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A theoretical and experimental study of the propagation of sound beams in- and behind

three-dimensional sonic crystals at frequencies close to the band edges is presented. An efficient

collimation of the beam behind the crystal is predicted and experimentally demonstrated. This

effect could allow the design of sources of high spatial quality sound beams. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4719082]

Focusing and propagation of sound beams are of funda-

mental importance in several branches of applied acoustics,

such as tomography, acoustic microscopy and imaging, or

sonar communication. To achieve optimal focusing, and to

maximize spatial quality of the sound beams, several mecha-

nisms have been proposed in acoustics, like the use of acous-

tic lenses1 or the design of Gaussian beam transducers.2

Recently, it has become apparent that the materials whose

properties are modulated in space, also known as sonic crys-

tals (SCs) in acoustics3 or photonic crystals in optics,4 can

modify the spatial dispersion of propagating waves. This

feature opens new possibilities to control the diffractive

broadening of sound beams. In particular, the beams can

propagate in modulated material without diffraction (the

effect also referred to as self-collimation), as predicted and

demonstrated in optics5 and in acoustics.6 Self-collimation is

based on the existence of flat segments of spatial dispersion

curves (the curves of constant frequency in ~k-space). More

recently, the three-dimensional (3D) self-collimation by SCs

was experimentally demonstrated,7 which is based on the

formation of flat areas of the isofrequency surfaces.

In addition to non-diffractive propagation inside the

SCs, the modification of the spatial dispersion can also pro-

duce phenomena outside the crystal such as lensing8,9 and

superlensing.10 These beam propagation effects behind the

SCs are related with the negative diffraction inside the peri-

odic structure. The character of the beam propagation behind

the SC depends on the wave front of the beam acquired in

the system. In particular, if the wave front of the beam

acquires positive curvature (due to propagation in a material

with negative, or anomalous diffraction), the beam can be

focused behind the modulated medium, which enables above

discussed lensing and superlensing effects.

Although the focusing of sound beams behind a 2D SCs

is being intensively investigated,11 the overall picture of the

beam formation and propagation is still unclear. Apart from

the above mentioned phase transformation effects due to the

negative diffraction of waves propagating inside of the SC,

spatial (or angular) filtering effects also come into play. The

negatively curved segments of dispersion lines are generally

surrounded by the angular bandgaps, which are angular areas

where sound cannot propagate. The latter results in a modifi-

cation of the angular spectrum of the beams,12 recently dem-

onstrated in both optics13 and acoustics.14 These two beam

formation mechanisms combine and give rich possibilities of

formation of the beams with desired spatial characteristics

(angular distributions) and with desired character of focusing.

In the present work, we study, experimentally and theo-

retically, the sound beam formation behind a 3D SC with a

woodpile-like structure. We experimentally demonstrate the

formation of high spatial quality and well-collimated beams

behind the SC, based on the above described spatial filtering

and negative diffraction effects. In this letter, we present first

the isofrequency contours of SC and identify the ranges of

the frequencies where the curvature of the isofrequency

surfaces is positive. Based on these results, we design the

samples and perform the sound beam propagation experi-

ments. The most important result is the experimental demon-

stration of the formation of a well focused beam. Finally, we

investigate the beam propagation in a simplified paraxial

approximation and obtained a good quantitative interpreta-

tion of the experimental measurements.

Figure 1(a) shows the experimental setup. The 3D SC is

formed by two 2D structures of square symmetry, embedded

one into another after a relative rotation by 90�, which results

in a 3D woodpile-like structure.7 Each of 2D structures con-

sists of 20� 20 matrix of steel cylinders of a radius

r¼ 0.8 mm and the lattice constant a ¼ 5:25 mm (see unit

cell in Fig. 1(b). The beam, emitted by an ultrasonic source,

propagates through the SC along the z direction. The acous-

tic field is measured by a needle hydrophone positioned by a

three motorized axes governed by acquisition system. As

shown in Fig. 1(a), the experimental set up is immersed in a

Plexiglas tank filled with distilled water.

The eigenfrequency analysis of the sound wave propa-

gation was performed numerically using finite element

method.15 The periodicity of the system is considered by

imposing Bloch-Floquet boundary conditions of the unit cella)Electronic mail: alcebrui@epsg.upv.es.
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(Fig. 1(b)). The path around the first irreducible Brillouin

zone represents the main directions of symmetry in 3D. We

analyze the propagation along C X direction in the present

work.

Figure 1(c) shows the isofrequency surfaces for three

different frequencies (230, 240, and 250 kHz) in the second

band as well as the cross sections of the isofrequency surfa-

ces by kz ¼ 0, kx ¼ 0, and ky ¼ 0 planes, respectively. Fig.

1(c) shows the quarter of the isofrequency “bubble” for these

three frequencies. The isofrequency lines in, kz¼ 0, plane are

shown in detail in Fig. 1(d). The lowest of highlighted fre-

quencies (230 kHz) corresponds to non-diffractive propaga-

tion inside the SC (flat isofrequency line). The isofrequency

surfaces (and the lines in the cross plane) at slightly higher

frequencies have areas with a positive curvature, which

cause the desired focusing behaviour.

The experimental measurements of the beams propagat-

ing behind the SC are summarized in Fig. 2. Three different

frequencies are represented in (a) upper, (b) middle, and (c)

bottom panels. The upper panel (235 KHz) shows the beam

propagation for frequency corresponding to self-collimation

inside the crystal.7 The bottom panels in Fig. 2 (260 kHz)

show the beam propagation for the case when a strongly

curved and relatively small “bubble” of isofrequency surface

occur (Fig. 1(c)). As the area of the isofrequency surface

responsible for the negative diffraction and eventually for fo-

cusing is very small, just the central (paraxial) part of the

angular spectrum is focalized. One part of the remaining

angular components is reflected, as it corresponds to the

angular bandgaps. The other part of angular components

propagates along different directions, giving rise to side-lobes

as seen in Fig. 2(c). The intermediate situation, corresponding

to the frequency 250 kHz, is shown in the middle panels of

Fig. 2. The diffraction is negative for the propagation inside

the SC due to positive curvature of the dispersion curves (see

Figs. 1(c) and 1(d)). The isofrequency “bubble” is large

enough to transmit a sensible portion of the angular spectrum.

This case is most relevant for the goals of this work.

We interpret the focusing of the beam in the terms of

Ref. 11: the sound beam propagating in bulk of SC with

negative diffraction accumulates the increasing positive

(anomalous) curvature of the beam wave front. Behind the

SC, the propagation in the (normally diffracting) homoge-

neous medium compensates the accumulated negative dif-

fraction acquired inside the SC. The beam is focalized at

some distance zf where the negative diffraction inside the

FIG. 1. (a) Experimental configuration, (b) unit cell of the 3D SC, (c) isofrequency surfaces, and (d) cross-section of dispersion surfaces.
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SC and positive diffraction behind the SC compensate one

another.

The analytical estimation of the focal distance is possible

considering the approximation of small filling fraction of the

SC, f ¼ Vs=Vuc (Vs and Vuc are the volume occupied by the

scatterer and the unit cell, respectively). In this approximation,

the diffraction coefficient (i.e., the curvature of the spatial dis-

persion curve and/or surface) can be analytically calculated.11

Following the above interpretation, the negative diffraction of

the SC is compensated at a distance zf behind the SC (meas-

ured from the input plane of the SC):

zf ¼ L
f 2

DX3
; (1)

where L is the length of the SC, DX ¼ ðXg � XÞ=Xg with

Xg ¼ xga=2pch being the normalized Bragg frequency, and

ch is the speed of sound of the host medium, i.e., in water.

FIG. 2. Experimental measurements and simulations of the acoustic field pattern behind the SC at (a) 235 kHz, (b) 250 kHz, and (c) 260 kHz. (1) XZ-cross-section

of the beam behind the SC; experimental (2) and numerical (3) ultrasound field distribution in the XY plane at point z1¼ 195 mm behind the SC.

FIG. 3. (a) Density plot representing the measurements of the on-axis intensity distribution on the frequency-z plane (distances measured from the transducer). Contin-

uous green line corresponds to analytical fit (see text). Black area represents the space occupied by the SC. The white dashed line represents the point z1 (b) Continuous

line represents the measured beam amplitude in normalized units at point z1 and red dotted line represents the measured beam width. (c) Experimental profiles in the

x-axis of the beam at z1 point and (d) measured amplitude in normalized units on the z-axis at 250 kHz.
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The experimental results were compared with the ana-

lytical study of beam focusing, as shown in Fig. 3. In Fig.

3(a), the absolute value of the intensity behind the crystal on

the z-axis is mapped depending on the frequency. Green con-

tinuous line represents the analytical fit of the focal distance

calculated from Eq. (1) considering L ¼ 20a, Xg ¼ 1, and

f ¼ 0:05. The parameter f is a fit parameter. We notice that

due to the fact that Eq. (1) has been obtained for 2D structures

with low filling fraction, we use a fit parameter to take this

into account. For this case, the frequency of zero diffraction

point or self collimation corresponds to XZDP ¼ ð1� f 2=3ÞXg,

(�ZDP ¼ 238 kHz).

The focusing for a frequency range around the optimal

one is evidenced in Figs. 3(b)–3(d). Fig. 3(b) shows both the

amplitude at point z1 (black continuous line) and the beam

width (red dots) depending on the frequency. Figs. 3(c) and

3(d) show the profile at z1 along the x-axis and the transver-

sal cross-section along the z direction in x ¼ 0 for the focus-

ing frequency 250 kHz, respectively.

In summary, we have experimentally demonstrated the

collimation of the beams behind a 3D SC. The obtained

results are interpreted and analyzed in terms of curvatures of

spatial dispersion curves and surfaces of the SC and rely on

the negative diffraction close to the edge of the propagating

band. The experimental results fit well with the numerical

simulations as well as with analytical predictions in Ref. 11.

The tunability of the focal distance has been also demon-

strated, showing that the beam intensity in the focus as well as

the broadening of the beam along the propagation depends on

the frequency, which give additional options for applications.

The overall focusing process is interpreted in terms of

the interplay between two related but different effects: the

focusing of the beam, due to curvature of spatial dispersion

curves; and the spatial filtering effect, due to the size of the

isofrequency “bubble.” The optimum result comes from a

compromise between these two ingredients.
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