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ABSTRACT 
 
 
Traffic Assignment is the problem of assigning an Origin to Destination, OD matrix onto a 
network, under given conditions of using the links of the network, to determine the resulting 
traffic flows in the network. The underlying hypothesis is that travelers travel from origins to 
destinations in the network along the available routes connecting them. The characteristics of a 
traffic assignment procedure are determined by the hypothesis on how travelers use the routes. 
The main modelling hypothesis is based on the concept of user equilibrium which assumes that 
travelers try to minimize their individual travel times, that is, travelers chose the routes that they 
perceive as the shortest under the prevailing traffic conditions. The translation of these 
modelling hypotheses in terms of a mathematical model leads in the general case to a 
formulation in terms of a system of variational inequalities that has an equivalent convex 
optimization model when volume-delay functions are separable. However, the separability 
assumptions on the volume delay functions may lead quite frequently to modelling inaccuracies 
due to the over simplifications that they represent when dealing with generalized cost in 
complex multiclass-multimode planning models, or accounting for priorities at intersections, 
then the problems become asymmetric in terms of the Jacobian of the cost functions and the 
associated system of variational inequalities must be solved. Projection and Gap Function 
methods are among the most computationally efficient algorithms to solve the models. This 
paper explores a combination of a variant of Fukushima’s projection algorithm and gap 
Functions. The new algorithm is computationally tested for several large networks and the 
computational results are presented and discussed.  
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STATIC TRAFFIC ASSIGNMENT: EQUILIBRIUM ASSIGNMENT 
 
Traffic Assignment is the problem of assigning an Origin to Destination, OD matrix onto a 
network, under given conditions of using the links of the network, to determine the resulting 
traffic flows in the network. The underlying hypothesis is that travelers travel from origins to 
destinations in the network along the available routes connecting them. The characteristics of a 
traffic assignment procedure are determined by the hypothesis on how travelers use the routes.  
 
The main modelling hypothesis is based on the concept of user equilibrium which assumes that 
travelers try to minimize their individual travel times, that is, travelers chose the routes that they 
perceive as the shortest under the prevailing traffic conditions.  
 
User equilibrium modeling hypothesis: the routes chosen by the travellers are those individually 
perceived as being the shortest under the prevailing traffic conditions. This hypothesis assumes 
that travellers try to minimize their individual travel times. It was formulated by Wardrop (1) in 
terms of what is now known as Wardrop’s First Principle, or Wardrop’s User Equilibrium: The 
journey times on all the routes actually used are equal, and less than those which would be 
experienced by a single vehicle on any unused route.  
 
Consider a network defined in terms of a graph G=(N,A) with a set of nodes N representing 
either intersections or centroids, dummy nodes associated with the transportation zones, and a 
set A of arcs modeling the infrastructure and the connectors linking centroids to the networks. 
Consider also an OD matrix modeling the demand between transportation zones. The notation 
used through this paper is the following: 
 

• ( ){ }qpwqpwW n destinatio and origin for pair  OD  theis ,==  = Set of all OD pairs 

• w
Ww

Γ⊗=Γ
∈

;  { }Wwrrw ∈=Γ pair    OD    thejoiningpath      

• ( ){ }1,, =∈Γ∈∃∈∃∈= arw rarWwAaA δ


 

• ( ){ }aaxAaA link over link priority ˆ ∃∈= 
  

We say x(a) is a priority link over link a when x(a) and a are two incident links to the 
same intersection node, and flow arriving to the intersection from link x(a) has priority 
for passing through it. 

• :av  link flows, Aa ∈  

• :)(vsa  cost on link Aa ∈  

• :w
rh  path flows through the path Γ∈r , joining the OD pair Ww∈  

• rs : cost on path Γ∈r  

• ( ) :hC  path costs 

• w

Ww
HH

∈
⊗= ;  ( )









≥=ℜ∈= 
Γ∈

0, w
rw

r

w
r

nww hghhH
w

w  

• ( )HV Δ= ; ( )arδ=Δ  where 




=
otherwise  0

path      tobelongs  link   if  1 ra
arδ  

• N: number of nodes; M: number of links 
 
Wardrop’s First Principle can be easily  translated  in terms of mathematical relationships, 
Florian and Hearn (2), flows on a network are in equilibrium that satisfies Wardrop’s principle 

when for path flows *
kh  with costs sk and shortest path costs *

wu for OD pair w, satisfy: 

 
      (1) 
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    (2) 
 
The equations (1) are a direct translation of Wardrop’s principle in mathematical terms as a 

complementarity condition. If path k carries flow, that is  0* ≥kh , then the complementarity 

equation (1) is satisfied if and only if 0* =− wk us , that is the cost ks  of using path k for the w-

th OD pair is equal to *
wu  the cost of the shortest path for the w-th OD pair, while if 

0* >− wk us , that is the cost ks  of using path k is higher than the cost of the shortest path, then 

to satisfy the complementarity equation 0* =kh , that is path k doesn’t carries any flow, as 

expected from Wardrop’s principle for paths whose costs are not minimal. Constraints state 
when a flow is feasible or not in terms of flow balance. If wΓ  is the set of all paths for the w-th 

OD pair then the sum of flows on all paths for the w-th OD pair must equal the demand wg for 

w-th OD pair and flows kh  must be non-negative. After some algebra, Florian and Hearn (2), 

and taking into account the definitional constraint relating flows on arcs a∈A, where A is the set 
of arcs in the network, with flows on paths k: 





== 
∈ Γ∈ otherwise  0

k  path to  belongs  a  arcif     1
 where      ak

Ww k
akka δδhv

w  (3)

 

 
results 
          
    (4) 
 
 
 
That is Smith’s (3) variational inequality. It can be probed that there is no equivalent convex 
optimization problem unless the cost functions s(v) are separable, that is, their Jacobian is 
symmetric, Florian and Hearn (2). The simpler separability condition holds when they depend 
only on the flow in the link: ( ) ( ) Aavsvs aaa ∈∀= , and demands wg are considered constant, 

independent of travel costs, the variational inequality formulation has the following equivalent 
convex optimisation problem, Patriksson (4), Florian and Hearn (2): 

W,w,k       h

Ww,ghs.t.  

(x)dxsMin S(v) 

wk

k
wk

Aa

v

a

w

a

∈Γ∈≥

∈∀=

=





Γ∈

∈

0

0

    (5) 

and the definitional constraint of av (3). Although the traffic assignment problem is a special 

case of non-linear multi-commodity network flows problem, and may be solved by any of the 
methods used to solve this problem, more efficient algorithms, based on an adaptation of the 
linear approximation method of Frank and Wolfe, Frank and Wolfe (5) have been developed, 
Leblanc at al. (6), Florian (7). Other efficient algorithms based on the restricted simplicial 
approach have been developed, exploiting the properties of the convex polyhedron of feasible 
solutions defined by constraints (2), Hearn et al. (8), Lawphongpanich and Hearn (9), or on an 
adaptation of the parallel tangents method (PARTAN), Florian et al. (10). 
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However, the separability assumptions on the volume delay functions may lead quite frequently 
to modeling inaccuracies due to the over simplifications that they represent when dealing with 
generalized cost in complex multiclass-multimode planning models, Wu and Florian (11), 
Florian and He (12), or when it is recommendable to deal explicitly with delays at intersections. 
For example in the case for an unsignalized intersection shown in Figure 1, if we consider x(a) 
as the link with priority over link a, the delay at the intersection can be formulated as Harders 
(13): 

( )
( )

( ) aa

h

v
t

h

v
t

fa vvc

e
htvd

a
f

ax
c

−
−+=









⋅+−
360036001

3600    (6) 

Where tc is the critical gap time on the x(a) movement, and tf is the joining time on the main 

link. Constant h is the time period in hours, and ( )vca  are the intersection capacities which must 

satisfy ( ) 0≥− aa vvc . These constrictions are convex and can be aproximated by 

( )( ) ( ) ( )axaxaaxa vkcvc −≈ 0 , using 
( )

( )ax

a
ax c

c
k

0

= , where ( )axc  is the capacity on link x(a) and 0
ac  is a 

general capacity for an intersection. Thus, the constriction can be rewritten as ( ) ( )
0
aaaxax cvvk ≤+ . 

     

Figure 1. 

In consequence, it is possible to reformulate Harders delay expression as: 

( )
( )

( ) ( )axaxaa

h

v
t

h

v
t

fa vkvc

e
htvd

a
f

ax
c

−−
−+≈









⋅+−

0

360036001
3600    (7)  

However, this is an asymptotic expression whose use could carry numerical problems. For this 
reason we considered the option of using the following related expression for asymmetrical 
delays that does not contain any asymptotic relationship:  

( ) ( )( )( )11ln
1 −⋅⋅++= vxb

fa etvd θ

θ
               (8) 

Where ( ) ( ) ( )

hc

vkv
vx

a

axaxa
0

+
=  and b , θ  are parameters properly chosen. In the developments that 

follow we have used this asymmetric cost formulation for links without priority while for the 
priority links we use the symmetrical expression of cost:  

 
( )axv

av
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( )





















⋅

+⋅=
β

α
hc

v
tvs

a

a
a 10

     (9) 

Where ac  is the capacity on link a and 0t  is the link travel time under free flow conditions; α  

and β  are variable parameters. 

When the intersection has more than one priority link, as shown in Figure 2, then ( ) ( )axax vk is 

replaced by  ( ) ( )
( )


∀
a

ax
axax vk

link over link 
priority 

   in (7) for all priority links x(a). 

 

Figure 2. 

 

ALGORITHMIC APPROACHES TO SOLVE THE FORMULATION OF USER 
EQUILIBRIUM ASSIGNMENT IN TERMS OF VARIATIONAL INEQUALITIES 

The above examples justify the practical interest in finding efficient computational solutions to 
transport planning problems modeled in terms of asymmetric assignment models to aexplicitly 
account for interactions as the described and referenced.  From a research point of view the 
most appealing approach is the search for efficient algorithms to solve the Smith’s variational 
inequalities formulation of the asymmetric user equilibrium as formulated in (4). We will 
reformulate it as: 

   
Vvvvvs

tsVvFind

∈∀≥−
∈

Τ 0,)()(

:..
**

*

   (10) 

Or in its variational form: 

                            
)()(0

:..
**

*

vNvs

tsVvFind

V+∈
∈

 (11) 

Where )( *vNV  is the normal set to set V  at point *v . 

Following García and Marín (14) and Patriksson (15), algorithms to solve this variational 
problem can be classified in: 
 

• Relaxation methods  
• Projection methods  
• Methods based on gap functions for variational inequalities :  

- Newton descent methods based on primal gap  

( )axv '

( )axv

av
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- Primal descent algorithms based on the generalized primal gap function of 
Patriksson  

- Algorithms for minimizing Marcotte’s gap Function  

This paper addresses algorithmically a combination of projection and gap function methods for 
asymmetric problems. 

 

Gap functions 

A function G is a gap function R: →VG , for variational inequalities (6) if: 
a) Is nonnegative 

b) It vanishes only at points Vv ∈*  that are solution of the variational inequality. 
Descent methods for variational inequalities are based on various types of gap functions, the 
most commonly used are the primal gap function PG :  

  )()(=)( uvvsSupvG VuP −Τ
∈  (12) 

The dual gap function  DG :  

  )()(=)( vuusInfvG VuD −Τ
∈  (13) 

The Marcotte’s gap function MG
~

 , defined after a function R:),( →×VVvuϕ , continuously 

differentiable and strictly convex  in u , Vv ∈∀  and a parameter 0>ρ . 

  }),()()({=)(
~

vuuvvcMaxuG VvM ρϕ−−Τ
∈

Δ
 (14) 

The Smith’s gap function SG , defined from an integer 0≥p  needs the set of vertices of set  

V , assumed to be polyhedral  . 

  
p

p

Vv
S vvvsvG

1

ˆ

)]ˆ()([=)( 







− +

Τ

∈
  (15) 

 
The proposed algorithm uses the gap function with the method of cost approximations 
developed by Patriksson (14) which includes as a particular case the following descent direction 
algorithm for the primal gap PG , García and Marin (13).  
 

 
Descent direction algorithm for the primal gap: Newton Method 

 

 
Projection methods 
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For variational inequalities (10) projection algorithms project at each iteration  , on the 

polyhedron V  the point )(=ˆ  vQsvv ρ+ , where Q  is a symmetric matrix definite positive 

and 0>ρ  is a suitable scale parameter.  The projection of point v̂  on the polyhedron V  

under the norm 
1−⋅

Q
 is equivalent to solve the quadratic problem: 

  
..

)ˆ()ˆ(
2

1 1

ts

vyQvyMin
Vy

 −− −Τ

∈  (16) 

Or equivalently: 

  
..

)()()()(
2

1 1

ts

vyvsvyQvyMin
Vy

 −+−− Τ−Τ

∈
ρ

 (17) 

 
Or solving the variational inequality:  

  
)()(ˆ0

:..
**

*

vNvs

tsVvFind

V+∈
∈



 (18) 

 

where )(ˆ ⋅s  is the functional given by )(
1

)(=)(ˆ 1 
 vyQvsys −+ −

Δ

ρ
.  

When applied to traffic assignment problems the separable structure of the set of feasible flows 
in the paths and the resulting projection algorithm is: 
 
Initialization: Find an initial set of feasible acyclic paths for each OD pair Ww∈ , and load on 

them the demand wg   0
wΓ  and 00 Hh ∈ ; 1= . 

At iteration  :  

1. For each OD pair Ww ∈  determine the set of paths +Γw  used on iteration 1−  

2. Increase the set of paths finding the shortest paths Wwk w ∈Γ∈ ,


 with costs ( )1−Δ hs  

 solution flows 
SPĥ .  

3. Add new paths detected: Wwkww ∈∀ΓΓ ++ },{=


  

4. If ( ) ( ) ( )
( ) ε≤−=

−

−−
−






SP

T
SP

T

rel
hhC

hhhC
hG

ˆ

ˆ

1

11
1  STOP.  (19) 

5. For each Ww∈ , solve the quadratic problem: 

0,=:.                     

)(2)()(][ 21(1(1(

≥






 −+−





+Γ∈

−−−

+Γ∈
∈

kwk

wk

kk
k

kkk

wk
Hh

hghtos

hhqhshhMinQ
w



ρ
     flows ĥ  (20) 

6. Linear Exploration (optional): ( )( )θ
θ

h G
10

Min
≤≤

  θ~ ;  where ( ) ( )11 ˆ −− −+=  hhhh θθ  

Update flows: ( )111 ˆ~ −−+ −+=  hhhh θ .  

7. 1+←  . Go to 1) 
 

Whose computational performance strongly depends on the solution of the quadratic problem 
[Q] (20) at step 3. To solve it we used an adaptation of the algorithm proposed by Wu (16) for 
which the problem is strictly convex and therefore Karush Kuhn Tucker (KKT) conditions are 
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necessary and sufficient for optimality, and by applying them it is easy to probe that solutions 
for path flows are: 

 ( ) ( )
















+
−

= 


k
k

k
k h

q
hs

h

ρ

λλ ;0max   (21) 

Where λ  is  the parameter which satisfies ( ) w
Kk

k gh =
∈

λ , and it is found by an iterative process 

over the function ( ) ( )
∈

=
Kk

kh λλϕ , that is a monotonous undecreasing and piecewise linear 

function.  
 
To compute the value of parameter λ  we propose the following variant of Wu’s algorithm. 

Let 0λ  be  the initial value defined by: 

 

( )





>

>








−+

=

0

00

k

k

h k

h
k

k

k
w

q

h
q

hs
g

ρ

ρ
λ  (22) 

With this initial value for 0λ , update flows ( )0λkh  wk Γ∈∀  as described above in (21), 

evaluate ( ) ( )
∈

=
0

00

Ii
ih λλϕ  and register set ( ) ( ){ }0>Γ∈== 

 λλ iw hiII  for 0= . The rest 

of the algorithm is: 

1. If ( ) wg=λϕ  STOP.  

2. Calculate 

( )





∈

∈+








−+

=





Ik k

Ik
k

k

k
w

q

h
q

hs
g

ρ

ρ
λ 1   (23) 

3. Update flows and evaluate ( ) ( )
+∈

++ =
1

11





Ii
ih λλϕ   

4. Register set ( )1
1

+
+ = 
 λII  

5. 1+←   and go to 1). 

Line Search 

In order to speed up the projection algorithm we have introduced an optional module of linear 
exploration which tries to find a new and better point using the information relating to both the 
current iteration and the previous one. 

Consider the directional derivative on the descent direction  vv −ˆ : 

 ( ) ( ) ( ) ( )( )[ ] ( ) vvvvvvsvsvvvG
TT

p −−∇+=−′ ˆˆ; *   (24) 

Where 
av  Aa ∈∀  are the link flows obtained on the last iteration, 

av̂  Aa ∈∀  are the new link 

flows obtained from the quadratic problem, and ( )vva
*  Aa ∈∀  are the link flows that we would 

obtain solving the shortest path problem with costs ( )vs . 

The linear exploration implemented in this case is the following: 
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0. Initialization:  vv ˆ0, = , ( ) ( ) vGvGGG pp ˆ0,
21 === , ( )vGGG p== ~

0 , 1
~ =θ , 

121 == θθ , p=0. Improved=false. 

1. If ( ) ( ) ( ) vvvGvGvG p
p

p
p

p −′+≤ ˆ;, ηρ  or p=n STOP. 

2. Update flows: ( ) vvvv pp −+= ++ ˆ11, ρ ; 1+← pp  

3. 12 GG = , 12 θθ = , pρθ =1  

4. Calculate ( )p
p vGG ,

1
=  

5. If ( ) GvG p
p

~, < then: ( )p
p vGG ,~ = , pvv ,~ = , pρθθ == 1

~
, improved=true. 

6. Go to 1. 

Where n,,θρ  are parameters properly chosen. After this first phase of linear exploration, there 

is another phase which gives a second opportunity to reduce primal gap: 

7. If improved=false then: 








+
+−=

01

11101~

ββ
θβ

μ
θ GG

   (25) 

Where ( ) vvvGp −′= ˆ;0 ηβ  and 
12

12
1 θθ

β
−
−= GG

; μ  is a variable parameter. After the linear 

exploration we take as a new point the updating of flows:  

( ) hhhh −+=+ ˆ~1 θ  in the paths space   (26) 

( ) vvvv −+=+ ˆ
~1 θ  in the links space   (27) 

 
Finding initial feasible paths 

The way of finding an initial set of feasible acyclic paths for each OD pair is the algorithm 
described below:  

Consider the function: ( ) ( ){ }
∈

−+=
Aa

aaxaa cvkvvf
ˆ

02 ,0max
2

1
;  Γ

∈Vv   (28) 

Whose gradient is:  ( ) ( ) ( )

( )








<+

≥+−+

∉

=∇
0

00

 if                          0

 if    

ˆ if                          0

aaxaa

aaxaaaaxaa

cvkv

cvkvcvkv

Aa

vf



  (29) 

Algorithm: 

0) Determine a set of initial paths 0Γ  so that 10 >Γw  Ww∈∀  

Iteration k: 

1) Solve ( ) ( ) 0** ≥−∇ vvvf
T

 kVv
Γ

∈  

2) - If ( ) 0* =vf  then STOP (we have an initial set of feasible paths) 

- If ( ) 0* >vf  then update costs ( ) ( )** vfvsa ∇=  

3) Find the shortest paths with new costs: Wwk w ∈Γ∈ ,


. Add new paths detected: 

Wwkk
w

k
w ∈∀ΓΓ − },{= 1


  
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4) 1+← kk . Go to 1) 
 
Shortest paths with turnings 

The above description of the various components of the proposed algorithm relay iteratively on 
the computation of shortest paths, however, taking into account the causes of the asymmetries it 
is obvious that practical realistic approaches must find the way of computationally dealing with 
them, that is dealing explicitly with the information about forbidden or penalized turnings in the 
computation of shortest path. Our approach uses an ad hoc version of the algorithm proposed by 
Ziliaskopoulos and Mahmassani (17) which incorporates information about turnings in graphs 
and suggests structures to store this information.  

The specific notation for this adapted algorithm is the following: 
 

][iE  - set of emerging nodes from node i  

],[ jiM  - set of possible nodes k  from a turning ),,( kji  

),( jiL  - ordinal of link ),( ji  in the data structure 

()Ap  - link predecessor vector. At the end the algorithm shows the path tree over the 
expanded graph 

)(dpD  - pointer to the link predecessor vector which indicates the last link in the path 

from origin r  to destination d . 
D - set of destinations 
I  - set of nodes where there is a penalized or forbidden turning 

ijkγ  - cost of turn ),,( kji . 
defγ  - cost of undeclared and permitted turnings (tipically zero) 

ijλ  - cost from origin r  until exiting node i , when going out in direction to node j  

jλ~  - cost from origin r  until node j  (without entering into it) 

 

The adaptation for the shortest path algorithm is described below. Links are added to set S 
according to criteria of an L-Deque shortest path algorithm, Gallo and Pallotino (18). 
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A FUKUSHIMA’S GAP BASED ALGORITHM 
 
The projection algorithm described in the previous section has been the basis for a modified 
version of Fukushima’s projection algorithm using the Fukushima’s Gap, Fukushima (19), (20), 
defined as follows: 

( ) ( ) ( ) 



 −+−−=

∈

2

2Min hfhfhChG T

Hf

F ρ    (30) 

Based on this new measure of the gap, and using a similar structure to the previous projection 
algorithm, we have developed the following modified projection algorithm: 

Initialization: Find an initial set of feasible acyclic paths for each OD pair Ww∈ , and load on 

them the demand wg   0
wΓ  and 00 Hh ∈ ; 1= .  

Iteration  :  

1. For each OD pair Ww ∈  determine the set of paths +Γw  used on iteration 1−  

2. Increase the set of paths finding the shortest paths Wwk w ∈Γ∈ ,


 with costs ( )1−Δ hs  

 solution flows 
SPĥ . 

3. Add new paths detected: Wwkww ∈∀ΓΓ ++ },{=


  

4. If ( ) ( ) ( )
( ) ε≤−=

−

−−
−






SP

T
SP

T

rel
hhC

hhhC
hG

ˆ

ˆ

1

11
1  then STOP.    (31) 

5. Equilibrate the existing paths  (G.F.) problem:  ( )hF

Hh
G Min ∈

  new flows h  

 
(G.F.) problem 
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Initialization: 10 −= hy ; 0=k  
Iteration k:  
a) Solve:  

( ) ( ) 2

Hf 2 Min kkk yfyfyC
T

−+−
∈

ρ


         (32) 

New flows: ( )kk yff *~ ≡   

b) Linear Exploration (optional): ( )( )α
α

yF

10
G Min ≤≤

  *α ; where ( ) ( )kkk yfyy −+= ~*αα .  

c) Update flows ( )kkkk yfyy −+=+ ~
: *1 α  and evaluate costs ( )1+kyC  

d) If 
( )

( ) ε≤
++

+

11

1

kTk

k

yyC

yG  STOP. Get 1* +≈ kyy . 

e) 1+← kk . Go to a) 

6. 1+←  . Go to 1. 

Again, the computational performance of the algorithm strongly depends on the solution of the 
quadratic problem (32). To solve it we use the same method described in the previous section, 
an adaptation of the algorithm proposed by Wu (16). In this case it can be probed that solutions 
for path flows are: 

 ( ) ( )








+−= 


k
k

k h
hs

h
ρ

λλ ;0max  (33) 

And λ  is the parameter which make flows satisfy ( ) w
Kk

k gh =
∈

λ , and it is found by the iterative 

process over the function ( ) ( )
∈

=
Kk

kh λλϕ  described in the previous section. In this case we 

have: 

( )





∈

∈+







 −+
=





Ik

Ik
k

k
w h

hs
g

ρ

ρ
λ

1
1  (34) 

In this case the linear search can be simpler that the one used in the previous projection 
algorithm, the reason is that now the differentiability of Fukushima’s gap function can be 
explicitly used in the linear search. Let’s consider Fukushima’s gap function evaluated on the 
point ( ) ( )kkk yfyy −+= ~αα : 

( )( ) ( ) 2~
2

~ kkkkkkT
k yfyyfyC −++−+ αρα  (35) 

Then, manipulating this expression we obtain a quadratical function on α : 

( ) ( )[ ] ( ) 22
2

2
~~~

2
kkT

k
kkTkkkT

k
kk yyCyfyyfCyf ρραρα ++−+−+−  

Whose minimum is on 
( ) ( )[ ]

2
*

~

~~

kk

kkTkkkT
k

yf

yfyyfC

−

−+−−=
ρ

ρα  (36) 

Taking { }1,** αα Min=  and updating flows:  

 ( )kkkk yfyy −+=+ ~
: *1 α                                                                                       (37)  
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At the beginning of the algorithm, the process to find the initial set of feasible acyclic paths for 
each OD pair is exactly the same described before for the projection algorithm, as well as the 
adaptation for the shortest path problem in a graph with turning penalties and forbidden turns. 
Again, the method used to solve shortest paths has been L-Deque. 

 
COMPUTATIONAL  RESULTS 

We have used three different networks to conduct the computational experiments whose results 
are reported in this paper, the networks of Winnipeg (Canada), Terrassa (Spain) and Hessen 
(Germany). Winnipeg is the smallest one in terms of nodes and links, and in spite of not having 
any turning restriction it is the one that has a higher quantity of non priority links (more than 
15%). Consequently, Winnipeg is the network which uses more asymmetric delay functions on 
its links. Terrassa is bigger than Winnipeg, it has restrictions at some turnings and near a 7% of 
non priority links that use asymmetric delay functions. Hessen is the biggest one, it also has 
turning restrictions and almost a 6% of non priority links. Table 1 shows the main 
characteristics of the networks: 
 

Network nodes links centroids OD pairs 

forbidden or 
penalized 
turnings  

non priority 
links (%) 

Winnipeg 1057 2535 154 4345 0 15,58%
Terrassa 1609 3264 55 2215 1103 7,05%
Hessen 4660 6674 245 17213 7054 5,75%

 
Table 1: characteristics of the networks included in this paper. 

 
To measure the efficiency of the algorithms we define two different formulae to calculate the 
gap. The first one (RGap1) is the typical primal gap on its relative form. It is also the measure 
used in both algorithms to decide at the end of every iteration whether to continue or stop 
because of the last solution found is rather good. RGap1 is defined as follows: 
 

( ) ( ) ( )
( ) uvs

uvvs
vRGap Τ

Τ −
=1     (38)

 

Where v  are the link flows found at the current iteration, ( )vs  are the corresponding costs and 

u  the minimum link flows resulting from the shortest path calculation when link costs are ( )vs . 

The second formula (RGap2) is also a gap measure but calculated in this case on the path space 
and it is weighted by the demand between OD pairs. This measure is the one used in software 
EMME2 to evaluate whether a solution is good enough or still not. RGap2 is defined as follows: 

( )
( ) ( )

( )

 

∈

∈ Γ∈








−

Ww
SP

T
k

w

Ww
SP

T
k

k
kk

w

hhC
g

hhChhC
g

vRGap

SP

SP

w

1

1

=2   (39)
 

Where h  are the path flows found at the current iteration, ( )hC  the corresponding costs, SPh  

the path flows resulting from the shortest path routine when link costs are the associated to the 
current path flows h  and wg  is the demand corresponding to the OD pair Ww∈ . As flows 

SPh  correspond to the assignment of all the demand wg  through the minimum cost path and 
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zero flow through the rest of paths joining the OD pair Ww∈ , it is possible to rewrite formula 
(39) as the following: 

( )
( ) ( )

( )

 

∈

∈ Γ∈








−

Ww
k

Ww
k

k
kk

w

hC

hChhC
g

vRGap
SP

SP

w

1

=2    (40)
 

Where ( )hC
SPk  is the cost corresponding to shortest path kSP. 

The conducted computational experiments have consisted of executing the two algorithms, the 
projection and the modified projection, for the three networks. In order to compare the 
performance of both algorithms in terms of the quality of the achieved solutions either the 
number of iterations or the cpu time has been fixed getting the results achieved for the same 
number of iterations or the same computational time for each algorithm with each network. 

The Figures 3 and 4 depict respectively how the measures RGap1 and RGap2 descend as a 
function of the number of iterations for the Modified Projection Algorithm. We show them for 
two different networks, Figure 3 shows the descent of RGap1 in the Winnipeg network and 
Figure 4 shows the descent of RGap2 in the Hessen network. Both graphs are in the logarithmic 
scale to show more clearly the behavior of the measure. We observe that the speed of descent is 
very fast at the first iterations and after is always descending but slowly.  

Logarithm of the relative gap1 - Winnipeg network
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Figure 3 

 

Logarithm of the relative Gap2 - Hessen network
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log(relative_gap2)

 
Figure 4 
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The comparison between the results for both algorithms is presented in tables 2, 3 and 4, which  
show for each algorithm and each network four different measures:  

• number of iterations that the algorithm did until it reached the objective established 
in that table 

• the value of the relative gap1 reached at the end of all the iterations 
• the value of the relative gap2 reached at the end of all the iterations 
• the CPU time in seconds that the main modules of the algorithm (the quadratic 

problem, the linear exploration and the shortest path problem) used until the last 
iteration 

 
In Table 2 we fix a CPU time of 10 seconds and we compare the measures for the relative gaps 
obtained at the end of this CPU time. For all networks we can see that both the RGap1 and the 
RGap2 value are always lower using the new modified algorithm. These values are especially 
significant in the case of RGap1 for Terrassa network, which improves from 3.93E-03 to 9.08E-
04, thus gaining an order of magnitude using the new algorithm. The same happens in the case 
of RGap2 for Hessen network, which also gains an order of magnitude with the new algorithm, 
improving from 1.40E-04 to 5.70E-05. 
 

Algorithm Network 
Number of 
iterations Relative Gap1 Relative Gap2 CPU time (s)

Winnipeg 63 3.93E-05 2.50E-05 10
Terrassa 56 3.93E-03 3.69E-04 10

PROJECTION 
ALGORITHM 

Hessen 9 7.08E-04 1.40E-04 10
      

Algorithm Network 
Number of 
iterations Relative Gap1 Relative Gap2 CPU time (s)

Winnipeg 119 3.21E-05 2.00E-05 10
Terrassa 216 9.08E-04 1.17E-04 10

NEW 
ALGORITHM 

Hessen 34 3.65E-04 5.70E-05 10
Table 2: comparison of the computational results obtained for the same CPU time (10 seconds) 

 
 
Table 3 is similar to Table 2. In this case we fix a CPU time of 15 seconds and we also compare 
the relative gaps obtained at the end of this CPU time. Again we can see for all networks that 
both the RGap1 and the RGap2 values are always lower using the new algorithm. Moreover, we 
obtain particularly interesting values in the case of Terrassa network, where it improves the 
result by an order of magnitude both for RGap1 value and RGap2 value. 
 

Algorithm Network 
Number of 
iterations Relative Gap1 Relative Gap2 CPU time (s)

Winnipeg 95 2.68E-05 1,59E-05 15
Terrassa 84 2.19E-03 2,22E-04 15

PROJECTION 
ALGORITHM 

Hessen 14 4.3E-04 8,95E-05 15
      

Algorithm Network 
Number of 
iterations Relative Gap1 Relative Gap2 CPU time (s)

Winnipeg 156 2.47E-05 1.48E-05 15
Terrassa 265 6.62E-04 9.12E-05 15

NEW 
ALGORITHM 

Hessen 47 3.08E-04 4.16E-05 15
Table 3: comparison of the computational results obtained for the same CPU time (15 seconds) 

 
Finally, in Table 4 what we fix is the RGap2 value, which tends to be always smaller than 
RGap1, and in this case the table shows the results from the first iteration where appears a 
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RGap2 lower than 10-4. We observe that in all cases the CPU time used to reach this value is 
smaller with the new algorithm. For Winnipeg network this value is reduced to a 54% of the 
time used by the projection algorithm, and for Terrassa and Hessen networks we obtain a CPU 
time lower than half the time used by the projection algorithm (reduction of 47.5% and 39.7% 
respectively). In terms of absolute value the most significant reduction is the obtained for the 
Terrassa network, with a difference of 14.56 seconds of CPU time. 
 

Algorithm Network 
Number of 
iterations Relative Gap1 Relative Gap2 CPU time (s)

Winnipeg 13 2.08E-04 9.81E-05 2.141
Terrassa 153 6.82E-04 9.95E-05 27.735

PROJECTION 
ALGORITHM 

Hessen 13 5.15E-04 9.72E-05 14.612
      

Algorithm Network 
Number of 
iterations Relative Gap1 Relative Gap2 CPU time (s)

Winnipeg 20 2.07E-04 9.69E-05 1.172
Terrassa 248 7.44E-04 9.96E-05 13.175

NEW 
ALGORITHM 

Hessen 20 5.21E-04 9.69E-05 5.803
Table 4: comparison of the computational results obtained for the same relative gap (<10-4) 

 
 
CONCLUSIONS AND FUTURE RESEARCH 
 
In conclusion, the new modified projection algorithm proposed in this paper gives good results 
solving the asymmetrical traffic assignment problem in rather large networks with many OD 
pairs and turning penalties. Further research will consist in improving the data structures which 
support all the information used by the algorithms. We suspect that in this way we could obtain 
even better results for the new algorithm based on the modification of Fukushima’s method. 
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