contribution.24

Appendix

Eqn (26) for the water bend relaxation has been derived

starting from the time derivative of Hmol for convenience

(eqn (17)); one could also start from the time derivative of

Hv (eqn (7)), i.e.

dHv

dt
¼ ½Hv;H� ¼ ½Hv;KR� þ ½Hv;V �

¼ ½Hv;KR� �
dV

dt
þ ½V ;H2� þ ½V ;KR� þ ½V;KT�;

ð31Þ

which reverts to eqn (12) if we consider that for translation we

have generally

dKT

dt
¼ ½KT;H� ¼ ½KT;V �; ð32Þ

i.e. the only channel is that of external, intermolecular forces,

while for rotation

dKR

dt
¼ ½KR;H� ¼ ½KR;Hv� þ ½KR;V�; ð33Þ

i.e. there are two channels in this case: the internal, intra-

molecular flux plus the external, intermolecular torques.

Finally, upon substituting eqn (32) and (33) into eqn (31),
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and after integration, one recovers eqn (26). This more abstract

approach will now be generalized.

We consider the relaxation of an internal mode coupled to

several other internal modes and to the environment of the

molecule, with Hamiltonian

H = H1 + Hint + V + H2, (34)

where H1 denotes the Hamiltonian for the internal intra-

molecular mode of interest (bending mode in our case), and

Hint the remaining internal Hamiltonian (like rotational/

translational motions in our case). We will now consider three

alternative expressions for the power on mode 1, each one

providing information on different aspects of the process.

First, we consider the time evolution of the three first terms

dH1

dt
¼ ½H1;Hint� þ ½H1;V �; ð35Þ

dHint

dt
¼ ½Hint;H1� þ ½Hint;V�; ð36Þ

dV

dt
¼ ½V;H1� þ ½V;Hint� þ ½V ;H2�: ð37Þ

The first equation describes the balance of energy fluxes for

the mode of interest: [H1, Hint] represents the flux to other

internal modes (which can be partitioned into different

contributions by the Poisson bracket’s additive structure, see

e.g. eqn (11)), and [H1, V] corresponds to the power exerted by

the environment (which again can also be partitioned into

contributions from different neighbors). Eqn (35) was employed

in ref. 17, in the expanded form found in eqn (12).

A second expression for dH1/dt is obtained if the [H1, V]

term in eqn (35) is rewritten in terms of the potential energy

change, with the purpose of ascertaining the specific accepting

mode. Substituting dV/dt (eqn (37)) into the first equation we

obtain

dH1

dt
¼ ½H1;Hint� �

dV

dt
þ ½V ;H2� þ ½V ;Hint�; ð38Þ

dHint

dt
¼ ½Hint;H1� þ ½Hint;V �: ð39Þ

Eqn (38) provides a more detailed view of all the energy

fluxes in which the excited mode (1) is involved. The last three

terms, which add up to the entire work performed by the

environment, can be interpreted as: (a) energy in the excited mode

converted into an intermolecular potential energy increment

(dV/dt); (b) power exerted on the environment modes ([V, H2]),

i.e. the part that we are interested in; (c) work on the rest of the

molecule’s internal modes of the molecule ([Hint, V] term). This

last term shows how transfer of energy between the excited

mode and the internal modes can be indirect through this

intermolecular term, in addition to the direct intramolecular

route ([H1, Hint]).

These two contributions (direct and indirect) can be found

again within the second equation (eqn (39)), which represents

the time evolution of energy contained in the rest of internal

molecular modes. Of course this time both contributions come

with the opposite sign (compared to eqn (38)). In addition,

while they both contribute in general, the first one ([Hint, H1])

vanishes for instance in the case of (rigid molecule) rotational

relaxation (as there is no direct coupling with the other

internal mode, namely center of mass translation). If one is

also interested in the time evolution of other internal modes,

Hint could be partitioned in as many contributions as required,

so that eqn (39) would branch into a number of similar

equations. We thus see that the set eqn (38) and (39) allows

a detailed monitoring of energy fluxes during relaxation of the

excited mode.

Finally, a third expression can be obtained for dH1/dt if one

is not interested in the specific energy fluxes between the

excited mode and the remaining internal modes. Combining

eqn (38) and (39), we find the generalization of eqn (26)

dH1

dt
¼ ½V ;H2� �

dV

dt
� dHint

dt
; ð40Þ

which in a way summarizes the whole process. If one thinks in

terms of an excited mode (1), the change in its excess energy

(dH1/dt) is transferred into: (a) environment degrees of freedom

([V,H2]); (b) potential interaction energy (dV/dt); and (c) internal

modes of the solute (dHint/dt), discussed above in terms of direct

and indirect channels.

If applied to a case in which the non-initially excited modes

are thermalized at the beginning and end of the process, then

hDVi,hDHinti- 0. Therefore, after integration one obtains

hDH1i !
Z 1
0

½V;H2�dt
� �

¼
Z 1
0

@V

@qi

@H2

@pi
dt

� �
; ð41Þ

which allows one to ascertain, by partitioning into different

contributions (see eqn (23)), the percentage of excess molecu-

lar energy that has been channeled (on the average) through

each specific solvent mode.
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