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Abstract—In this paper we study the class of T-
indistinguishability operators  such that  the involved t-norm T is 
an ordinal sum. We show that those T-indistinguishability 
operators    can be thought of as families of indistinguishabilities 
with respect to some Archimedean t-norms. An interpretation in 
terms of hierarchical clustering is provided. 
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I.  INTRODUCTION  
Relations that are reflexive, symmetric and transitive are 

called equivalence relations. Back in 1971, Zadeh published 
his views on how these ought to be fuzzyfied, and termed the 
new class of fuzzy relations similarity relations [1]. 

Zadeh's original definition is as follows. 

Definition 1.1: A Similarity Relation E on a set X is a 
mapping : [0,1]E X X× →   such that: 

1.1.1  ( ), 1E x x =  for all x in X   (fuzzy reflexivity). 

1.1.2 ( ) ( ), ,E x y E y x=  for all x, y in X  (fuzzy symmetry). 

1.1.3 ( ( , ), ( , ))  ( , )MIN R x y R y z R x z≤  for all x, y and z in 
X  (fuzzy transitivity). 

He also opened the door to using t-norms other than the 
minimum to define fuzzy transitivity, which other researchers 
did very soon. Let us recall what a t-norm is. 

Definition 1.2: A t-norm is an operation on the unit interval 
which is associative, commutative and satisfies the boundary 
conditions ( ),0 0T x =  and ( ),1T x x= for all x  in [0,1]. 

NOTE: within this paper we only deal with t-norms 
( ),T x y  that are continuous in both variables. 

Pioneering works from Ruspini [2] dealt with T=LUK, the 
Lukasiewicz t-norm, and the associated relations were called 
likeness relations. Ovchinnikov [3] used T=PROD, the 
standard product t-norm, thus introducing the so-called 
probabilistic relations. Trillas [4,5] studied fuzzy transitivity 

with respect to a general t-norm T, and he proposed the 
unifying term indistinguishability to refer to any such relation, 
which since then has been widely used (see, for example, 
Valverde [5,6], Jacas [7] and Recasens [8]). Other terms such 
as fuzzy equality or identity (more restrictive), or fuzzy 
equivalence relation  (perhaps more general) are also in use. 

So, this paper deals with indistinguishability operators in 
the sense of the following definition 

 Definition 1.3: An Indistinguishability Operator with 
respect to a t-norm T, or a T-indistinguishability for short, is a 
mapping : [0,1]E X X× →  satisfying 1.1.1, 1.1.2 and  

1.3.3 ( ( , ), ( , ))  ( , )T E x y E y z E x z≤  for all x, y and z in X  
(fuzzy transitivity w.r.t. T). 

The t-norms mentioned so far, except T=MIN, are all 
examples of Archimedean t-norms. As we will explain soon, all 
continuous t-norms fall into one of the three following 
categories: the minimum t-norm, Archimedean t-norms and 
ordinal sums.  

To present, we do not know of any specific study on the 
class of fuzzy relations which are obtained when an ordinal 
sum is the t-norm chosen to define fuzzy transitivity. To the 
best of our knowledge, this paper constitutes a first attempt on 
the issue. It is justified, apart from the sake of completeness, 
for the semantic and practical consequences derived from the 
use of ordinal sums. The most important of such consequences 
is that their associated indistinguishabilities can be used to 
model clustering problems in which features are hierarchically 
structured. 

We will skip the definitions of Archimedean and strict t-
norm, and will be using instead a handy characterisation which 
holds only for continuous t-norms. Both these definitions and 
the proofs of the following theorems are standard and can be 
found, for example, in [9,10]. 

Theorem 1.4 (Characterization of continuous Archimedean 
t-norms): T is a continuous Archimedean t-norm if, and only if, 
there exists a continuous decreasing function  

[ ] [ ]: 0,1 0,f M→  with ( )0f M=  and ( )1 0f =  such that 

( ) ( ) ( )( )[ 1],T x y f f x f y−= +  for all x and y  in [0,1]. 
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In such case, T is strict if, and only if, M = ∞ . 

The function f is called an additive generator of T, and it is 
not unique. 

[ 1]f −  stands for the quasi-inverse of f. If M = ∞ then [ 1]f −  
is simply the inverse of f extended so that ( )[ 1] 0f − ∞ = .If 

M < ∞  then [ 1]f −  is the inverse of f on [0,M), and 
( )[ 1] 0f a− =  for all a M≥ . 

Theorem 1.5 (Characterization of continuous t-norms):  T is 
a continuous t-norm if, and only if, there exists a family of 
functions : [ , ] [0, ]i i i if a b M→ defined on disjoint intervals   
( ), (0,1)i i i Ia b

∈
⊆ such that: 

( ) ( ) ( )( ) ( )
( )

[ 1]   if  , ,
,

,   otherwise                    
i i i i if f a f b a b a b

T a b
MIN a b

− + ∈= 


 

The functions [ 1]
if
−  are defined similarly to [ 1]f − , with ai 

acting as 0 and bi as1, and they will be also referred to as 
additive generators  of T. 

Note that if the family ( ),i i i Ia b
∈

is empty then T=MIN, 

while if it reduces to a single element ( )1 1, (0,1)a b =  then T is 
an Archimedean t-norm.  

Definition 1.6: In the conditions of theorem 1.5, a 
continuous t-norm is called an ordinal sum if the family 
( ),i i i Ia b

∈
has more than one interval, or if it has only one then 

( )1 1, (0,1)a b ≠ . 

Intuitively, we like to think of ordinal sums as t-norms 
made up of some other t-norms, rather than simply of intervals 
and additive generators. This can be achieved by considering a 
family of continuous increasing functions : [0,1] [ , ]i i ia bϕ →  
and the associated Archimedean t-norms Ti which are induced 
on the unit interval by the additive generators 

: [0,1] [0, ]i i if Mϕ → . 

The standard choice for the functions iϕ  is 
( ) ( )i i i ia a a b aϕ = + − , although others could be considered. 

Accordingly, ordinal sums are noted by ii I
T T

∈
= ⊕  , and referred 

to as the ordinal sum of the t-norms Ti . We will avoid when 
possible any reference to either the intervals ( ),i i i Ia b

∈
 or the 

generating functions  in order to keep the notation simple. 

Also for the sake of simplicity, we will concern ourselves 
with only a special class of ordinal sums, namely those 
satisfying: 

0 0 1 10,    ...  ... 1i i na b a b a b+= = = =     [1.6.1] 

That is, ordinal sums with a finite number of intervals 
leaving no gaps between them. 

II. A CHARACTERIZATION THEOREM 
The main idea in this section is that T-indistinguishability 

operators with T an ordinal sum of the restricted class [1.1.6] 
are nothing but families of stratified indistinguishabilities with 
respect to Archimedean t-norms, all of them defined on the 
same set X. 

Theorem 2.1 A fuzzy relation E on a set X is an 
indistinguishability operator w.r.t. an ordinal sum ii I

T T
∈

= ⊕  if, 

and only if, there exists a family { }i i IE
∈

of indistinguishability 
operators w.r.t. Archimedean t-norms Ti and a family of 
functions : [0,1] [ , ]i i ia bϕ → such that inf ii I

E e
∈

=  with 

( ) ( ) ( ),   if  , 1
,

1   otherwise                    
i i i

i
E x y E x y

e x y
ϕ <

= 




 

Before proceeding to prove theorem 2.1, let us comment on 
a few things.  

First,  the functions iϕ  in theorem 2.1 are the same as those 
appearing in the definition of  ii I

T
∈
⊕ , so we intendedly use the 

same notation to designate both. 

Second, the blocks ei from which E is constructed are built 
by compressing the range of every Ei (generally [0,1]) into 
narrower slices [ ],i ia b which are then piled on top of each 

other, the only exception being the pairs ( ), 1iE x y = which 
remain unchanged. Thus defined, the blocks ei  become also 
indistinguishability operators with respect to some t-norms ti 
which are ordinal sums of only one Archimedean t-norm, Ti . 

Finally, theorem 2.1 justifies the expression ordinal sum of  
Ti-indistinguishability operators, as well as the notation 

ii I
E E

∈
= ⊕ . Whenever possible, we will keep both the intervals 

( ),i i i Ia b
∈

and the functions  : [0,1] [ , ]i i ia bϕ →  at an implicit 
level, so that notation does not become a burden. 

Proof  (Th.2.1):  [ ]⇒   The fuzzy relations Ei are defined by 

( )
( )

( ) ( )
( )

1

0    if  ,                         
, ,    if   ,

1    if  ,                         

i

i i i i

i

E x y a
E x y E x y a E x y b

E x y b
ϕ−

≤
= < <
 ≥

  

First, we need to prove that these are indistinguishability 
operators w.r.t. the Archimedean t-norms Ti obtained from  the 
additive generators : [0,1] [0, ]i i if Mϕ → . 

Both reflexivity [1.1.1] and symmetry [1.1.2] are 
straightforward. To prove transitivity with respect to Ti  [1.3.3], 
for any given three elements x, y and z  there are only three 
different cases to be considered: 

If ( ), 0iE x y =  then ( ) ( )( ) ( )0 , , , ,i i i iT E x y E x y E x y= ≤  
so that [1.3.3] holds. 



If ( )0 , 1iE x y< ≤  and ( ), 1iE y z =  then  ( ),i ia E x y b≤ ≤  

but ( ), iE y z b≥  and the ordinal sum T reduces to MIN in that 
particular case, which means  

( ) ( )( ) ( ) ( )( )
( ) ( )

, , , , , ,

, ,

T E x y E y z MIN E x y E y z

E x y E x z

=

= ≤
  

(the last inequality owing to the T-transitivity of E) 

As a consequence, ( ) ( ), ,i iE x y E x z≤ , and  

( ) ( )( ) ( )( )
( ) ( )

, , , , ,1

, ,
i i i i i

i i

T E x y E y z T E x y

E x y E x z

=

= ≤
 

which proves that [1.3.3]. 

  Finally, if ( ) ( )0 , ,  , 1E x y E y z< <  then  

( ) ( )( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( ) ( ) ( )

[ 1] [ 1]

[ 1] [ 1] [ 1] [ 1]

[ 1] [ 1]

[ 1] [ 1]

, , , , , ,

, ,

, ,

, , , , ,

i i i i i i i i

i i i i i i i i i i

i i i i i i

i i i i i i

T E x y E y z T E x y E y z

f f E x y f E y z

f f E x y f E y z

T E x y E y z E x z E x z

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ

ϕ ϕ

− −

− − − −

− −

− −

=

= +

= +

= ≤ =

 

      

  

 

Again [1.3.3] holds. 

Any other case can be reduced to one of the former three, 
and this settles the transitivity of Ei  with respect to Ti .   

Finally, to conclude this side of the proof, we need to show 
that inf ii I

E e
∈

= . To this end, let us express ei in terms of E 
instead of Ei : 

If ( ),i ia E x y b< <  then ( ) ( )[ 1], , 1i iE x y E x yϕ −= <  and 

( ) ( ) ( ), , ,i i ie x y E x y E x yϕ= = . 

If ( ), iE x y a≤  then ( ), 0iE x y = and ( ),i ie x y a=  . 

If ( ), iE x y b≥  then ( ), 1iE x y = and ( ), 1ie x y = . 

Now, suppose ( ),i ia E x y b≤ <  for a certain pair ( ),E x y . 
For any j and k such that j i k< <  we shall have that 

( ), 1je x y = , ( ) ( ), ,ie x y E x y=  and ( ),k ke x y a= , and 

therefore ( ) ( ), inf ,ii I
E x y e x y

∈
= . 

Note that nothing changes if i corresponds to the first or the 
last interval. Also, note that the conditions ( ),i ia E x y b≤ <  

account for all the possible values of ( ),E x y  except 

( ), 1E x y =  because we are assuming 1i ib a +=  ([1.6.1])  in 
which case ( ), 1ie x y = . 

[ ]⇐   Consider the t-norm T which is the ordinal sum of the 
Archimedean t-norms Ti with the system of intervals ( ),i ia b . It 
has to be proved that inf ii I

E e
∈

=  is an indistinguishability 

operator with respect to ii I
T T

∈
= ⊕ . As usually, both fuzzy 

reflexivity and symmetry are straightforward, so we turn our 
attention to transitivity. 

Before proceeding, let us state a few helpful facts. 

First, it is obvious that ( ) ( ), ,i je x y e z t≤ if i j< , except 
when ( ), 1.ie x y =  

Second, ( ), 1E x y = if and only if ( ), 1iE x y = . 

Third, if ( ), 1E x y < then ( ) ( ), ,iE x y e x y= if and only if 

( ), 1iE x y <  and ( ), 1jE x y =  for all j i< . 

Finally, for any x, y, z in X , if ( ) ( ), ,iE x y e x y= , 

( ) ( ), ,jE y z e y z=  and ( ) ( ), ,kE x z e x z=  then { }min , .k i j≥  

To prove the last one, if we had { }min ,k i j< then both 

( ), 1kE x y = and ( ), 1kE y z = . But Ek is transitive with respect 

to Tk and therefore ( ), 1kE x z = , which is against 

( ) ( ), ,kE x z e x z= . 

Now we can proceed to prove transitivity with respect to 

ii I
T T

∈
= ⊕ , that is, to prove that ( ) ( )( ) ( ), , , ,T E x y E y z E x z≤  

for all x, y, z in X. Let us suppose ( ) ( ), ,iE x y e x y= , 

( ) ( ), ,jE y z e y z=  and ( ) ( ), ,kE x z e x z= . From the remarks 
above it follows that only five possible cases deserve attention, 
which are  i j k< < , i j k< = , i k j< < , i k j= <  and 
i k j= = . First and third cases are straightforward. As to the 
remaining ones: 

Case :i j k< =   

( ) ( )( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( )

, , , , , ,

, , ,

, , ,
i k

i k

T E x y E y z MIN E x y E y z

MIN e x y e y z

e x y e x y E x z

=

=

= ≤ =

 

Case :i k j= <   

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )

, , , , , ,

, , , ,i j i

T E x y E y z MIN E x y E y z

MIN e x y e y z e x y

=

= =
 

On the other hand, from ( ) ( )( ) ( ), , , ,i i i iT E x y E y z E x z≤  

and ( ), 1iE y z =  it follows that ( ) ( ), ,E x y E x z≤  and thus 

( ) ( )( ) ( ), , , ,T E x y E y z E x z≤ . 

Case :i k j= =   

( ) ( )( ) ( ) ( )( )
( ) ( )( )[ 1]

, , , , , ,

, ,
i i

i i i i i

T E x y E y z T e x y e y z

f f e x y f e y z−

=

= + 

 



( ) ( )( )
( ) ( )( ) ( )

( ) ( )

[ 1] , ,

, , , ,

, ,

i i i i i i i

i i i i i i

i

f f e x y f e y z

T E x y E y z E x z

e x z E x z

ϕ ϕ

ϕ ϕ

−= +

= ≤

= =

   

   

This brings the proof  to a conclusion. ■ 

III. AN INTERPRETATION OF ORDINAL SUMS IN TERMS OF 
HIERARCHICAL CLUSTERING 

It is well known that the infimum of any family of T-
indistinguishability operators is also a T-indistinguishability 
operator.  

When we classify elements coming from a set of patterns X 
according to two different criteria, say color and size, then we 
may break X into smaller clusters by combining the two 
independent classifications via the infimum.  Namely, if Ec 
stands for color and Es for size, then two elements are 
indistinguishable by  c sE E E= ∧ if they are so by both Ec and 
Es. Or, to put it the other way round, they are different if they 
can be discriminated by at least one of the two criteria. 

Under this approach, both classifications matter exactly the 
same. Size and color are equally ranked as valid criteria to sort 
out the elements of X. However, one might want one criterion 
to play a more important role than the other. For example, if 
differences in size are sharp enough in order to distinguish two 
patterns x and y, then there is no need for color to be taken into 
account. In that case, color will be considered only when the 
sizes of the patterns are coincident.  

It is worth noting that it makes a big difference whether 
words such as coincident, discriminated, etc. are given a crisp 
meaning or either they stand for  fuzzy, graded concepts. For in 
the former case the two approaches are coincident, and the 
global outcome is not sensitive to the order or hierarchy 
considered among criteria, while in the latter it accounts for a 
great deal.  

To better see the differences which arise in the fuzzy case 
let us develop a little further on the alluded example of colors 
and sizes. 

Example 3.1:  Let : [0,1]c X →  and : [0,1]s X → be the 
functions 'color' and 'size' respectively, which are fuzzy sets of 
some  universe of patterns X.  In order to model the similarity 
among patterns we choose the Lukasiewicz t-norm, 

( ) { }, max 0, 1LT x y x y= + − . Therefore, the two induced  TL-

indistinguishabilities on X are ( ) ( ) ( ), 1 | |cE x y c x c y= − −  and  

( ) ( ) ( ), 1 | |sE x y s x s y= − − , and the joint indistinguishability 
is:  

( ) ( ) ( )
( ) ( ) ( ) ( ){ }

, , ,

min 1 | |,  1 | |
c sE x y E x y E x y

c x c y s x s y

= ∧

= − − − −
 

E is a T-indistinguishability with respect to the same t-norm 
T as Ec and Es (T=TL in this case). Such construction of an 
indistinguishabilty operator starting from a set of fuzzy criteria 
(color, size or any other graded notions) is standard, and it 

constitutes the core of Valverde's Representation Theorem [6]. 
(See [8] for a more comprehensive explanation). 

It is also standard to provide a geometrical representation of 
the indistinguishability E where c and s are the axis and x,y... 
the points with coordinates ( ) ( ) ( )( ), ,s cx x x s x c x= =  

 

 

 

 

 

 

 

 

 
Figure 3.1 

Such representations implicitly assume that the patterns 
x,y... are part of a universe bigger than X, which in our example 
is 2' [0,1]X = . Therefore, the degree of indistinguishability 
among patterns is inherited from that in X', E', and  the ultimate 
responsibility  for perceiving  pairs of patterns in X as 
indistinguishable falls on the metric balls, or α-cuts, of E'. 

The α-cut centered at x is the set of all points y in X' whose 
levels of indistinguishability with respect to x are above α. In 
the present case, c sE E E= ∧  and  they are squared in shape. 

 

 

 

 

 

 

 

 
Figure 3.2 

How will the balls look like in the hierarchical case? If we 
are giving size priority over color, then the differences in size 
determine the indistinguishability between pairs, and the color 
is only determinant when sizes are exactly the same. The balls 
will look like vertical bands for some radius (close to zero), and 
like vertical segments for some others (close to one). See 
figures 3.3 and 3.4 below. 

The rest of this section is devoted to justify figures 3.3 and 
3.4. The indistinguishability s cE E E= ⊕  is T-transitive with 
respect to the t-norm L LT T T= ⊕ with intervals 0 0,a =  

0 1 0.5b a= =  and 1 1.b =  The two basic indistinguishabilities 
Es and Ec  from which we construct E have been already 

x y 
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xc 
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size 

co
lo

r 

1 0 
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z 
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x 

xs 

xc 

size 

co
lo

r 

1 0 

1 

α 

α 



defined above. The mappings iϕ  are : [0,1] [0,0.5]sϕ →  
defined by ( ) / 2s a aϕ =  for all a in [0,1] and  

: [0,1] [0.5,1]cϕ →  defined by  ( ) ( )1 / 2c a aϕ = +  for all a in 
[0,1]. Then E is obtained as s cE e e= ∧  where 

 ( ) ( ),    if   , 1
1    otherwise.                    
s s s

s
E x y E x y

e
ϕ <

= 




  

and  

( ) ( ),    if   , 1
1    otherwise.                    
c c c

c
E x y E x y

e
ϕ <

= 




 

 

 

 

 

 

 

 

 

 
Figure 3.3 

 

 

 

 

 

 

 

 
Figure 3.4 

 

The ball or α-cut centered at x is: 

 

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }
( )

2

2

2

2

2

2

, [0,1]   . .  ,

[0,1]   . .  e ,  e ,

[0,1]   . .  ,  or , 1

[0,1]   . .  ,  or , 1

[0,1]   . .  , 2  or , 1

[0,1]   . .  , 2 1 or

s c

s s s

c c c

s s

c

B x y s t E x y

y s t x y x y

y s t E x y E x y

y s t E x y E x y

y s t E x y E x y

y s t E x y

α α

α

ϕ α

ϕ α

α

α

= ∈ ≥

= ∈ ∧ ≥

= ∈ ≥ =

∈ ≥ =

= ∈ ≥ =

∈ ≥ −



 

 ( ){ }
1 2

 , 1cE x y

B B

=

= 

 

If 0 0.5α≤ <  then ( ){ }2
1 [0,1]   . .  , 2sB y s t E x y α= ∈ ≥  

and 2
2 [0,1]B = , so ( ) 1 2 1,B x B B Bα = =  (fig. 3.3) .  

If 0 0.5α≤ < then  ( ){ }2
2 [0,1]   . .  , 2 1cB y s t E x y α= ∈ ≥ −  

and  ( ){ }2
1 [0,1]   . .  , 1sB y s t E x y= ∈ = , so ( ) 1 2,B x B Bα =   

is simply a segment (fig. 3.4).  

IV. CONCLUSIONS 
We have presented a first insight into the class of 

indistinguishability operators with respect to t-norms which are 
ordinal sums of Archimedean t-norms.  

This is an important step for both theoretical and practical 
reasons. From the theoretical point of view, ordinal sums are 
the only remaining class of continuous t-norms when the 
Archimedean and the minimum t-norms are discarded. So the 
study is justified for the sake of completeness.  

From the practical side, this class of indistinguishability 
operators provide a formal tool for dealing with hierarchical 
clustering. Whenever criteria are organized from more to less 
relevant, and the corresponding indistinguishabilities are 
aggregated consistently, we have proved that the outcoming 
structure is still an indistinguishability operator, only with 
respect to a different t-norm, namely an ordinal sum. 

There are many aspects of this class of fuzzy relations to be 
investigated yet. Mostly questions related to their 
representation via fuzzy sets, dimension, etc, but also possible 
generalizations, their behavior under discretization, as well as 
comparing them with other  methods of hierarchical clustering. 
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