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ABSTRACT

Context. The smoothed particle hydrodynamics (SPH) technique is a well-known numerical method that has been applied to simulate
the evolution of a wide variety of systems. Modern astrophysical applications of the method rely on the Lagrangian formulation of
fluid Euler equations, which is fully conservative. A different scheme, based on a matrix approach to the SPH equations is currently
being used in computational fluid dynamics. These matrix formulations achieve better interpolations of the physical magnitudes but
they are, in general, not fully conservative. The matrix approach to the Euler equations has never been used in astrophysics.
Aims. We develop and test a fully conservative SPH scheme based on a tensor formulation that can be applied to simulate astrophysical
systems.
Methods. In the proposed scheme, derivatives are calculated from an integral expression that leads to a tensor (instead of a vectorial)
estimation of gradients and reduces to the standard formulation in the continuum limit. The new formulation improves the interpolation
of physical magnitudes, leading to a set of conservative equations that resembles those of standard SPH. The resulting scheme is
verified using a variety of well-known tests, all of them simulated in two dimensions. We also discuss an application of the proposed
tensor method to astrophysics by simulating the stability of a Sun-like polytrope calculated in three dimensions.
Results. The proposed scheme is able to improve the results of standard SPH in the two-dimensional tests, especially in the simulation
of subsonic hydrodynamic instabilities. Our results for the stability of the Sun-like polytrope suggest that the new method can be used
in astrophysics to carry out three-dimensional calculations with a computational cost that is only slightly higher (i.e. ≤50% for a serial
code) than that of a standard SPH formulation.
Conclusions. A formalism based on a matrix approach to Euler SPH equations was developed and checked. The new scheme is
more accurate because of the re-normalization imposed on the interpolations, which is fully conservative and probably less prone to
undergo the tensile instability. The analysis of several test cases suggest that the method may improve the simulation of both subsonic
and supersonic systems. An application of the tensor method to astrophysics is, for the first time, successfully carried out. These
encouraging results indicates that more work should be invested in the applications of matrix SPH formulations to astrophysics.
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1. Introduction

The hydrodynamic method known as smoothed particle hydro-
dynamics (SPH) is a grid-less Lagrangian approach to contin-
uum mechanics devised by Gingold & Monaghan (1977) and
Lucy (1977). As demonstrated in an endless amount of appli-
cations to computational fluid dynamics, ranging from large-
scale astrophysical simulations to nuclear physics on the Fermi
level, SPH is a robust and confident way to simulate the dy-
namical evolution of deformed systems. The success of SPH
relies strongly on the way gradients are estimated. For exam-
ple, the value of density in a given spatial coordinate is obtained
from particles located in the neighborhood using an interpolat-
ing function called kernel. As the kernel is an analytical differ-
entiable function, it is easy to obtain gradients just evaluating
the gradient of this weighting kernel function. Then it is quite
straightforward to write the Euler equations of fluid mechanics
in terms of the kernel and its derivatives (Monaghan 1992, 2005).

Despite the success, SPH has also a number of shortcom-
ings and weak points that make the technique less useful than it

should be to handle a number of well-identified problems. First
of all, the numerical noise is usually larger than in other tech-
niques, which poses a problem for applications involving very
subsonic movements, as in the case of hydrodynamical instabil-
ities. Another difficulty has to do with the use of the artificial
viscosity (AV) formalism to handle shock waves and smooth the
inherent presence of noise. Several solutions and recipes have
been invoked to handle these problems, none of them totally sat-
isfactory, among them: variable AV coefficients (Morris 1997),
artificial heat fluxes to smooth pressure discontinuities (Price
2008), non-standard approximations to the momentum equation
(Abel 2011), and a refined treatment of kernel interpolations as
in the technique known as moving least squares interpolation
(i.e. MLS; Dilts 1999).

In this paper, we present an approach to the momentum and
energy equations that combines a novel way to estimating gradi-
ents and the variational principle, and allows an improved mod-
eling of physical phenomena, especially in systems subjected to
small perturbations. The proposed formalism, based on an in-
tegral approach to the derivatives (IAD), includes the standard
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formulation as a particular case. It leads to a matrix formulation
similar to that of MLS methods, but the form of the SPH equa-
tions in IAD remains closer to that of standard SPH. The text
is organized as follows. In Sect. 2 the mathematical formalism
for calculating gradients is described and discussed. In Sect. 3
we develop a formulation of the momentum equation compat-
ible with the variational Euler-Lagrange principle in the SPH
framework, and propose a consistent and fully conservative en-
ergy equation. Section 4 is devoted to validating the hydrocode
through the simulation of four known tests where standard SPH
has, to a smaller or larger degree, difficulties. In Sect. 5 we elab-
orate an extension of the method that by combining the exact
estimation of the derivative of linear functions and good mo-
mentum and energy conservation, can be applied to simulate lin-
earized systems. The ability of the proposed method to simulate
the structure of real three-dimensional (3D) astronomical bod-
ies is discussed in Sect. 6. Finally, the main conclusions of our
work, as well as some comments about the shortcomings of the
developed scheme and future lines of improvement are outlined
in the last section, which is devoted to conclusions.

2. Integral approach to first derivatives

There is an ample literature describing the treatment of the
first and second derivatives in SPH (Monaghan 2005; Rosswog
2009). In the following we take a different route to estimating
first derivatives which leads to a more general expression than
the most common extant derivative procedures. Our method re-
sembles to those known as MLS methods where interpolations
relative to gradient estimation were constrained to enhance lin-
earity by imposing a minimization procedure on the errors.

Inspired by the treatment of second derivatives (Brookshaw
1985) we define an integral expression from which we will es-
timate gradients. As in the case of second derivatives, it is ex-
pected that an integral approach will lead to a less noisy estima-
tion of first derivatives. Therefore, we define

I(r) =
∫

V

[
f (r′) − f (r)

]
(r′ − r)W(|r′ − r|, h)dr′3, (1)

where f (r) is any differentiable function and W(|r′ − r|, h) is a
spherically symmetric interpolating kernel, usually a sharp-like
Gaussian of width h (where h is usually referred as the smooth-
ing length). The size of h is often interpreted as the local reso-
lution of the simulation. Expanding the factor

[
f (r′) − f (r)

]
to

first order

f (r′) − f (r) = ∇ f · (r′ − r) + higher order terms (2)

and writing

(r′ − r) = (x′1 − x1)i + (x′2 − x2) j + (x′3 − x3)k, (3)

Eq. (1) can be expressed as a matrix equation:⎡⎢⎢⎢⎢⎢⎢⎣ ∂ f /∂x1
∂ f /∂x2
∂ f /∂x3

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣ τ11 τ12 τ13
τ21 τ22 τ23
τ31 τ32 τ33

⎤⎥⎥⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎢⎢⎣ I1

I2
I3

⎤⎥⎥⎥⎥⎥⎥⎦ , (4)

where

τi j =

∫
(x′i − xi)(x′j − x j)W(|r′ − r|, h)dr′3; i, j = 1, 3 (5)

and

Ik =

∫ [
f (r′) − f (r)

]
(x′k − xk)W(|r′ − r|, h)dr′3; k = 1, 3. (6)

Once the linear system in Eq. (4) is solved we get the value of the
gradient of the function f . In the case of spherically symmetric
kernels, τ11 = τ22 = τ33 and τi j = τ ji = 0, i � j. Taking for
instance the Gaussian kernel

WG(u, h) =
1
πn/2

exp(−u2), (7)

where n is the dimensionality of space and u = (|r′−r|)
h , it leads

to τii =
h2

2 . Therefore, for the Gaussian kernel the gradient of f
reduces to

∇ f =
∫ [

f (r′) − f (r)
]
∇W(|r′ − r|, h)dr′3, (8)

which is the same expression as Eq. (2.13) of Monaghan (2005)
even though it has been obtained through a different procedure.
Since the standard kernels are spherically symmetric Eq. (8) can
be simplified to

∇ f =
∫

f (r′)∇W(|r′ − r|, h)dr′3, (9)

which in SPH parlance becomes

∇a f =
∑

b

mb

ρb
fb∇Wab(ha), (10)

which because of its simplicity and good performance has be-
come the most popular procedure for calculating first derivatives
in SPH. Therefore, Eq. (10) is a particular case of IAD, Eq. (4).

Nevertheless, many of the above symmetry properties of ten-
sor T ≡ {τi j} are lost when integrals are converted into finite
summations. For example, the elements on the diagonal of ma-
trix T in Eq. (4) do not necessarily have the same value and el-
ements outside the diagonal can differ from zero. However, the
formulation of the first derivative in terms of the matrix Eq. (4)
has a very interesting feature: the derivative of a linear func-
tion is always exact by construction. The demonstration of such
property is straightforward in 1D SPH:(

d f
dx

)
a

=

∑
b

mb
ρb

( fb − fa)(xb − xa)Wab∑
b

mb
ρb

(xb − xa)2Wab
, (11)

taking fa = pxa + q, fb = pxb + q the expression above gives(
d f
dx

)
a
= p.

In two dimensions, the explicit solution for Eq. (4) is writ-
ten as

∂ f
∂x1
= c11I1 + c12I2;

∂ f
∂x2
= c21I1 + c22I2, (12)

where

c11 =

(
τ11 −

τ2
12
τ22

)−1
; c12 = −

(
τ12
τ22

) (
τ11 −

τ2
12
τ22

)−1
;

c21 = −
(
τ12
τ11

) (
τ22 −

τ2
12
τ11

)−1
; c22 =

(
τ22 −

τ2
12
τ11

)−1
.

(13)

Unfortunately, direct application of the tensor scheme above
leads to SPH equations of movement that are not fully conserva-
tive. Nevertheless, a slight modification of the scheme makes it
possible to build exact conservative equations by taking advan-
tage of the symmetry properties of the kernel to discretize the
vector I(r) as

I(r) =
∫ [

f (r′) − f (r)
]
(r′ − r)W(|r′ − r|, h)dr′3

�
∑

b

mb

ρb
f (rb)(rb − ra)W(|rb − ra|, ha). (14)
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Thereafter, the formulation that results after substituting Eq. (14)
into Eq. (4) is labeled IAD0. This restricted interpretation of
Eq. (4) implies that exact evaluation of the derivative of linear
functions cannot be achieved if we are to also preserve the exact
conservation of momentum and energy. Nevertheless, we present
below strong indications that using IAD0 leads to a better evalu-
ation of the derivative of linear functions than the standard pro-
cedure given by Eq. (10), especially when a small or moderate
number of neighbors is used to compute summations. We can
illustrate this point in the following numerical experiments.

As a first test, we simulate a static system where we com-
pare the gradient of a linear distribution of density in one di-
mension obtained with IAD, IAD0 and standard schemes as a
function of the number of neighbors nb. A linear density profile
ρ(x) = 1+ x was obtained aligning N = 100 equidistant particles
of adequate mass along the x-axis. The density was calculated
using

ρa =
∑

b

mbWab(|rb − ra|, ha). (15)

Note that even though IAD should provide the precise deriva-
tive, in practice it never does owing to the small errors in the
calculation of density. It is also worth noting that the standard
calculation of the derivative has two additional potential sources
of error. For a linear density profile ρb = ρa + p(xb − xa), and
using Eq. (10), we have(

dρ
dx

)STD

a

=
∑

b

mb

ρb
ρa∇aWab + p

∑
b

mb

ρb
(xb − xa)∇aWab

= ε1 + ε2 p, (16)

where p is the “exact” derivative and ε1 � 0, ε2 � 1. On the other
hand, there is only one source of error, ε3 � 0, if IAD0 is used,
given by

(
dρ
dx

)IAD0

a

=

∑
b

mb
ρb
ρa(xb − xa)Wab∑

b
mb

ρb
(xb − xa)2Wab

+ p = ε3 + p. (17)

In Fig. 1 (upper and bottom left) we represent the value of the
relative error in the derivative ε = | dρdx − p|/p, with respect to
the analytical value p as a function of the smoothing length h,
normalized to the inter-particle distance Δ, for the Gaussian and
cubic spline kernels respectively. Independently of the kernel,
the error when full IAD linear interpolation was used is always
much smaller than for the other methods. When IAD0 or the
standard derivative were used, the error increased appreciably.
The error is large when the smoothing length is shorter than the
inter-particle distance but decreases rapidly when h increases, as
expected. Nevertheless, the error in the standard calculation al-
ways remained larger, especially for a small or moderate number
of neighbors (nb ≤ 5) regardless of the kernel we used, but es-
pecially for the cubic spline. Since the particle sample is highly
ordered, the error curve of the Gaussian kernel is much smoother
than that of the cubic spline owing to the infinite range of the ker-
nel. We verified that when the Gaussian is truncated to 2h, the
error profile becomes qualitatively similar to that of the cubic
spline. However, the error profile for IAD0 follows almost ex-
actly the error curve for the gradient of density calculated as a
simple quotient ρb−ρa

xb−xa
for adjacent particles. In this sense, IAD0

seems to be more coherent with the computed density distribu-
tion of the sample than IAD, a trend that also holds in 2D, as
shown below.

Fig. 1. Relative error ε in the first derivative of density ρ(x) = (1 +
x) g cm−3 as a function of the smoothing length (in interparticle units)
calculated using both tensor and standard SPH schemes. Crosses are for
direct ρb−ρaxb−xa

derivative estimation. Upper left is for the error when the
Gaussian kernel is used. The upper right picture shows the contribution
of several error sources to the total error ε. Bottom pictures are the same
but for the cubic-spline kernel.

The contributions to the total error of ε1, ε2 and ε3 in Eqs. (16)
and (17) are shown in the rightmost part of Fig. 1. The contribu-
tion of ε1 and ε3 are similar but the error ε2, which affects only
the standard scheme and exhibits a large oscillation in the case
of compact supported interpolators, represents the main channel
to the total error in the derivative. In general, tensor methods
become more reliable for higher dimensionality. Thus, we con-
ducted a similar numerical experiment in more than one dimen-
sion where the matrix approach can potentially be more benefi-
cial.

As a second test, a bi-dimensional system was set using
a sample of N = 62 500 equally spaced particles on a two-
dimensional lattice. The mass of the particles along the x-axis
was conveniently modified to reproduce a linear density profile,
ρ(x, y) = 1+ x. The first derivative of the density, ∂ρ

∂x for different
number of neighbors was obtained using Eqs. (4) and (10). In
the upper row of Fig. 2 we show the relative error in the deriva-
tive, ε = | ∂ρ

∂x − p|/p, with respect to the analytical value p as a
function of the smoothing length. Calculations were carried out
using the Gaussian and the cubic spline kernels. The trend here
is similar to that of the 1D calculation but magnitudes fluctuate
less, especially in the case of the cubic spline. When the num-
ber of neighbors is large the error is small in all three methods,
but tensor schemes are more accurate than the standard proce-
dure. Nevertheless, for shortening smoothing lengths, h ≤ 1.5Δ,
the error curve steepens and for h < Δ standard SPH begins
to give unacceptable results while the tensor estimations of the
derivative remain applicable. This result also agrees with the
1D calculation shown in Fig. 1, which shows that working with
nb ≤ 3, 4 in 1D may give an appreciable error in the derivative of
a linear function if Eq. (10) is used to compute the derivatives.
As in the 1D case, the gradient calculated as a direct fraction
ρb−ρa

xb−xa
(crosses in Fig. 2) remained closer to the results obtained

using IAD0.
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Fig. 2. Relative error ε in the first derivative of linear functions calcu-
lated in 2D as a function of the smoothing length. Upper rows depict the
value of ε for ρ(x, y) = (1+ x) g cm−3 obtained using the Gaussian (left)
and the cubic spline (right) kernels. Bottom rows are the same but for
the function ρ(x, y) = 1 +

√
x2 + y2 g cm−3. Error profiles with crosses

are for the direct ρb−ρarb−ra
derivative estimation.

Finally, we considered a spherically symmetric linear pro-
file ρ(x, y) = 1 + r, where r =

√
x2 + y2. In the bottom row of

Fig. 2, the value of the relative error ε is shown as a function of
h(Δ). The profile of the error follows a slightly different trend
than in the previous case. As before, the error is large when the
smoothing length is shorter than the inter-particle distance but
in the case of the Gaussian kernel there is a minimum in the er-
ror profile at h � 1.1Δ. From that point on the error smoothly
increases. This behavior is not so clear in the case of the cubic
spline where the error curve roughly stabilizes above h = 2Δ.
There is, therefore, an optimal value of h in this case that min-
imizes the errors in the first derivative. Close to the center lin-
earity is lost because of the symmetry imposed on the distribu-
tion. When the value of h is large, interpolations are affected by
that geometrical constraint and, at some point, the advantages of
working using a large smoothing length are lost. Nevertheless,
the errors calculated using IAD0 are always smaller than that of
the standard scheme. Again the gradient of density estimated as
a simply quotient ρb−ρa

rb−ra
is more closely reproduced by IAD0 than

by the other schemes.

3. The momentum and energy SPH equations using
IAD0

Nowadays the most accurate formulation of the momentum
equation in SPH comes from the variational principle. It has been
shown (Monaghan 2005, and references therein) that the solution
of the Euler-Lagrange equations leads naturally to a very sym-
metric scheme including the effects of spatial gradients on the
smoothing length. The resulting equation conserves momentum
by construction and, equally important, ensures perfect energy
conservation for non-dissipative systems. It is shown below how
the tensor approach built using the IAD0 scheme can also be
compatible with the variational principle.

The Lagrangian of the system is evaluated as

L =
∑

b

mb

(
1
2
v2b − ub(ρb, sb)

)
, (18)

where vb, ub and sb are the velocity, specific internal energy and
specific entropy of particle b. Using this Lagrangian and assum-
ing isentropic evolution, the Euler-Lagrange equations subjected
to the constraint ρh3 = const., lead to the equation of movement
(Springel & Hernquist 2002)1

maẍa = −
∑

b

mb
Pb

ρ2
bΩb
∇aρb, (19)

where Ωb = (1 − ∂ρ/∂h
∑

c mc ∂Wbc/∂h) is a term accounting
for the gradient of h. The i-component in Eq. (19) can be written

maẍi,a = −
∑
b�a

mb
Pb

ρ2
bΩb

∂ρb

∂xi,a
− ma

Pa

ρ2
aΩa

∂ρa

∂xi,a
· (20)

An estimation of the density gradients using the tensor Eq. (4) is

∇ρ = CI, (21)

where C = T −1. Elements of matrix T are those defined in
Eq. (5) after changing integrals to summations. For particle a,
they are defined to be

τi j,a =
∑

b

mb

ρb
(xi,b − xi,a)(x j,b − x j,a)Wab(ha), (22)

and the j-component of vector I in the IAD0 approach is

I j,a =
∑

b

mb(x j,b − x j,a)Wab(ha). (23)

Thus, for particle a the i-component of density gradient is

∂ρa

∂xi,a
=

d∑
j= 1

ci j,a(ha) I j,a(ha) =

d∑
j= 1

nb∑
b

mbci j,a(ha)(x j,b − x j,a) Wab(ha), (24)

where ci j,a are the elements of matrix C associated with par-
ticle a, and d is the dimension of the space. Explicit expres-
sions for these elements in cartesian 2D were given by Eq. (13).
Equation (24) can be used to directly compute the second term
on the right of Eq. (20).

We can evaluate, in the same way, for particle b

∂ρb

∂xi,b
=

d∑
j= 1

nb∑
c

mcci j,b(hb)(x j,c − x j,b) Wbc(hb). (25)

To calculate ∂ρb

∂xi,a
we use Eq. (15):

∂ρb

∂xi,a
= −ma

∂Wab(hb)
∂xi,b

· (26)

1 In that paper the ∇h contribution is estimated using the Lagrange
multipliers technique.
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The last term in Eq. (26) also appears during the evaluation of
∇bρb, namely

∂ρb

∂xi,b
=

∑
c

mc
∂Wbc(hb)
∂xi,b

= . . . + ma
∂Wab(hb)
∂xi,b

+ . . . (27)

Comparing Eqs. (27), (26) and (25), we finally get

∂ρb

∂xi,a
=

d∑
j= 1

maci j,b(hb)(x j,b − x j,a)Wab(hb). (28)

Substituting Eqs. (24) and (28) into Eq. (20), the i-component of
the momentum equation for particle a is given by

ẍi,a = −
nb∑

b= 1

mb

⎛⎜⎜⎜⎜⎝ Pa

Ωaρ2
a
Ai,ab(ha) +

Pb

Ωbρ
2
b

A′i,ab(hb)

⎞⎟⎟⎟⎟⎠ , (29)

where

Ai,ab(ha) =
d∑

j= 1

ci j,a(ha)(x j,b − x j,a)Wab(ha), (30)

A′i,ab(hb) =
d∑

j= 1

ci j,b(hb)(x j,b − x j,a)Wab(hb). (31)

It is then straightforward to derive the appropriate energy equa-
tion(

du
dt

)
a

=
Pa

Ωa ρ2
a

nb∑
b= 1

d∑
i= 1

mb(vi,a − vi,b)Ai,ab(ha). (32)

Since the magnitudes Ai,ab, defined by Eqs. (30) and (31), are
antisymmetric, the conservation properties of the IAD0 formula-
tion are identical to those of standard SPH.

As in standard SPH, an artificial viscosity term has to be
added to stabilize the numerical scheme and handle shocks. The
AV increases the effective pressure in those zones of the fluid
that undergo compression. Including the viscous acceleration,
the momentum equation is given by

ẍi,a = −
nb∑

b=1

mb

⎛⎜⎜⎜⎜⎝ Pa

Ωaρ2
a
Ai,ab(ha) +

Pb

Ωbρ
2
b

A′i,ab(hb) + Πab Ãi,ab

⎞⎟⎟⎟⎟⎠ ,
(33)

where Πab accounts for the viscous pressure

Πab =

⎧⎪⎪⎨⎪⎪⎩
−αcabμab+βμ

2
ab

ρ̄ab
for rab · uab < 0,

0 otherwise,
(34)

where the symbols have their usual meaning and rab means
ra − rb. The coefficient μab is

μab =
h̄abrab · uab

r2
ab + 0.01 h̄2

ab

· (35)

To preserve momentum conservation, we evaluate the arithmetic
mean ofA

Ãi,ab =
1
2

[
Ai,ab(ha) +A′i,ab(hb)

]
. (36)

The inclusion of artificial viscosity in the energy equation
leads to(

du
dt

)
a

=

nb∑
b= 1

d∑
i= 1

mb(vi,a−vi,b)

(
Pa

Ωa ρ2
a
Ai,ab(ha)+

Πab

2
Ãi,ab

)
. (37)

Fig. 3. Evolution of magnitude σP(t) =

√∑
b(Pb−P0)2

N of an inhomoge-
neous 2D system, initially in hydrostatic equilibrium, calculated using
the different SPH schemes mentioned in the text.

As a representative example of the ability of the new scheme
to handle subsonic physics, we consider the stability of an in-
homogeneous system in mechanical equilibrium. A sample of
N = 62 500 particles were evenly distributed within a square lat-
tice with periodic boundary conditions ensuring that the initial
density was set to ρ0 = 1 g cm−3. The density was then per-
turbed at random allowing maximum percentage variations of
5% across the lattice. The internal energy of each particle was
adjusted to ensure isobaricity with P0 = 1 dyn cm−2 leading to a
sound speed value cs � 1.3 cm s−1. The evolution of the system
was followed during almost a sound crossing time, ts � 0.5 s
using the three schemes, IAD, IAD0 and standard SPH, with
nb = 30 and 100. Calculations using full IAD were carried out
using the Eqs. (52) and (53) described in Sect. 5. Hereafter, the
word standard, STD, refers to the modern, fully conservative,
Lagrangian formulation of SPH that explicitly includes the gra-
dient of the smoothing length parameter in the scheme (see for
instance Rosswog (2009) and references therein). The results of
the simulations are summarized in Fig. 3, where we present the
evolution of the standard deviation in the pressure P(t) with re-
spect to P0 for the three aforementioned schemes. For this par-
ticular test it is clear that both tensor schemes provide a more
persistent mechanical equilibrium than standard SPH during a
sound crossing time, especially when full IAD is used. As ex-
pected, the standard deviation in the pressure decreases as the
number of neighbors increases.

3.1. Computational issues

The increase of the computational requirements of the integral
method is more evident now. With respect to memory require-
ments, the nine coefficients (in 3D) of matrix T and those be-
longing to matrix C can share the same memory space. Thus,
nine coefficients per particle have to be stored to computeAi,ab

in Eq. (33). While the increase in memory requirements are not
a significant problem, the burden in the computational time is
larger. First of all, one has to compute six of the nine coefficients
of symmetric matrixT , Eq. (22). Although these calculations in-
volve simple operations, they have to be performed in a separate
tree-walk because previous knowledge of density is necessary.
Afterwards, matrix T has to be inverted in order to calculate the
coefficients ci j,a for particle a. Fortunately, these matrix inver-
sions do not take much time because they can be completed out
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of the tree structure. Finally, one has to compute the nine quan-
tities of coefficientsAi,ab associated with each pair of neighbors
particles a, b; instead of the three that are necessary in the stan-
dard formulation, and use them to compute both the momentum
and the energy equations.

It is obvious that the proposed method demands a larger
computational effort than the standard SPH. Nevertheless, the
extra burden could be small if the physical problem under simu-
lation requires the calculation of long-range forces (i.e. gravity)
or involves complex physics (i.e chemical or nuclear reactions,
transport phenomena). In addition note that, according to Figs. 1
and 2, for standard SPH to achieve a similar accuracy as IAD0
in calculating the first derivative, the number of neighbors has
to be larger. To maintain the spatial resolution, the total number
of particles also has to be larger by the same factor. Therefore,
changing both the number of neighbors and total number of par-
ticles could have a larger impact on the computational perfor-
mance than using IAD0.

4. Hydrodynamic tests

The aim of this section is to check the theory described in
Sects. 2 and 3 using four tests, all of them widely used in
CFD. The first two simulations concern the growth of the
Kelvin-Helmholtz (KH) and Rayleigh-Taylor (RT) hydrody-
namic instabilities, whose evolution always remains subsonic
and, as we demonstrate, the fully conservative IAD0 scheme
leads to improved results with respect to the standard method
for the same identical initial conditions. The last two tests are
related to strong supersonic flows where shock waves take over,
as in the wall heating shock and Sedov tests, where the use of the
tensor route to estimate derivatives again provides more accurate
results, especially for the wall heating shock test.

The simulations described in this section were carried out
in a cartesian two dimensional scenario because of the higher
achieved resolution, easiest initial setting and analysis of the re-
sults. Periodic boundary conditions were imposed in all tests
except in the RT case, where particles from then top and the
bottom of the box were fixed. A perfect gas equation of state
(EOS) P = (γ− 1)ρu, where u is the specific internal energy and
γ = 5/3, is always used. The coefficients α, β of artificial viscos-
ity, in Eq. (34), were set to 1 and 2 respectively, except for the
wall heating test where we took α = 1.5, β = 3. The cubic spline
was used to perform the SPH interpolations but several calcula-
tions carried out with other interpolators (i.e. harmonic kernels
with index n = 3; Cabezón et al. (2008)) did not lead to sig-
nificant differences. We used a self-adaptive smoothing length
parameter which keeps constant the number of neighbors, nb,
of a given particle. Although the simulations described below
were obtained for nb = 100, the same calculations carried out
using nb = 36 neighbors did not provide significant differences.
Corrections due to the gradient of the smoothing length were ex-
plicitly included in the IAD0 formulation as it comes from the
Lagrange-Euler variational principle.

In Table 1 we show a summary of energy and momentum
conservation properties for the different calculated models. The
tensor calculations are always more able to ensure momentum
and energy conservation than the standard ones for the same
elapsed time. The lack of energy conservation during the point-
like Sedov explosion in all methods is due to the hard initial
conditions. In contrast, the very good conservation of momen-
tum in the supersonic numerical experiments is partially due to
the spherical symmetry imposed to the initial configurations.

Table 1. Conservation properties of the computed models:
Kelvin-Helmholtz (KH), Rayleigh-Taylor (RT), the wall heating
shock (WH) and Sedov (SED).

Test Scheme Time (s) | ΔE|/E0 |Δxcm|/R |Δycm|/R
KH IAD0 4.0 4.0 × 10−8 − 3 × 10−5

KH STD 4.0 1.0 × 10−6 − 1.3 × 10−4

RT IAD0 5.7 1.2 × 10−5 5 × 10−5 −
RT STD 5.7 no grow no grow −
WH IAD0 0.3 5.9 × 10−3 8 × 10−12 8 × 10−12

WH STD 0.3 10−2 5 × 10−10 5 × 10−10

SED IAD0 0.7 9.8 × 10−2 1.3 × 10−10 1.3 × 10−10

SED STD 0.7 1.4 × 10−1 1.5 × 10−10 1.6 × 10−10

Notes. Conservation of momentum is tracked by normalizing the devi-
ation of the center of mass over the characteristic size of the system R.
See Fig. 5 for the temporal evolution of the momentum in the KH case.
The method used to calculate the derivatives IAD0 or standard, STD, is
indicated.

4.1. Kelvin-Helmholtz instability

The Kelvin-Helmholtz instability is a well-known test to check
the ability of any hydrodynamic code to handle subsonic pertur-
bations. This instability appears when there is a sufficient veloc-
ity shear in the interface layer between two fluids with different
densities. Small perturbations of the velocity field in the orthog-
onal direction to the interface grow, leading to a mixing of both
fluids. This is usually simulated in a box with periodic boundary
conditions where two fluid regions are defined with densities ρ1
and ρ2 respectively. Both layers have opposite parallel veloci-
ties leading to a shear discontinuity in the contact interface. To
develop the instability, a small perturbation is seeded in the in-
terface as a sinusoidal mode of length scale λ.

In our case, we have simulated a central band of high den-
sity fluid (ρ1) moving in a low-density medium (ρ2) in a squared
lattice of 1 cm side in the XY plane using N = 62 500 particles.
The mass of the particles was arranged to obtain the correct den-
sity profile following a ramp function Robertson et al. (2010).
In this way, we smoothed the interface density jump to make it
comparable to the SPH resolution using

f (y) =
1
A

1

1 + exp 2(y−0.25)
Δy

1

1 + exp 2(0.75−y)
Δy

, (38)

where A is a normalization constant and Δy = 0.05 cm.
Therefore, the density profile was given by

ρ(y) = ρ2 + (ρ1 − ρ2) f (y), (39)

where ρ1 = 2 g cm−3 and ρ2 = 1 g cm−3.
The seed of the perturbation is obtained using a sinusoidal

function for the vy component of the velocity field. For the initial
velocity, we then have

vx(y) = v2 + (v1 − v2) f (y), vy(x) = Δvy sin (nπx), (40)

where we assume n = 2 and Δvy = 0.1 cm s−1. Also note
that the vx component has been smoothed using the same ramp
function used for the density, and that v1 = 0.5 cm s−1 and
v2 = −0.5 cm s−1, which corresponds to the high and low density
bands respectively.

Figure 4 shows four snapshots of the growth of the
Kelvin-Helmholtz instability at different times for the calcula-
tion using IAD0 (first row) and the standard SPH implementa-
tion (second row). As can be seen, the standard formulation does
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Fig. 4. Evolution of the Kelvin-Helmholtz instability. The snapshots
show the color map of density at times t = 0.1, 1.0, 2.0 and 3.0 s
for methods IAD0 (first row) and standard SPH (second row), with
Δvy = 0.1 cm s−1. Times t = 1.0, 3.0, 4.0 and 5.0 s for methods IAD0

(third row) and standard SPH (fourth row), with Δvy = 0.01 cm s−1.

a poor job of resolving the structure of the instability. Although
in the beginning the main shape is in gross agreement with the
tensor simulations, the final image is blurry, the interface is not
well-defined and the shape is incorrect. In the case of the ten-
sor calculation, the instability grows cleanly and at good rate,
and the definition of the extremes of the billows, where the
finest structure appears, is clearly enhanced. To achieve simi-
lar results to those obtained with the IAD0 technique, different
methods have been proposed to maintain the standard descrip-
tion, mainly based on including an artificial thermal conductivity
(Price 2008). This method provides reliable results, but includes
a new set of parameters and estimates, such as maximum signal
velocity between two particles to obtain a diffusion parameter.
Furthermore, the inclusion of an artificial thermal conductivity
leads to an extra dissipation of gradients away from disconti-
nuities, hence it needs to design some means of controlling the
amount of dissipation.

In Fig. 5, we present the evolution of total linear momen-
tum during the development of the instability. Although both
schemes give a very satisfactory momentum conservation, we
can see that conservation using the IAD0 method is at least one
order of magnitude better than that of standard scheme.

To test the tensor approach in a more hostile scenario, we
diminished the value of the amplitude of the initial velocity per-
turbation by an order of magnitude (i.e. Δvy = 0.01 cm s−1).
In the third and fourth rows of Fig. 4 we show the results of
the simulations using the configurations IAD0 and STD. It is
clear that in the standard formulation the instability was unable
to grow, while it does using IAD0. Changing the geometry of
the initial particle distribution from a square to a uniform hexag-
onal lattice or reducing the size of the smoothing length tak-
ing nb = 36 neighbors did not appreciably change the results.
We can then state, that the matrix approach has inherent virtues
that are absent in the standard formulation, mainly related to the

Fig. 5. Evolution of the absolute deviation from initial linear momentum
during the development of the Kelvin-Helmholtz instability. Figure on
the left is for the x component of total momentum calculated using IAD0

and standard (STD) schemes, whereas figure on the right is the same for
the y component.

generalization of the derivation technique to a tensor expression,
which, in some sense, diminishes the errors derived from the dis-
cretization.

It is also worth to mention that during the simulations car-
ried out using the standard calculation a generalized clumping
of particles in the low density regions often appeared. This is a
well-known problem, called pairing or tensile-instability, where
particles get “stuck” if ri j <

2
3 h owing to an unstable stress-

strain relation that occurs typically when the second derivative
of the kernel becomes negative and high strain is developed be-
tween particles. This problem eventually leads to difficulties in
resolving the distances between neighbors, incorrect interpola-
tions, and finally large non-physical behavior of the particles
that halts the calculation. A typical way to cope with this prob-
lem is to adaptively change the kernel slope so that it becomes
more centrally peaked (Cabezón et al. 2008). However, the IAD0
method was unaffected by this problem, hence we found that the
tensor method seems to be less susceptible to pairing instability.
The ability of matrix methods to cope with pairing instability has
been reported by other authors (Oger et al. 2007), and they merit
further investigation in the context of IAD0.

4.2. Rayleigh-Taylor instability

The simulation of the growth of the Rayleigh-Taylor instability
in a stratified fluid in the presence of gravity is a classical test of
subsonic fluid dynamics. In its simplest form, a box containing
two fluids with different densities separated by a sharp transi-
tion region is placed inside a gravitational field (Youngs 1984).
If the denser fluid is located on top of the lighter, the system
becomes physically unstable and any small perturbation of the
interface leads to fluid overturn. The denser fluid sinks and the
lighter one rises, producing characteristic structures known as
spikes and bubbles respectively. After a linear phase of growth,
which can be studied analytically, the system enters a complex
non-linear regime. In real fluids, however, the viscosity of the
fluid prevents the growth of the instability at short wavelengths,
thus viscosity tends to dampen or even to completely suppress
the instability. One serious problem of numerical schemes incor-
porating the artificial viscosity formulation is that they introduce
too much viscosity into the system, compromising the growth
of instabilities. As we later show, the integral approach to the
derivative, Eqs. (33) and (37), provides a substantial improve-
ment in the simulation of the RT phenomenon when the initial
perturbation amplitude is small.
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A sample of N = 62 500 particles was distributed in a
squared lattice of 1 cm side. The mass of the particles was con-
veniently arranged to reproduce the density profile given by

ρ(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρ2 y ≥ Δy
( ρ2−ρ1

2Δy ) y + ( ρ1+ρ2

2 ) −Δy < y < Δy
ρ1 y ≤ −Δy

(41)

where y is the vertical coordinate with the origin at the interface
and Δy is the width of the transition zone between both fluids.
The density in the two zones were set to ρ1 = 1 g cm−3 and
ρ2 = 2 g cm−3 respectively, and the size of the transition zone
was taken to be Δy = 0.05 cm.

The integration of the hydrostatic equilibrium equation gives
the pressure distribution along the fluid

P(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−g ρ2 (y − 1
2 ); y ≥ Δy

−g
[
ρ2 (y − 1

2
)

+ (
ρ2 − ρ1

4Δy
)(y2 − Δy2)

+(
ρ1 + ρ2

2
)(y − Δy)

]
; −Δy < y < Δy

g( ρ2

2 − ρ1y); y ≤ −Δy

(42)

where g is the gravity, here of value g = 0.5 cm s−2. With this set-
ting, the speed of sound at the inter-phase is cs = 0.7 cm s−1. A
perturbation in the boundary layer with λ = 0.25 cm was seeded
by giving an initial small vertical velocity vy to the particles ac-
cording to the prescription (Abel 2011)

vy(x, y) =
Δvy

4

{
1 + cos

[
8π

(
x +

1
4

)]} {
1 + cos

[
5π

(
y − 1

2

)]}
,

(43)

and vy was set to zero for y positions above 0.7 cm and below
0.3 cm. The value of velocity perturbation was set to Δvy =
0.01 cm s−1. In Fig. 6 we show several snapshots of the develop-
ment of the Rayleigh Taylor instability calculated using IAD0.
As we can see, the RT instability is able to grow after a few
tenths of a second. When the same calculation was attempted
using the standard SPH scheme to compute the acceleration, the
results were of much lower quality, the instability was totally
damped and there was no development of the RT fingers. As in
the case of the Kelvin-Helmholtz instability, changing the initial
particle setting from the square to an hexagonal regular lattice or
reducing the size of the smoothing length did not qualitatively
alter the above conclusions. A similar conclusion was reported
by Abel (2011) who used a variant of standard SPH, albeit not
fully conservative, to simulate the grow of the RT instability us-
ing a similar initial setting of the experiment. This negative result
does not mean that standard SPH is unable to simulate this phe-
nomena because it could handle it after a careful initial setting
that minimizes the numerical noise. Nevertheless, the results of
our simulations indicate that the tensor method is less dependent
on the particular geometry of the initial lattice.

In Fig. 7, we show the evolution of the center of mass
of the spikes ys from the initial contact surface. According to
the theory, the evolution is exponential during the initial stage
ξ(t) = ξ0 exp [Γ(t − t0)], roughly until the initial perturbation ξ0
at t0 (here we took t0 = 1.1 s) has grown to a size ξl � 1/k
where k is the wave number. In our tests, ξl � 0.04 cm. The the-
oretical growth rate Γt during the exponential phase is given by

Fig. 6. Development of the Rayleigh-Taylor instability for Atwood
number 1/3 calculated using the IAD0 scheme. The snapshots show the
color map of density at times t = 0.4, 4.2, 5.1 and 5.7 s.

Fig. 7. Evolution of the center of mass of the spikes during the growth
of the Rayleigh-Taylor instability depicted in Fig. 6. The velocity of
the center of mass of the bubbles, vb, and spikes, vs, is also shown. For
t > 4 s, a limiting speed is reached.

Γt =
√

At kg, where At = (ρ2 −ρ1)/(ρ2+ρ1) is the Atwood num-
ber. The exponential phase is followed by a brief second stage in
which the penetration of the dense fluid evolves as ys ∝ gt2 un-
til drag takes over and both falling spikes and rising bubbles
reach a limiting speed. According to Fig. 7, all these features
are present in the simulations. Nevertheless, there was only a
qualitative agreement with the analytical growth rate during the
initial exponential phase because the value of Γ inferred from
the simulations was almost one half of the theoretical value. This
is unsurprising because a reliable quantitative estimation during
the initial stage needs both a higher resolution as well as a better
initial setting than that we are currently using. In particular, the
transition zone between light and dense fluids has to be sharper
to correctly represent the Atwood number in this stage. An ana-
lytical expression for the terminal velocity of a rising bubble in
a tube was obtained by Layzer (1955), vb = 0.51

√
Atgl where

l is the radius of the tube. Taking l = λ = 0.25 cm, we get
vb = 0.104 cm s−1 in good agreement to the numerical value de-
duced from Fig. 7.

4.3. The wall heating shock test

We now consider simulations of supersonic events. In the test
known as the wall shock problem, a spherical or cylindric su-
personic stream of gas is launched towards its geometrical cen-
ter forming a highly compressed region. For these geometries,
simulations can be compared to the predictions of an analyti-
cal approach to the evolution of thermodynamic variables as a
function of the initial conditions (Noh 1987). Although the gross
features of the event are correctly captured by SPH simulations,
it is well-known that schemes based on artificial viscosity have
difficulties in providing a detailed description of the wall heating
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Fig. 8. Density and velocity profiles during the wall heating shock test.
Figure on the left is for IAD0 calculation, whereas figure on the right is
for the simulation using the standard SPH scheme. Density is normal-
ized to 16 g cm−3.

shock test. The reason is that AV spreads the shock over several
computational cells, which induces a non-physical increase in
the internal energy ahead of the shock. For converging flows, a
large artificial spike in internal energy is observed at the conver-
gence center. As a consequence, a profound dip in the density
profile appears to keep the pressure smooth. However, the in-
clusion of a good amount of artificial viscosity is mandatory to
providing a successful description of the shock.

Our purpose behind this test was to discern whether the in-
tegral route to calculating derivatives can provide more reliable
results than the standard procedure. Therefore, we use IAD0 and
Eqs. (15), (33) and (37) to carry out the simulations.

A sample of N = 57 600 particles of the same mass were
evenly spread across a lattice to ensure that the density was ho-
mogeneous, ρ = 1 g cm−3. The initial pressure and internal en-
ergy of particles were negligible. The system was imploded by
imposing a spherically symmetric velocity field vr = −1 cm s−1.
In Fig. 8 we show the density and radial velocity profiles at
t = 0.3 s, when the shock is well-developed. Both profiles follow
a simple pattern that remains close to the analytical estimations.
In the central region, r < 0.1 cm, a plateau of compressed mate-
rial forms, with a characteristic density of ρs � 14.5 g cm−3 a lit-
tle lower than the analytical value of ρ = 16 g cm−3 for γ = 5/3
(Noh 1987). In this inner region matter remains stagnated with
a velocity close to zero. Outside the plateau the density abruptly
declines through the shock front trying to regain its initial value,
whereas the velocity increases to reach vr = −1 cm s−1 at the
incoming, but still unshocked, matter. As we can see in Fig. 8,
the simulation using the tensor approach is of higher quality than
that of standard derivatives. In particular, the numerical oscilla-
tions in the post-shock region in both, density and velocity, were
considerably smaller in the tensor formulation. Nevertheless, the
dip in the density profile and the maximum value achieved by
density were similar in both calculations.

4.4. Sedov test

In the Sedov test, the evolution of a shock wave front born as a
consequence of a point-like explosion is studied as it propagates
in a homogeneous medium. The problem of an intense explosion
in a gas is a standard test for hydrocodes that is of relevance to
astrophysics, where it is not rare to find strong shocks in many
scenarios involving fluid motions at high velocity. The theoreti-
cal solution was found by Sedov by applying self-similar meth-
ods and dimensional analysis for different geometries (Sedov
1959). In its simplest formulation, the Sedov problem has an
initially cold gas at rest. At t = 0 s there is a point explosion at
the origin that in Sedov (1959) was treated as an instantaneous
release of energy at the origin, and assumed that the background
material through which the expanding gas sweeps behaves like

Fig. 9. Density and velocity profiles during the Sedov test. Figure on
the left is for IAD0 calculation, whereas the figure on the right is for
the simulation using the standard SPH scheme. Density is normalized
to 4 g cm−3.

a perfect gas. For these initial conditions there are precise, albeit
algebraically complicated, analytical expressions for the fluid
variables. In the case of SPH, the artificial viscosity smears the
shock over 2–3 times the smoothing-length. As a consequence,
the density jump across the shock front is always smaller than the
factor of four predicted by the theory for γ = 5/3. In more than
one dimension, resolution issues are crucial not only to resolve
the peak of the blast wave but also to reproduce the correct post-
shock variables downstream and the structure of the rarefied tail
close to the origin. We want to investigate the extent to which
the use of the integral approach to the derivative can improve the
results of the SPH simulations.

The initial setting was similar to that of the wall heating test
but this time the velocity was set to zero everywhere at t = 0 s, to
ensure that the initial configuration is in equilibrium. To create
the explosion, a large amount of internal energy was instanta-
neously released in a small region around the center of the box.
To smooth the initial discontinuity, we took an initial pressure
step that decays as a Gaussian function

P(r) = P2 + (P1 − P2) exp

[
−r2

σ2

]
, (44)

where P1 and P2 are the pressures in zones left and right of the
step and σ sets the width of the pressure decay. In the present
simulations, P1 = 104 dyn cm−2 and P2 = 1 dyn cm−2 and
σ2 = 36 cm2, which smooths the internal energy step over about
5–6 times the smoothing length. In Fig. 9 we depict the den-
sity and velocity profiles once the self-similar state has been
achieved. As we can see the profiles calculated using the tensor
and standard approaches to calculating gradients do not differ so
much. The peak in the density profile is about 80% of what is
expected from a strong shock moving through a γ = 5/3 gas but
the profile in the post-shock zone is smoother in the calculation
using IAD0. The velocity profile is also similar but the tensor cal-
culation showed fewer oscillations and a more ordered behavior
in the post-shock tail. These results agree with our main con-
clusions given in the previous test dealing with the wall heating
shock, reinforcing the idea that for identical initial settings IAD0
provides more reliable results than standard derivatives also for
supersonic events.

5. Handling linear phenomena: momentum
and energy equations using IAD

Ensuring both exact linear interpolation and perfect momentum
and energy conservation using either full IAD or other similar
schemes, seems to be difficult. In this respect, the best physical
systems to try to conciliate both things are pure linear systems
for which linear acoustic wave propagation is a representative
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example. A suitable alternative SPH formulation can be found
starting from the differential acceleration equation

r̈ = −1
ρ
∇P = −

[
∇

(
P
ρ

)
+

P
ρ2
∇ρ

]
, (45)

which, using Eq. (10), can be easily accommodated within the
SPH formalism

r̈a = −
∑

b

mb

⎛⎜⎜⎜⎜⎝Pa

ρ2
a
+

Pb

ρ2
b

⎞⎟⎟⎟⎟⎠∇W̃ab. (46)

This equation can be deduced independently using the varia-
tional principle and, provided the kernel is symmetrized W̃ab =
0.5(Wab(ha) +Wab(hb)), it conserves linear and angular momen-
tum exactly. If instead of Eq. (10) we use Eq. (8) to compute
Eq. (45), the resulting equation is

r̈a = −
[
∇

(
P
ρ

)
+

P
ρ2
∇ρ

]

= −
∑

b

mb

⎛⎜⎜⎜⎜⎝ Pa

ρ2
a
+

Pb

ρ2
b

⎞⎟⎟⎟⎟⎠∇W̃ab + 2 Pa

∑
b

mb

ρa ρb
∇W̃ab. (47)

This particular form of the acceleration equation has several in-
teresting features: 1) In the continuum limit it reduces to the
standard expression, Eq. (46), because the last term in the equa-
tion vanishes. 2) As shown in Sect. 3.2, an isobaric system with
smooth density gradients remains in equilibrium with negligible
acceleration for a long time (see Fig. 3).

However, it is also evident that the inclusion of the last term
in Eq. (47) breaks its symmetry. Still, in the linear limit, momen-
tum is conserved to a high extent as can be easily demonstrated
in 1D. We first expand the magnitudes P/ρ2 in Eq. (47) assuming
a smooth density gradient

Pa

ρ2
a
� Pa

ρaρb

(
1 − Δρ
ρb

)
,

Pb

ρ2
b

� Pb

ρaρb

(
1 +
Δρ

ρa

)
, (48)

where Δρ = ρa − ρb and |Δρ|/ρ 
 1. Inserting Eq. (48) into
Eq. (47) and neglecting higher order terms, the acceleration is
given by

ẍa = −
∑

b
mb
ρb

(
Pb−Pa
ρa

)
(xb − xa)Wab∑

b
mb
ρb

(xb − xa)2Wab
· (49)

If we assume a linear pressure profile within the kernel domain
of the particle

Pb = Pa +

(
∂P
∂x

)
a

(xb − xa), (50)

the acceleration becomes

ẍa = −
1
ρa

(
∂P
∂x

)
a

, (51)

which is the one-dimensional Newton equation, thus leading
to an exact value for the acceleration. In consequence, global
momentum is well-preserved provided that the system remains
in the linear regime and the density gradients are smooth.
According to this discussion, we complete the acceleration equa-
tion obtained in Sect. 3 using the IAD0 scheme with a corrective
term

ẍi,a = −
nb∑

b= 1

mb

⎛⎜⎜⎜⎜⎝ Pa

Ωaρ2
a
Ai,ab(ha) +

Pb

Ωbρ
2
b

A′i,ab(hb)

+Πab Ãi,ab −
ΨPa

ρaρb
Ai,ab(ha)

)
, (52)

where 0 ≤ Ψ ≤ 2 is a parameter controlling the strength of the
applied correction. ForΨ = 0, the already checked IAD0 scheme
results, whereas for Ψ = 2 we have full linear IAD.

To take into account the corrective term in the energy equa-
tion we include the power released/absorbed by such term in
Eq. (37)

(
du
dt

)
a

=

nb∑
b= 1

d∑
i= 1

mb(vi,a − vi,b)

(
Pa

Ωaρ2
a
Ai,ab(ha)

+
Πab

2
Ãi,ab(hb) − ΨPa

ρaρb
vi,aAi,ab(ha)

)
. (53)

such that total energy is exactly conserved. For very subsonic
movements, the energetic contribution of the correction term is
small. For Ψ = 0, Eqs. (52) and (53) reduce to the fully conser-
vative IAD0 scheme. Alternatively, the case of Ψ = 2 could be
used to handle linear systems with smooth density gradients as
it shows enhanced interpolation abilities and good conservative
properties.

Sound wave propagation is an example of a system that
evolves in the linear limit of Euler equations. It is therefore a
test ideally suited to highlighting the potential advantages of the
IAD scheme. A homogeneous system with ρ0 = 1 g cm−3 was
simulated using N = 62 500 particles uniformly distributed in
a lattice of size 1 cm. The initial values of both pressure and
density were set to one. A sample of np = 200 particles in-
side a circle of radius Rp = 0.032 cm located at the center of
mass of the lattice was obliged to oscillate with small amplitude
and period P. This compact set of particles emulated the effect
of an external oscillating piston moving adiabatically onto the
initially unperturbed gas. As the piston moves, it launches reg-
ular trains of circular waves that propagate at the sound speed
cs =

√
γP/ρ = 1.29 cm s−1 for γ = 5/3. We want to check the

ability of the different aforementioned schemes to handle with
this problem.

Particles belonging to the piston move homologously, fol-
lowing the harmonic oscillator law

vr(r, t) = vmr (r) cos(ωt), (54)

where ω stands for the angular frequency, and the maximum
value of the radial velocity of a particle located at distance r
from the center is

vmr (r) = vmr (Rp)

(
r

Rp

)
· (55)

The resolution places limits on both the period and the maximum
velocity at the piston head vmr (Rp). The value of the period was
set to P = 0.05 s so that around eight complete waves were
launched before the first one reached the limits of the system.
The value of the maximum velocity at the piston head was set to
vmr (Rp) = 0.16 cm s−1.

The results of the simulations for the three SPH approaches:
IAD, IAD0 and STD are summarized in Fig. 10, which repre-
sents the radial velocity profile of the gas at time t = 0.35 s. It is
quite evident that the spherical symmetry was better preserved
during the IAD calculation, while there is a progressive degra-
dation of the symmetry in the IAD0 and standard calculations
respectively. The worst case corresponds to the standard scheme
but even in this case spherical symmetry is reasonably preserved.
A more quantitative analysis can be done making use of the an-
alytical solution for diverging circular waves, usually known as
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Fig. 10. Acoustic wave profiles at t = 0.35 s calculated using IAD, IAD0

and standard SPH (STD). The waves were generated by the periodic
displacement of a circular piston of size 0.035 cm located at the center
of the lattice. The continuum line is the analytical solution calculated
taking a sound speed of cs = 1.29 cm s−1.

waves in a membrane in the literature. The solution for free har-
monic traveling waves in a circular membrane is written as

A(r, t) = AmJ(u) cos(wt), (56)

where u = kr, k is the wave number and J(u) is the Bessel func-
tion with radial and angular modes m = n = 0. The Bessel
functions are constrained by J(0) = 1 at the center of the wave
train. The profile for the radial velocity given by Eq. (56) with
Am = v

m
r (Rp) and the comparison with the numerical profiles

obtained using the different schemes are also shown in Fig. 10.
The analytical solution reminds one of a damped cosine wave
propagating at the sound speed cs = 1.29 cm−1. On the whole,
the three schemes were able to correctly track the evolution of
the waves. However, a close inspection reveals small differences
among them. The best value of wave velocity corresponds to
the IAD0 scheme (ciad0

s = 1.285 cm s−1) followed by the stan-
dard (cstd

s = 1.267 cm s−1), whereas full IAD falls a bit short
(ciad

s = 1.25 cm s−1). Even though the damping in the three
schemes is always larger than that of the analytical solution,
it seems that the worst case also corresponds to the fully IAD
scheme built setting Ψ = 2 in Eqs. (52) and (53).

The simulation of linearized systems represents the most fa-
vored situation to apply exact linear interpolation schemes such
as IAD because, as shown above, conservation of momentum
and energy is probably as good as in the standard formulation.
Nonetheless, the numerical experiments with the acoustic waves
suggested limited advantages of using these schemes. In fact,
some details of the wave evolution are better represented by
IAD0 or even by the standard scheme. Only the spherical sym-
metry was more accurately preserved in the experiments using
IAD.

6. Applying IAD0 to astrophysics: the stability
of a Sun-like polytrope

Applying Eqs. (15), (33) and (37) to astrophysics is straightfor-
ward by just adding the gravitational acceleration to the momen-
tum equation. We approached gravity using a multipolar expan-
sion of the force (Hernquist & Katz 1989), up to quadrupole
contributions. The 3D structure of a Sun-like polytrope was sim-
ulated using a sample of N = 105 particles with equal mass.
To achieve the equilibrium, we proceeded in three stages. First,
the radial coordinate of each particle was set following the 1D
density profile of the polytrope with its angular position deter-
mined at random. In the second stage, we allowed the particle
sample to relax under the action of pressure and gravity forces
but the movement of the particles was constrained to keep their
distance to the center constant. In a third stage, we allowed the
particle sample free to approach the equilibrium configuration.
We followed the third stage using both IAD0 and STD schemes

Fig. 11. Evolution towards stability of a Sun-like star approached by a
polytrope. Calculations were carried out using IAD0 and the standard,
STD, schemes. Labels IAD0 (1) and IAD0 (2) refer to calculations with
the AV parameters set to α = 1, β = 2 and α = 1.5, β = 3 respectively.

with the AV coefficients set to α = 1, β = 2. The main goal of
this test is to show that IAD0 (and probably other matrix meth-
ods) can be used to simulate astrophysical scenarios with good
results, excellent conservation properties and with low computa-
tional penalty.

In Fig. 11 (upper row) we depict the evolution of density for
two particles initially located at the center and the surface of the
star respectively. As we can see, these particles display the typi-
cal oscillatory behavior in both regions. As expected, the ampli-
tude of the oscillations is small close to the center and larger at
the surface. The relaxation towards equilibrium is slower for the
tensor method but the structure of the star after t = 2 h of relax-
ation is very similar. With the exception of a tiny region close
to the surface, we verified that the gradient of pressure matched
gravity along the polytrope in both calculations. In Fig. 11 (lower
row) we show the evolution of the kinetic energy and the instan-
taneous position of the center of mass during the relaxation pro-
cess. The evolution is similar in both calculations but the level of
kinetic energy is always a bit higher when IAD0 is used. The en-
ergy conservation after two hours of evolution is rather good for
both schemes �3 × 10−5. In the bottom right of Fig. 11 we show
the evolution of the moduli of the center of mass position. We see
that momentum is not perfectly conserved during the simulation
in both simulations, mainly owing to the multipolar approach to
the gravitational force. Nevertheless, the tensor scheme provides
a better conservation of momentum than the standard SPH cal-
culation.

The higher level of kinetic energy and the slower relaxation
rate towards complete mechanical equilibrium shown by IAD0
suggest that for disordered systems the numerical noise could be
higher for the tensor method. As shown in Fig. 11, the recalcu-
lation of the evolution of the polytrope using larger values of the
AV coefficients, α = 1.5, β = 3 led to a significant reduction in
the level of spurious kinetic energy, while the evolution of the
density at the center and surface of the star remained unaltered.
This implies that the numerical noise is the main agent respon-
sible for the excess of kinetic energy seen during the relaxation
process.

To explore the performance of the algorithm, the tolerance
parameter θ, controlling the accuracy of the multipolar expan-
sion, was varied from 0 ≤ θ ≤ 1, where θ = 0 corresponds to
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Fig. 12. Benchmarking of IAD0 versus STD. Parameter θ is the toler-
ance parameter assumed in the multipolar calculation of gravity.

direct particle to particle interaction. This benchmarking analy-
sis is summarized in Fig. 12. We see that for standard values of
the tolerance parameter, θ � 0.7, widely used in current SPH cal-
culations, the computational overload is around 40%. This over-
load rapidly decays as θ → 0, as expected. However, the number
of operations in the multipolar calculation of gravity scales as
�N log N (Hernquist & Katz 1989). We therefore expect a reduc-
tion in the computational overload with increasing numbers of
particles. Nevertheless, we note that all these calculations were
performed using a serial code. An invaluable property of SPH
is that only a single tree-walk is needed to find the neighbors
(and calculate gravity if needed). Once this information is avail-
able the remaining calculations (density, momentum and energy
equations, IAD0 terms) can be performed with linked-lists that
can be directly parallelized. Following that idea, we found that
for a 3D simulation of 2 × 105 particles in a standard 4-core
desktop computer, the gravity calculation (which remains se-
rial) takes around 30 times more wall-clock time than the rest of
the calculations together (parallelized with OMP using 4 cores).
Knowing this, the computational overload due to the IAD0 cal-
culation remains sub-dominant.

7. Conclusions

We have presented and verified a novel procedure (IAD) to eval-
uate gradients in the context of SPH simulations. The mecha-
nism for calculating derivatives relies on an integral approach,
which ensures that the derivative of a linear function is ex-
actly obtained, even after transforming integrals to summations.
The drawback is the greater algebraic complexity because gradi-
ents are estimated using the tensor expression given by Eq. (4).
Nevertheless, our new scheme is not significantly more complex
than the standard one, easy to implement and includes the clas-
sical formulation as a particular case. A shortcoming of our new
method is that it leads to non-conservative movement equations.
Thus, we have developed and tested a restricted interpretation
of the method, referred to as IAD0, which sacrifices exact lin-
ear interpolation to ensure a perfect conservation of momentum
and energy. The analytical considerations and numerical exper-
iments described in Sects. 2 and 4 strongly indicate that IAD0
behaves better than the standard method in computing gradi-
ents. The modified momentum equation obeying these deriva-
tive rules was developed in Sect. 3, resulting in Eq. (29). Since

the movement equation was obtained from the Euler-Lagrange
variational principle assuming isentropic evolution, the ensuing
equation was fully conservative and explicitly included the ∇h
terms. A conservative energy equation compatible with the mo-
mentum equation was also developed. To handle with shocks
the scheme was completed by including of the standard artifi-
cial viscosity formalism resulting in Eqs. (33) and (37), which
in addition to the density equation in Eq. (15), summarizes the
mathematical formalism linked to IAD0.

The formulation of SPH using matrix methods based on the
variational approach (Bonet & Lok 1999) has been used in CFD
to successfully simulate a variety of problems (generally in two
dimensions) from fluids to the impact and fracture of solid bod-
ies. Nevertheless, none of these schemes are able to simulta-
neously achieve re-normalization, exact momentum and energy
conservation, perfect linear interpolation and implicitly include
the gradient of the smoothing length in the equations (Oger et al.
2007). Nevertheless, IAD0 is probably the optimal formulation
because it fulfills almost all the above requirements with a mod-
erate computational overload.

Four tests were performed in two dimensions to verify the
performance of the method (see Table 1), two of them in connec-
tion to bi-dimensional subsonic hydrodynamic evolution (KH
and RT instabilities) and the other two related to the descrip-
tion of highly supersonic phenomena such as the wall heating
shock and the Sedov tests. In all cases the performance of the
new scheme was superior, although in the supersonic numeri-
cal experiments the improvement was modest. The tests of the
growth of the Kelvin-Helmholtz and Rayleigh-Taylor instabil-
ities clearly showed the power of the IAD0 scheme because
no growth at all was seen when the standard scheme was used
with small initial perturbations, whereas instabilities were able
to grow when IAD0 was used. This does not of course mean that
the standard SPH technique cannot give a satisfactory answer to
these problems but simply states that for the same initial condi-
tions the tensor method seems to be more stable and sensitive to
small perturbations. Therefore, these results indicate that simu-
lations using the IAD0 scheme are less dependent on the initial
setting of the particles. As expected of a tensor method, this ad-
vantage could probably be reinforced as the dimensionality in-
creases.

In Sect. 5 we devised and discussed a slightly different for-
mulation, which combines exact linear interpolation and good
conservative properties, given by Eqs. (52) and (53). The main
point here is that the fully IAD method would be only useful
for describing linearized systems with smooth density gradients.
Nevertheless, a single parameter allows us to easily switch from
IAD to IAD0 and in this sense the formulation given in Sect. 5 is
more general. As sound waves are the prototype of a linearized
system we have used the new scheme to simulate the 2D propa-
gation of acoustic waves. The simulations indicate that there are
no particular advantages of using IAD instead of either IAD0 or
standard SPH, because only the symmetry was better preserved
during the evolution of the wave trains.

A preliminary application of IAD0 to astrophysics was dis-
cussed in Sect. 6 in connection to the stability of a Sun-like star
described by a polytropic EOS. The main goal was to demon-
strate that matrix SPH methods can be used to handle 3D self-
gravitating bodies with satisfactory results and to explore the real
computational overload when long-range forces need to be com-
puted. For a reasonable accuracy in the calculation of gravity,
we have estimated a computational overload <50% for a serial
code, with respect to that of standard SPH, when a multipolar ex-
pansion is used to calculate the gravitational force. The overload
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becomes negligible for a precise particle-to-particle calculation
of gravity scaling as N2/2.

To summarize we could say that simulations carried out us-
ing the SPH scheme obtained with the IAD0 approach to the gra-
dients always led to improved results with respect to standard
SPH. As the new scheme is both fully conservative and more
precise in making interpolations, it could be an alternative to the
standard technique in handling systems subjected to small per-
turbations. This conclusion is supported by the results of our nu-
merical study of the growth of Kelvin-Helmholtz and Rayleigh-
Taylor instabilities. In addition, our simulations of supersonic
phenomena also improved when the tensor approach was used.
The main drawback of this method is that it increases the com-
putational overload, but one has to keep in mind that there is
not always a linear relationship between algebraic complexity
and computational charge. This could be true for hydrocodes
that incorporate time-consuming physics or when the SPH al-
gorithm built with IAD0 allows longer time steps. Even more,
using linked-lists a direct parallelization of the method is possi-
ble as the calculations are carried out of the tree-walk, keeping
the computational overload of the IAD0 almost negligible com-
pared to more time-consuming sections of the code.

Although the presented results are encouraging more work
needs to be done to confirm and extend the conclusions of our
proposal. For the most part, the tests presented in this work to
validate the scheme were carried out in 2D boxes using well-
ordered initial models. The simulation of realistic astrophysical
scenarios generally involves, however, a quite different numeri-
cal setting. Many of these calculations have to be performed in
3D using a random-like initial particle distribution and incorpo-
rating the long-range gravitational force. A detailed comparative
analysis of the ability of IAD0 and standard SPH to cope with
these scenarios is beyond the scope of the present work and is
left to a forthcoming publication. Nonetheless, we can suggest
a couple of areas of difficulty in the tensor formulation that
will probably come up in astrophysical 3D applications of the
method: 1) As suggested in Sect. 6, the tensor method might
be more sensitive to the disorder of the particles and display
a higher level of numerical noise than the standard scheme.
2) Free boundary conditions could be more difficult to han-
dle using IAD0 because the simplification hypothesis assumed
in Eq. (14) does not hold at the edge of the system. The difficulty

in simulating sharp boundaries with matrix methods is a well-
known problem of MLS schemes. According to Oger et al.
(2007), it can be solved by taking special conditions at the limits
of the system. This is not, however, a big concern in astro-
physics because astronomical bodies never have abrupt bound-
aries. Thus, the stability test of the Sun-like star discussed in
Sect. 6 does not reveal that the particles located close to the sur-
face have peculiar behaviors. Although the initial imbalance be-
tween gravity and pressure gradient is more pronounced than in
the standard formalism, the ensuing evolution towards equilib-
rium is not much different.
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