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In lowest unique bid auctions, N players bid for an item. The winner is whoever places the lowest bid,
provided that it is also unique. We use a grand canonical approach to derive an analytical expression for
the equilibrium distribution of strategies. We then study the properties of the solution as a function of the
mean number of players, and compare them with a large data set of internet auctions. The theory agrees
with the data with striking accuracy for small population-size N, while for larger N a qualitatively
different distribution is observed. We interpret this result as the emergence of two different regimes, one in
which adaptation is feasible and one in which it is not. Our results question the actual possibility of a large

population to adapt and find the optimal strategy when participating in a collective game.
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In recent years, statistical physics has provided power-
ful tools to study both equilibria [1,2] and dynamical
properties [3-6] of games where the number of players
is large. So far, most of the efforts in this field have been
focused on games in which interactions among players are
pairwise, the most notable and studied example being the
prisoner’s dilemma [3]. However, there are many ex-
amples of collective games where a unique winner is
singled out from a large population. In such cases, com-
paring theory with empirical data is particularly challeng-
ing: As the number of players increases, the statistical
description becomes more appropriate. However, the com-
plexity of the equilibrium strategy may also increase, thus
making it more difficult for real agents to infer it from
available information [7].

Online auctions provide a fertile, yet scarcely investi-
gated ground for exploring this problem [8—11]: The avail-
ability of large data sets provides a unique opportunity to
study whether strategies of real players actually maximize
their winning chances. Here, we focus on lowest unique bid
auctions. This game is interesting for two reasons. First, it
is sufficiently simple to allow for a comprehensive mathe-
matical analysis [12,13]. Second, many detailed auction
records are freely available online. The game is formulated
as follows: N players can bid for an item of value V. The
bid must be a multiple of a minimum amount, so that one
can effectively consider bid amounts as natural numbers.
The winner (if any) is the player who places the lowest bid,
which is unique, i.e., no other player bid on that amount.
All players must pay a fee ¢ to take part in the auction;
additionally, the winner has to pay the bid amount.

In this Letter, we derive an explicit analytic expression
for the symmetric Nash equilibrium of the lowest unique
bid auction and explore its dependence on the total number
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of players N. To achieve an explicit solution we assume
that NV is not fixed, but fluctuates according to a Poissonian
distribution, in analogy with the choice of the grand
canonical ensemble in equilibrium statistical mechanics.
We then compare the expression with a large data set [14]
where players are informed in advance of the total number
of allowed bids N. We find a remarkable change in the data
as N increases: In the low N regime (fewer than = 200
players), the theory predicts very well the bid distribution.
In this regime, the game is effectively a lottery, since
winning chances are evenly spread on any number.
Conversely, in the large N regime, the data deviate from
the theoretical solution and rather follow an exponential
distribution. Here, players fail to adapt to the optimal
strategy and the winning chances are highly dependent
on the chosen number.

In a symmetric Nash equilibrium, all players adopt the
same strategy, and no player can benefit from changing
strategy unilaterally, i.e., should any player change strat-
egy, his expected payoff would be equal or worse. Consider
N individuals playing according to the same strategy p =
(p1, p2» P3> - - .), Where py is the probability of bidding the
number k. Then, the distribution of bids is multinomial:

N!

. ny N,
nl!nz!...pl p2 T (1)

P(n) =
where n = (n, ny, n3, ...) are the number of bids placed
on each number k. For convenience, we introduce the
generating function:

Gyx) = ZT(n)x'f‘x';z, = (x-pN )

{n}
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We now assume that N is not fixed, but fluctuates accord-
ing to a Poissonian distribution of mean A, leading to a
grand canonical generating function:

ANe™2

GA(X) = %_ N

Gy(x) =exp[A(p-x — D] (3)

i.e., the number of bids on each number is also Poisson
distributed with mean f;, = Ap,. By differentiating G with
respect to X, it is straightforward to compute the probabil-
ities wy of k being the winning number, i.e., that there is a
unique bid on k and no unique bids on lower numbers:

k—1
wi = fre [T = fre7 ). (4)
Jj=1

It is also useful to compute the probability c; of k being a
potential winning number, i.e., that there are no bids on k
and no winners on lower numbers:

k=1
cp = e Tk l_[(l — fie 7). 5
=1

We note that the probability of each bid to be a winner on
a given number w;/f; is equal to the probability c; of
numbers to be potential winning numbers, which is a
peculiar property of Poisson games [15].

The expected payoff for a player bidding k will be
(V = k)wy/fr — c. At equilibrium, the expected payoff
should be independent of k. Otherwise, players could
benefit from bidding on numbers with high payoffs more
frequently. Imposing this condition leads to a recurrence
relation for the average bidding frequencies,

Jrer = In(els = i) + ln(l - ﬁ) (6)
To avoid a negative number of bids, the support of the
distribution must be limited to the region where all f}’s are
positive. In this region k <V holds, so that the f;’s are
strictly decreasing. The initial condition f; has to
be determined iteratively from the condition 3 ;f; = A.
If the frequencies f; tend to zero for values of kK much
smaller than the value of the item V (a condition that is
always fulfilled in our data set, and will be consistently
assumed in the following), the last term in (6) can be
disregarded. In this limit (formally corresponding to
V — 00) the recurrence relation has been derived in [13]
and it is well defined for all values of k € JV. We extend
this solution by noting that the normalization condition
> fx = Aimplies an explicit expression of f;: Eq. (6) can
be written as f;, = e/t — e/t*! which summed over k
yields the initial condition f; = In(A + 1). This allows
for an explicit expression for any specific f;’s by iteration.
Substituting the solution into (4) also shows that the

average chance of winning of each bid is equal to
(A 4+ 1)7!, which is also equal to the chance of having no
winner in the auction.

Before discussing the comparison with the data, we
briefly study some properties of the Nash equilibrium
distribution. When f; >> 1, a continuous approximation of
(6) shows that f; decreases logarithmically with k. For
small f; < 1, one can approximate fj; = f,%/Z, showing
that the distribution has a superexponential cutoff. The
scaling of the value k*(\), around which the cutoff occurs,
can be estimated in the following way. By removing all the
players that bid on k£ = 1 we change the average number of
players by the amount f| giving Apey = Agig — IN(Agq + 1).
This is equivalent to shifting the whole distribution by one
along the k axis, resulting in k., = kj); — 1. This scaling
transformation in the continuum limit becomes dA/dk™ =
In(A + 1), with the solution k*(A) = 1i(1 + A) + C, where
li(z) = [§dt/Int is the logarithmic integral and C is a
constant of O(1).

We now move to the comparison of the equilibrium
solution with empirical data from Ref. [14]. The data set
includes 724 online auctions from April 2007 to January
2011 with a variable number of bids ranging from N = 26
to N = 4748. The number of allowed bids in a particular
auction is announced before bidding starts, and the auction
closes when this number is reached. Each player is allowed
a limited number of bids. The average number of bids per
player in the full data set is only 2.47 and very weakly
dependent on N. In the Supplemental Material [16], we
demonstrate with agent based simulations that allowing a
small number of multiple bids per player does not alter
significantly the equilibrium strategy. For this reason, in
the subsequent analysis, we will neglect the effect of
multiple bids by the same player and treat the bids as
statistically independent.

In Fig. 1 we compare the theoretical and empirical
bidding frequencies in different auctions having different
numbers of players and different item values. In order to
make the histograms smoother, we averaged each panel
over L different auctions having similar numbers of players
and same item value (shown in the figure).

On the fine scale of single numbers, the data show a
structure dictated by known psychological effects. Players
tend to favor odd numbers over even numbers. Some
specific numbers (like 17 and other primes) are perceived
to be “original” by some players, and are chosen with
significantly larger probability than neighboring ones.

On a coarser scale, the agreement between theory and
data is striking for smaller auctions [i.e., fewer than 200
players, panels (A) and (B) of Fig. 1]. It is particularly
remarkable that the empirical histograms reproduce the
sharp cutoff, considering the nontrivial dependence of k*
on the number of players.

Theoretically, players should adjust their bidding strat-
egies according to the number of players rather than the
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FIG. 1 (color online). Histograms of bidding frequencies
compared with the theoretical equilibrium distribution. Panels
(A)—(D) show average histograms of different auctions with a
similar number of players and same item value. Panel (E)
compares histograms of auctions with a similar number of
players, but significantly different item values. Panel (F) is
same as panel (D) but in linear-log scale, to illustrate the
exponential shape of the empirical distribution at large N.

item value, which can be assumed to be infinite. In all
auctions in the data set, the cutoffs of the corresponding
theoretical distributions occur at bid values much smaller
than the item values (shown in panels). To test whether the
empirical bidding distributions are independent of V, panel
(E) compares two sets of auctions with the same number of
players, but with item values that differ by a factor of 3.
The bidding distribution for the pricey item have a slightly
heavier tail, but overall the distributions are very similar.
The agreement between theory and data progressively
deteriorates as the number of players increases [see panels
(C) and (D)]. For a large number of players (more than
2000) an exponential distribution fits the data better, as
shown in the lower panels of Fig. 1. This can be understood
by arguing (see, e.g., [17-19]) that players having incom-
plete information about the game play according to
a strategy defined as p; = exp(—BE;)/3.; exp(—BE;)
where E, is the expected payoff when placing a bid &
and B quantifies the degree of uncertainty about the
game. If players have poor knowledge about the optimal
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FIG. 2. [, distance between the theoretical solution and the
empirical histogram for each auction. The continuous line is the
theoretical expectation (d) = N ! if all bids for each histogram
were randomly drawn for the theoretical distribution.

strategy, they could assume a uniform prior probability to
win on each k, resulting in E; decreasing linearly with k
due to the cost of the bid when winning. Substituting this
prior into the aforementioned strategy yields a bid distri-
bution exponentially decreasing with bid size.

A quantitative measure of how the data deviate from
theory is shown in Fig. 2, where, for each auction, we plot
the /, distance d between the theoretical probability distri-
bution and the empirical one, d = N 23, (fi — ¢1)>,
where ¢, is the number of bids on & in a given auction.
If bids were randomly drawn from the theoretical distribu-
tion, the expected distance would decrease with the number
of players as (d) = N~!. Empirically, the distances have a
large spread around the expected value for small auctions
and are consistently larger than expected for N > 200. This
outcome cannot be simply explained by the larger number
of auctions for smaller N: As a consequence of players’
turnover, the distributions at fixed N do not evolve with
time in a significant way, as we checked by comparing
older to more recent auctions.

Another interesting quantity is the distribution of actual
winning numbers. At equilibrium, it should be equal to the
distribution of bids. As shown in Fig. 3, the empirical
distribution of winning numbers supports this feature.
The vast majority of winning numbers fall within the
theoretical cutoff (pink shaded area of Fig. 3). In the
figure, we also show the analytical estimate k* =
(I +1/InN)N/InN based on the asymptotic expansion
of the logarithmic integral. The black line is the average
winning number, which in the relevant range, scales ap-
proximately in the same way as the cutoff.

Binning the data yields average winning numbers in
excellent agreement with the theory, even for large N
where the empirical distribution of bids departs from the
theory. However, the variance of winning numbers be-
comes much smaller than the theoretical prediction for
N > 103. To further explore this phenomenon, we compute
the actual probabilities to win on a certain number, given
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FIG. 3 (color online). Panel (A): Winning numbers as a func-
tion of auction size. The continuous line is the theoretical
average and the shaded area denotes the region where bids are
below the theoretical cutoff k*. Panel (B): Average and standard
deviation of the winning numbers, compared with the respective
theoretical lines.

the empirical distributions of bids for auctions of various
sizes. This probability is given by w;/ f; which, since ¢; =
wi/ fx, is the same as the probability to win on a certain
number for an additional player entering the game. The
results are shown in Fig. 4 for the same examples consid-
ered in Fig. 1. For auctions with few players, the largest
chance of winning is not more than 4-5 times higher than
(N + 1)1, the winning probability at the Nash equilib-
rium. In this region, the game is not very different from a
lottery, as the winning chances do not depend much on the
chosen number k << V. In contrast, for large auctions, the
winning chances on low and high numbers are very small,
while intermediate bids may have a winning chance more
than 60 times higher than the average bid in the Nash
equilibrium, providing opportunities for exploitation and
thus potential room for adaptation.

Summarizing, in this Letter we derived the analytical
equilibrium bidding distribution for the lowest unique bid
auction and compared it with empirical data. The emerging
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FIG. 4 (color online). Winning chances when bidding k. Black
lines indicate the same empirical data as panels (A)—(D) of
Fig. 1. Gray (red) lines are the relative probabilities to win
when betting on k given that all other players bid according to
the empirical distribution. To help the comparison, we have
renormalized the winning probabilities ¢, with their value for
the Nash equilibrium (N + 1)~!. The shaded points mark the
actual winning bids for each auction (arbitrary y position).

picture is that players are able to infer the optimal strategy
with striking accuracy when the number of players N is not
too large. In the large N regime, the population-level
strategy is highly nonoptimal and it seems to be determined
by the simple principle of not assuming a particular pref-
erence for any number while avoiding the cost of large
bids.

This result raises nontrivial questions about the effec-
tiveness of adaptive dynamics in collective games. While it
has been studied whether adaptation eventually drives the
system to the optimal solution or generates more complex
dynamical behaviors [20], it is also crucial to assess how
fast the equilibrium is reached. A thorough study of adap-
tive dynamics in such a system will be the subject of a
future study; in the Supplemental Material [16], we show
that indeed, in the simple case of replicator dynamics,
adaptation becomes slower at larger N. Such slowdown
could prevent the inference of the equilibrium strategy for
large populations in realistic time scales, and thus explain
the increasing lack of adaptation in our data as N grows.

We acknowledge useful discussions with M. Marsili, K.
Sneppen, C. Strandkvist, and P. Kempson.
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