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Abstract. This document describes the models for network design and planning in the field of urban
transportation that have been developed in the course of research project TRA2008-06782-C02-02. This
includes transit, rapid transit and bus networks. This project can be considered in many aspects as a
follow up of previous research project TRA2005-09068-C03-02/MODAL. The network topology design is
being considered in this project as well as logistic problems regarding vehicle assignment and timetabling.
Also, the integration of different stages traditionally carried out in classical approaches of the modelization
process (i.e. design and planning) is done via unified and compact models contributing in this way to the
improvement in the consistency of the solutions. Some mathematical programming models are exposed
in order to set the number of services at previously specified bus lines, which are intended to assist
high demand occurring during the disruption of the Rapid Transit services or during the celebration of
massive events. By means of this model two types of basic magnitudes can be determined, basically: a)
the number of bus units assigned to each line and b) the number of services that should be assigned to
those units. The model can be considered of the system optimum type, in the sense that the assignment
of units and of services is carried out minimizing a linear combination of operation costs and total travel
time of users. The model considers delays experienced by buses as a consequence of the get in/out of the
passengers, queueing at stations and the delays that passengers experience waiting at the stations.

Keywords: Network design, public transportation models, congestion, mathematical programming.

Introduction

Because of huge costs in construction and exploitation of rapid transit systems a careful
attention is paid to their efficiency. The underlying network design process is part of the
planning process itself, which is comprised by several stages with two intertwined prob-
lems: alignment determination and stations location. Once the area has been divided
into transportation zones, the classical four step model in planning is applied: trip gen-
erating, demand distribution, modal choice and trip assignment. The four step process
for the selection of a network of lines in mass transit systems, allows us the identification
of a set of potential corridors for rapid transit. These corridors are evaluated accordingly
to a wealth of hierarchical factors by the decision taker. At a further stage the corridors
are ordered accordingly to these factors and those selected are merged making up differ-
ent network configuration which give rise to distinct scenarios. For on-line planning of
transit lines the initial point is the analysis of traffic not taking into account congestion
or everyday incidences that may occur, either planned or unexpected. Formal repre-
sentation of the multimodal transportation problem is based in the concept of elastic
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demand simultaneously applied to the intervening transport modes. It is a key hypothe-
sis in these models that solutions verify a wardropian equilibrium that can be interpreted
economically as an equilibrium between offer and demand. Another kind of mass trans-
portation systems are public transportation systems on demand. These systems were
introduced in the seventies in the United States under the name of ”dial-a-ride” systems
to incorporate within the existing urban public transport systems, an innovative service
that adapts the new demand of transportation. While in Europe, the first experiments
on transport demand systems, recognized as Demand Responsive Transport (DRT), did
not show up until the eighties, and they were designed primarily to the neediest social
groups: disabled and the old people. On the other hand, in case of malfunction of the
transportation system, transportation authorities and operators have as a common prac-
tice to create temporary services as a recourse in order to help to the already congested
transportation networks.

Setting properly the required services to attend transportation demand taking into
account available resources in urban public transportation networks is a key aspect in
order to keep their good performance as well as to ensure users confidence in public
transportation as a valid alternative.

Models for the overall design of transit networks or simply for some management
aspects of public transport lines which take into account demand in the design process,
have an intrinsic relationship with passenger transit assignment models. Such assignment
models can be classified in a first approach by two criterions: a) static or dynamic and b)
frequency based or time table based. Within the classical passenger transit assignment
models under the concept of strategy, the classical work in [15] must be cited. This initial
model is unable to take into account congestion in public transportation systems. It has
not been until very recently, that these strategy-based models have been able to reflect
how effective frequencies may be altered by congestion ([6], [1], [10]). Frequency setting
models have been formulated using transit assignment schemas based on strategies and
time table based. Using a strategy based assignment model under a static approach,
the works in [7] and in [13] must be taken into account. For the case of lines under
strict time table, assignment models that must be cited are those implemented in the
commercial package EMME and others very recently developed such as those in [9]
and in [14]. In this paper two service setting models in [3] and in [4] are described
which are able to reflect the effects of congestion under a static approach for public
transportation lines intended for emergency situations or for supporting special events.
In these two models the underlying passenger assignment schema is a non-strategy based
user optimum and a congested shortest route choice, respectively. Also the formulation in
variational inequalities in [2] for the congested transit assignment model in [6] is briefly
described and some numerical results are presented for a variant of the model with sharp
capacity constraints.

This document summarizes two main areas of models that are related intrinsically
to the above described problems. After providing a common notation in section 1, in
section 2 pure frequency setting models are described under two approaches: a) user-
equilibrium and b) system equilibrium behavior of passengers. On both cases the effect
of congestion on public transport lines is taken into account by means of the decrease
of effective frequencies experimented by passengers. In the models presented in section
2, the assignment of passengers is not carried out following the concept os strategies
already mentioned in this introduction. In section 4 the congested transit assignment in
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[1] is summarized by using its formulation in variational inequalities as shown in [2] and
the extension developed during this project to the case of elastic demand is described.
Illustrative computational tests are shown for each of the two sections 2 and 4.

1 Notation and network model

In this section a unified notation is presented for all the models under discussion. The
transit network is represented by means of a directed graph G = (N, A), where N is the
set of nodes and A is the set of links. The number of trips from i to d will be denoted
by gd

i . By C ⊂ N it will be denoted the subset of nodes representing centroids or trip
attraction/generation points. By W = { (i, d) ∈ C ×C | gd

i > 0 } it is denoted the set of
active origin-destination pairs ω = (i, d) on the network. The set of destinations in the
network shall be denoted by D = { d ∈ C | ∃(i, d) ∈ W } and the set of origin nodes for
a fixed destination d ∈ D shall be denoted by O(d) = { i ∈ C | (i, d) ∈ W }. For a node
i ∈ N , the set of emerging links will be denoted by E(i) and the set of incoming links
by I(i). The representation of transit lines will be in form of an expanded network, as
in [15] (see figure 1 below).
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Figure 1. The transit expanded network assumed in the model.

By vd
a it will be denoted the flow at link a ∈ A with destination d ∈ D. Then the

following notation will be used for the various types of vector flows and origin-destination
volumes:

• vd
i = (..., vd

a, ...; a ∈ E(i)) ∈ IR|E(i)|
+ , i ∈ N , d ∈ D is the vector of flows with

destination d at emerging links of node i.
• vd

i =
∑

a∈E(i) vd
a is the total inflow through node i ∈ N with destination d ∈ D.

• vd = (..., vd
i , ...; i ∈ N) ∈ IR|A|+ , d ∈ D. v = (..., vd, ...; d ∈ D) ∈ IR|A| |D|+ .

• v =
∑

d∈D vd ∈ IR|A|+ . Vector of total flows on links and va =
∑

d∈D vd
a, a ∈ A.

• gd = (..., gd
i , ...; i ∈ O(d)) ∈ IR|O(d)|

+ , d ∈ D. g = (..., gd, ...; d ∈ D) ∈ IR|W |
+ .
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The feasibility set for the congested transit equilibrium problem can be formulated
as V =

⊗
d∈D Vd, being each set Vd defined as:

(1)

Vd ∆=



vd ∈ IR|A|+

∣∣∣∣∣∣
∑

a∈E(i)

vd
a −

∑

a∈I(i)

vd
a = gd

i i ∈ Nd,
∑

a∈I(d)

vd
a =

∑

i∈O(d)

gd
i , vd

a = 0, ∀a ∈ E(d)





The polyhedron of total link flows v is V = { v ∈ IR|A|+ | v =
∑

d∈Dvd, vd ∈ Vd }. Be-
cause of the finite capacity of vehicles, boarding of passengers may not happen at the first
arriving vehicle seen by the passenger. Mean waiting times for a boarding, or inverse of ef-
fective frequencies, shall be denoted by σa(·) = 1/fa(·). Travel times on links are given by
functions ta(v), a ∈ A which are finite on V. The subset of nodes for which emerging links
exist with a finite efff on V will be denoted by N̂ = { i ∈ N | ∃a ∈ E(i), fa(·) < +∞ }.
The sets N̂d = N̂ \ {d}, d ∈ D and Â = { a ∈ A | ∃i ∈ N̂ , a ∈ Ê(i) } will be also
used. For nodes i ∈ N , the subset of emerging links with finite effective frequency will be
denoted by Ê(i). Line segments as well as pedestrian, transfer and non transit facilities
shall be represented by links a ∈ A with either constant or flow dependent travel time
functions ta(·) and infinite frequencies, fa = +∞. This apply also for links a ∈ I(i) ,
i ∈ N̂ , representing alighting at stops.

2 Frequency setting models

2.1 A user equilibrium based service setting model

The first model by Codina and Maŕın [3], [model SUE] below, is oriented to set the
number of services when passengers have a behavior characterized by two facts: a)
no recommendation or regulation is made on the assignment from passengers to lines
b) at each stop they choose a transit line accordingly to a route from their origin to
their destination that they consider as optimal. The design model can be stated as a
bilevel programming in which the lower level is an asymmetric traffic assignment problem.
Asymmetries in costs come from the fact that passenger delays at stations waiting for a
bus line to arrive depend not only on passenger’s flow arriving at the station to board
on that line but also on the unit’s occupancy of that line arriving at the station. The
upper level objective function is composed by two terms. The first one evaluates the
operational costs of assigning units to a line plus the operational costs of bus services.
The second cost is proportional to the total time spent by all passengers. The coefficient
θ can be considered as the social cost of time.

In the formulation of [model SUE] below, S∗(z) is the solution set of an asymmetric
traffic model that can be stated as a variational inequality (V.I.): Find v∗ ∈ V so that
T (v, z)>(v − v∗) ≥ 0, ∀ v ∈ V. This V.I., which makes up the lower level problem, is
parametrized by the number of services z` assigned at each bus line ` ∈ L. The number
of services plays the role of a parameter for the links in the expanded network modeling
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passenger flows on line `.

(2)

[Model SUE] Minn,z,v

∑

`∈L

(ς`n` + γ`z`) + θ v>T (v, z)

s.t. v ∈ S∗(z)

A0-1
∑

`∈L n` ≤ p, n` ≥ 0, n` ∈ Z, ` ∈ L

A0-2 H`n` ≥ z`C`(v, z), ` ∈ L

A0-3 0 ≤ z` ≤ λ`f̂ ·H, z` ∈ Z, λ` ∈ {0, 1}, ` ∈ L

A0-4 z` ≥ λ` H

hmax
, ` ∈ L

2.2 A non-linear congested shortest path based service setting model

For the case of special services set in order to alleviate disruptions, it is difficult to impose
to the passengers of a given o-d pair a splitting amongst several routes as a policy oriented
to follow a system-optimum behavior. Instead it is easier to recommend a single route
to be followed by all passengers of a given o-d pair. The recommended route should be
optimal and should take into account congestion effects. Because of congestion, non-
linearities appear and the model is similar to a non-linear shortest path choice problem
and the objective function of the design model might minimize total costs. For this case,
[Model SS] below was developed by Codina et al. in [4].
(3)

[Model SS] Min n, z, v,
τ, λ

∑

`∈L

(ς`n` + γ`z`) + θ
∑

a∈A

vaTa(v, z) + θ
∑

`∈L

∑

b∈Π`

ζa(`,b)(v, z)

s.t. constraints A0 as in [model SUE]

B0-1 v ∈ V
R0-1

∑

a∈Ê(i)

τω
a ≤ 1, τω

a ∈ {0, 1}, a ∈ Ê(i), i ∈ N, ω ∈ W

R0-2 vω
a ≤ Mτω

a , a ∈ A \AG, ω ∈ W

Qb0
∑

`∈Lb
z` ≤ Ẑb(v, z), b ∈ N̂G

a = a(`, b), b ∈ Π`, ` ∈ L in Qp-1, Qp-2:

Qp0-1 va + vx(a) ≤ cz`

Qp0-2
∑

`∈Lb

ζa(v, z) ≤ H

ηb
N̂pax

b

It consists of the minimization of total costs, as in previous [Model SUE], but being
these expressed conveniently in order to handle bulk service type queueing models for
passengers at stations. The first term includes operational costs for setting and operation
of services and the second plus the third one are in total the total travel time. The third
term is made up by functions ζ for modeling queueing time of passengers at stations,
whereas the second term includes times at links of the expanded network excluding
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queueing of passengers at stations. Routing considerations appear reflected in constraints
R0-1, R0-2 of the formulation, where binary decision variables τω

a indicate, upon solving
the problem, which of the boarding links in the expanded network, outgoing from a
station, must be chosen by passengers with origin-destination pair ω. The model also
includes constraints (Qb0) in order to reflect stations capacity in terms of maximum
number of incoming buses per hour that the facility is able to admit taking into account
the spillback of buses queueing for boarding/alighting operations and also, the maximum
number of passengers that can be standing at a station, queueing for boarding (constraint
Qp0-2). Constraints Qp0-1 impose a limitation in the boarding flow va at a boarding
link a in a station b accordingly to the number of services z` of line ` to which the link
belongs, the bus capacity c and the average number of passengers vx(a) on buses of line
line ` arriving at station b.

[Model SS] is of the nonlinear mixed integer type and several optimization techniques
are currently on essay in order to solve it. Function ζ has been determined using simula-
tions with bulk-service queues and a convex piecewise approximation has been developed,
resulting into an approximate model. A heuristic technique for obtaining suboptimal so-
lutions has been developed showing very a good computational performance. It consists
of freezing values of non-linear functions appearing in [Model SS] based on flows v and
number of services z at previous iteration. In this way a mixed integer linear program-
ming problem appears at each iteration which can be solved efficiently using CPLEX for
medium size networks.

Heuristic algorithm for Model SS
(0) (a) Determine initially suitable values for the number of services

and an initial value for the uncongested waiting time per
passenger and service at a station, P̄

(0
a . Set also temptative

line cycle lengths C̄
(0
` for each line ; set also default bus

service time at stations, κ
(0
b , and temptative initial values

for bus waiting times at stations w
0,(0
qb , b ∈ NG, so that an

initial value for the maximum number of services allowable
at a station, Z̄

(0
b can be evaluated using function Z̃b(·, ·), i.e.

Z̄
(0
b = Z̃b(κ

(0
b , w

0,(0
qb ). Also, determine suitable link travel

times T̄
(0
a accordingly.

(b) Solve model M2 for parameters (T̄ (0, Z̄(0, P̄ (0, C̄(0) in order
to obtain flows and number of services (v(1, z(1). Set ν = 0

At iteration ν + 1:
(1) Obtain new values for packet service time κ

(ν+1
b , waiting time

of buses at stations, w
0,(ν+1
qb , and maximum number of services

allowed at each station Z̄
(ν+1
b by an MSA step, using αν = 1/(ν +

2):

(4)

κ
(ν+1
b = κ

(ν
b + αν

(
κb(v(ν+1, z(ν+1)− κ

(ν
b

)
,

w
0,(ν+1
qb = w

0,(ν
qb + αν

(
w0

qb(v
(ν+1, z(ν+1)− w

0,(ν
qb

)

Z̄
(ν+1
b = Z̄

(ν
b + αν

(
Z̃b(κ

(ν+1
b , w

0,(ν+1
qb )− Z̄

(ν
b

) b ∈ NG
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Update line cycles C
(ν+1
` = C`(v(ν+1, z(ν+1), ` ∈ L, uncongested

waiting time per passenger and per service at stations P̄
(ν+1
a =

Pa(z(ν+1) and link travel times T̄ (ν+1 as follows:

(5)



T̄
(ν+1
a = t0a + w1

b + κb,`(v(ν+1, z(ν+1) + w
0,(ν+1
q,b′ , if a = (j`(b), j′`(b

′)), ` ∈ L, b, b′ ∈ Π`

T̄
(ν+1
a = Ta(v(ν+1, z(ν+1) otherwise

(2) Solve approximate mixed linear integer model SS for parameters
T̄ (ν+1, Z̄(ν+1, P̄ (ν+1, C̄ν+1 and obtain flows v(ν+2 and number of
services z(ν+2. Let ν ← ν + 1 and return to step 1.

The algorithm stops when, at a predetermined number r of consecutive iterations, the
number of services assigned to bus lines do not change (zν+1 = ... = zν+r) and also, dur-
ing these r iterations, flows v and total delays ζ have little fluctuation (‖vν+s+1 − vν+s‖2 ≤
εv and ‖ζν+s+1 − ζν+s‖2 ≤ εζ , s = 1, 2, ..., r − 1).

3 Computational tests for frequency setting models

3.1 Tests for SUE models

[model SUE] was solved by means of the simulated annealing algorithm on the expanded
transit network of figure 4.1 and with a passenger’s demand given in table 4. Figure
2.1 shows the evolution of the objective function for 2000 iterations of S.A. algorithm
with low temperature. Execution time on a HP laptop with 2Gb took 1̃h15min for 2000
iterations problems. In the computational experiences, the V.I., once the number of
services were set, was solved using a diagonalization algorithm using a maximum of 500
iterations for each run of the diagonalization algorithm. A technique for reducing the
number of iterations of this algorithm was used resulting in 25% savings in CPU time. As
it can be seen from the figure, good objective function values for model SUE above were
reached at a much earlier iteration than the 2000-th one. Runs with high temperature
provided much worse computational results requiring almost all the 2000 iterations in
order to reach very similar objective function values.

Figure 2. Evolution of objective function in model SUE using the simulated
annealing algorithm.
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Figure 3. (Top) Schematic representation of Paseo de la Castellana’s
layout in Madrid where the bus-bridging system must operate with repre-
sentation of the four disrupted railway stations. (Bottom) Representation
of the subgraph (NG, AG) for movements of passengers outside the bus-
bridging lines. Bus stops at Recoletos and Nuevos Ministerios have been
mirrored on both sides of the Paseo de la Castellana. Disrupted railway
stations appear as nodes marked with a cross, which in this model are
considered also as possible bus stops.

3.2 Tests for the non-linear congested shortest path based model

In order to illustrate the model’s performance and the proposed heuristic method to solve
it, two test cases have been used.

The first one is a set of 20 candidate bus lines operating on 6 bus stops for a bridging
system to assist disruption of a railway’s corridor in Madrid, comprised by 4 railway
stations. The expanded bus network, as defined in section 1, consists of 118 nodes and
240 links, 4 centroids which correspond with the physical location of disrupted railway
stations and 12 origin-destination pairs. The origin destination trip table, with more than
37000 passengers in a three hours peak period, for Madrid’s corridor appears in table 4
and was provided by railway authorities. The second test network is a set of 48 candidate
bus lines operating on 17 bus stops for a bus-bridging system assisting a disruption of
the line 1 metro’s network in Barcelona (from stations Plaça d’Espanya to Clot). Figure
4 shows a schematic representation of the streets where the bus-bridging system must
operate and on which the expanded bus network can be defined. This expanded bus
network consists 310 nodes and 640 links, 10 centroids (corresponding to the disrupted
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Figure 4. (Top) Schematic representation of main arterials in Barcelona
where the bus-bridging system must operate for a disruption of metro line
1. (Bottom) Representation of the subgraph (NG, AG) for movements of
passengers outside the bus-bridging lines. Excluding Plaça d’Espanya
and Clot all other bus stations have been mirrored on both sides of the
arterials. Disrupted metro stations appear as nodes marked with a cross.

metro stations) and 88 origin-destination pairs. The origin destination trip table for
Barcelona’s line 1 has been estimated with a total of 37.992 trips also during a period of
three hours. Figures 3 and 4 show on the upper side a schema of the streets on which
the bus-bridging systems will operate in both test cases. Figure 3 depicts a schematic
representation of Paseo de la Castellana’s layout in Madrid, where the bus-bridging
system is intended to operate and figure 4 shows a schema of main arterials where the
bus-bridging system may operate in Barcelona (Gran Via de les Corts Catalanes, Av.
Meridiana, as well as some minor streets). Both expanded bus networks, contain a set of
links AG for movements of passengers carried out outside the bus network (access from
disrupted stations to bus-stops, transfers between bus lines, portions of the trip carried
out by foot). This set of links AG appear depicted at the bottom in figures 3 and 4.
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In both cases, because of the linear structure of the disrupted transportation network,
the set of candidate lines that was considered for inclusion in the bus-bridging system
was comprised by bus lines which can be classified under different topologies. On the
one hand one may consider bus lines with only two terminal bus stops and bus lines with
more than two bus stops. On the other hand one may consider lines as symmetric or
asymmetric. Symmetric lines visit the same stops in both directions, whereas asymmetric
lines may skip some or all of the stops (excluding terminals) in one of the directions.
Figure 5 shows these types of lines using links a /∈ AG of the transit expanded network.
Figure 5(a) shows an example of a symmetric line defined on a bidirectional arterial
visiting stops T1 P1, T2, P1’ and again T1, being stop P1’ the mirror of stop P1 located
on the other side of the arterial more or less in front of stop P1. Physically, passengers
need to cross the arterial if they want to go from stop P1 to stop P1’ by means of links
which are not represented in figure 5. Terminal stops T1 and T2 will be located also on
a given side of the arterial. Terminal bus stops are not mirrored in the lines considered
for the two test cases. Examples of asymmetrical lines are also given in figure 5(b) and
(c). Another class of asymmetrical bus lines also considered in the bus-bridging systems
of the two test cases, are those which terminal bus stops are only for boarding or for
alighting, i.e. no passengers are transported on unit’s return to the starting terminal.
Taking into account the previous types of bus lines, 20 of them where selected for the
Madrid’s test case and 48 the Barcelona’s test case. In both test networks, bus units
with a capacity for 100 passengers has been assumed. In both cases the time period
under consideration has been a morning peak period of H = 180 minutes.

The runs shown in this section for both test cases assume that exploitation and
setting costs of the bus-bridging system are nearly zero, so actually the objective under
minimization is the total travel time of passengers.

Table 1. O-D Trip matrix (station-to-station) during period H = 180
minutes for Madrid’s railway corridor. Last row and column are average
rates for arrivals and departures per minute at stations.

At Re NM Ch Total Or. pax/min
At 0 2.011 22.097 368 24.476 135, 98
Re 170 0 3.066 230 3.466 19, 25

NM 4.386 150 0 170 4.706 26, 14
Ch 2.504 150 2.438 0 5.092 28, 28

Total Dest. 7.060 2.311 27.601 768 37.740 −
pax/min 39, 22 12, 84 153, 34 4, 26 − −

The following tables 2 and 3 show the main results. The heuristic algorithm has
been implemented in AMPL, using CPLEX 11.0 as solver. Runs shown in the previously
mentioned tables have been performed on a laptop 1.2GHz, 2Gb RAM. In order to
see how the increase in the level of demand congests the bus network and affects the
performance of the heuristic algorithm, several runs have been performed taking the
original origin-destination trip matrix shown in table 4, with each cell multiplied by a
common factor η. Thus η = 1, 3 implies that all cells of the matrix have been increased by
30% and η = 1 implies that the original trip table is being used. Column Dem shows the
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(a) (b)

(c) (d)

(e)

Figure 5. Lines with more than two stops. (a) symmetric lines, (b)
asymmetric lines for one direction loading passengers on the return, (c)
asymmetric lines for the opposite direction loading passengers on the re-
turn, (d) asymmetric lines on one direction without loading passengers
at the return and (e) asymmetric lines on the opposite direction without
loading passengers at the return.

total resulting trips. Column UnCov reports the percentage of the trips that have not used
at all the auxiliary bus system. Column Tcpu reports the total number of elapsed seconds
for the run and column #iter the total number of iterations required by the heuristic
algorithm described in section 2.2 to converge. Column AvT reports the average trip time
in minutes for the mass of passengers and column v̄ reports their average speed. This
speed is calculated as the total time required to go from origin to destination divided
by the shortest distance that travelers would use by walking. Column %Walk reports
the percentage of the total time used by passengers for reaching their corresponding bus
stops, transfers between bus stops or simply because their journey is made completely by
walking from origin to destination due to congestion of the lines that the model assigns
a positive number of services. Finally, columns f∗ and f0 report final objective function
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values reached by the heuristic and initial objective function value at starting solution
respectively.

In both tables runs marked with ’a’ correspond to solutions of the model M0 where a
single route is imposed to passengers of a given origin destination pair on the expanded
transit network, as stated in constraints R0-1 and R0-2. Results show that, as the
level of demand increases these routes become more and more congested, making that
for the total number of trips of a given origin destination pair travel by walking may
become attractive. This happens specially with those origin destination pairs with a
large number of trips. For runs marked with ’b’, passengers of a given origin destination
pair may ride a bus at different bus stops, but at any bus stop that they reach they wait
for a determined bus line without following a behavior based on strategies. In this last
case the performance of the bus-bridging system is slightly enhanced.

The model is able to detect bottlenecks of the system, which in all of the runs shown
appear in the capacity of bus stops for allocating bus queues, which impose by means
of constraints Qb0 in model M0, a limitation in the input flow of buses that the bus
stop may admit. It must be also remarked that bus service time has not appeared as a
limitation for the input flow of buses that a bus stop may admit. In all runs, the number
of passengers that a bus station may allocate queuing for his/her bus to arrive has shown
to be sufficient.

In the auxiliary bus system for Barcelona’s metro (line 1), runs 3 and 6 (table 2)
performed with and extra 30% of demand and bus stops at Plaça d’Espanya (PE) and
Arc de Triomf (AT1) were at capacity. By increasing the space allowed for buses to
queue at these stop (2 extra buses were allowed to queue), run 7, marked with ’c’ shows
that the performance of the whole system is enhanced. It must be noticed that the level
of congestion has a serious impact on the performance of the heuristic algorithm on this
test case.

In the auxiliary bus system for Madrid’s corridor, forcing a unique route for all
passengers of an origin destination pair or allowing them to choose more than one bus
stop affects the performance of the solutions, because of the big flow Atocha (At) to
Nuevos Ministerios (NM) which can not be allocated by a single bus line during the
period of 3 hours for η = 1, 0 and η = 1, 3.

4 Congested transit assignment models

Strategy based transit assignment models used in modeling passenger flows in regular
lines of urban public transportation do not reflect congestion effects until very recently.
Because of that frequency setting or service setting models which take into account
congestion when passengers follow strategies have not yet been developed. A classical
uncongested model is that of Spiess [15], which can be formulated as the following linear
program:

(6) [PL](r, t)

Min v, w

∑

d∈D

∑

a∈A

tav
d
a +

∑

d∈D

∑

i∈N̂d

wd
i

s.t : vd
a ≤ raw

d
i , | θd

a, a ∈ Ê(i), i ∈ N̂ , d ∈ D

v ∈ V
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Table 2. Results for the auxiliary bus system for Barcelona’s metro line
1 (a) when all passengers for an O-D pair are forced to follow a single route
(b) when passengers of an O-D pair are allowed to board on the auxiliary
system at different bus stops, riding there at a unique recommended bus
line

# η Dem. UnCov. Tcpu #iter AvT %Walk v̄ f∗ f (0

trips (s) (min) (km/h) ($) ($)
1 a 0, 5 18.996 29% 929 140 27 56% 6, 9 41.552 74.213
2 a 1, 0 37.992 52% 1.958 151 34, 9 76% 5, 5 107.290 135.380
3 a 1, 3 49.130 67% 3.366 251 37, 3 83, 4% 5, 1 149.190 175.230
4 b 0, 5 18.996 22, 7% 797 150 27 56, 2% 6, 9 41.546 74.213
5 b 1, 0 37.992 46, 5% 1.144 180 34, 8 73, 4% 5, 4 106.840 135.380
6 b 1, 3 49.130 65% 681 140 37, 1 82, 4% 5, 1 148.420 180.280
7 c 1, 3 49.130 51, 5% 183 31 35, 2 76, 5% 7, 2 140.880 180.680

Table 3. Results for the auxiliary bus system for Madrid’s railway cor-
ridor (a) when all passengers for an O-D pair are forced to follow a single
route (b) when passengers of an O-D pair are allowed to board on the aux-
iliary system at different bus stops, riding there at a unique recommended
bus line

# η Dem. UnCov. Tcpu #iter AvT %Walk v̄ f∗ f (0

trips (s) (min) (km/h) ($) ($)
1 a 0, 5 18.870 14, 3% ∼ 6, 8 51 25, 3 40% 12 38.741 70.521
2 a 1, 0 37.740 72, 8% ∼ 8, 5 37 54, 3 92, 1% 7, 1 181.140 181.230
3 a 1, 3 49.062 72, 8% ∼ 8, 6 42 59, 5 91, 8% 5, 5 236.270 238.250
1 b 0, 5 18.870 14, 3% ∼ 5, 5 14 25 40% 12 38.741 70.521
2 b 1, 0 37.740 14, 3% ∼ 9 21 41, 7 63, 8% 7, 8 127.350 168.520
3 b 1, 3 49.062 14, 3% ∼ 9, 5 23 46, 3 71, 7% 5, 5 184.170 239.360

Based on the results of Cominetti and Correa in [6], Cepeda et al. in [1] prove that
their strategy based congested network equilibrium transit notion is equivalent to the
minimization of the following nonconvex, nondifferentiable gap function G̃CCF(v)

(7) G̃CCF(v) =
∑

d∈D


∑

a∈A

vd
ata(v) +

∑

i∈Nd

Max
a ∈ E(i)

{
vd
a

fa(v)

}
−

∑

i∈Nd

gd
i τ̃d

i (v)




over the feasible set of destination flow vectors V, i.e. solutions of the congested transit
equilibrium model are also global minima of the problem Minv∈V G̃CCF(v). In [2] it is
proved that solving this problem is equivalent to the following variational inequality
(VI):
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(8) (VI)




Find (v, ζ) ∈ V × S so that, ∀ (u, z) ∈ V × S:

∑

d∈D

∑

i∈Nd


 ∑

a∈E(i)

( ta(v) + sa(v)ζd
a )(ud

a − vd
a)− yd

a(v)(zd
a − ζd

a)


 ≥ 0




where yd
a(v) = sa(v)vd

a, a ∈ A and functions sa(v) are defined as sa(v) = σa(v),
if a ∈ Ê(i) and sa(v) ≡ 0, if a ∈ E(i) \ Ê(i). S =

⊗
d∈D

⊗
i∈N̂d

Sd
i and Sd

i ={
α ∈ <|Ê(i)|

+ | ∑
a∈Ê(i) αa = 1

}
associated to node i ∈ N̂ . In [2] previous results are

also extended to the case of sharp capacity constraints on bus lines either explicitly or
implicitly imposed by effective frequency functions σa(v) and the MSA algorithm devel-
oped for the congested strategy based transit assignment problem in [1] can be easily
adapted for this case. Next subsection shows some computational results for this case.

4.1 Some computational results for the capacitated transit assignment
problem

The transit network for this example is made up of eight transit lines and its expanded
transit network is shown in figure 4.1. Effective frequency functions for boarding links are
of the type fa(v) = 0.2(1−ρ2

a(v)) and ρa(v) = va/(c−vm(a)). Capacity c at boarding links
is 9600 passengers for a period of 3 hours. Link travel times are given in [2]. Boarding
links (i, j) are those whose i-node is either 1, 2, 3 or 4. Demands in passengers for a 3
hours period are shown in table 4 below. This matrix has been uniformly augmented by
a factor τ in order to conduct computational experiments

1 2 3 4 Total Or. pax/min
1 0 2011 22097 368 24476 135.98
2 170 0 3066 230 3466 19.25
3 4386 150 0 170 4706 26.14
3 2504 150 2438 0 5092 28.28

Total Dest. 7060 2311 27601 768 37740 −
pax/min 39.22 12.84 153.34 4.26 − −

Table 4. O-D Trip table for a period of 180 minutes. Last row and
column are average arrival and departure rates of passengers at bus stops.

For this test network, the MSA algorithm in [1] with implicit capacity constraints
behaves well for τ = 1.0, 1.2. For τ = 1.3, iterates violating capacity constraints appear
during the run of the algorithm, although it finally converges to the solution. For τ =
1.6, 2.0 and larger values, it shows unstable behaviour because capacity infeasible iterates
appear too often. Results comparing algorithm in [1] (implicit capacity constraints) and
the algorithm using explicit capacity constraints are shown in table 5. Also the self-
regulated MSA step in [11] has been used for this example with τ = 2 for the MSA
algorithm in [1] and for the algorithm using explicit capacities.
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 1  2  3  4 

Figure 6. Expanded network model for the example.

τ #iter lowest ǧA ǧB lowest ǧB
1.6 1000 − 8.85E-04 8.36E-05
1.6 4000 0.011 − −
1.6 50000 − 2.43E-04 −
2.0 4000 0.008 0.0233 1.95E-05
2.0 50000 1.95E-03 8.30E-04 7.68E-04
2.0 50000(∗) 1.25E-03 2.15E-05 1.91E-05

Table 5. Comparison between algorithm with (B) and without (A)
explicit capacity constraints. ǧ = relative gap. (*) use of self-regulated
MSA step in [11].

5 Approximating models with constant frequencies

Let us consider

(9) wd
i (v

d
i ) = Max

a ∈ Ê(i)

{
vd
a

fa(v)

}
, i ∈ N̂d, d ∈ D

When frequencies fa(·) = ra, a ∈ Ê(i), i ∈ N̂ are flow independent and constant and
travel costs ta(v) at links a ∈ A have a diagonal and positive semi-definite jacobian , or
equivalently ta(v) = ta(va), it will be shown that models developed in Spiess (1984) and
in Spiess and Florian (1989) are reproduced. If frequencies are constant, then xd

i (v
d
i ) =

(..., vd
a/ra, ...; a ∈ Ê(i)) and the subgradient of wd

i are:

(10)

∂wd
i (v

d
i ) =



 (..., ζd

a/ra, ...; a ∈ Ê(i) ) ∈ IR|Ê(i)| |
∑

a∈Êd∗(i,v)

ζd
a = 1, ζd

a = 0, a /∈ Êd
∗(i, v)




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V.I. (VIcond) (8) can be also stated as:

(11) v ∈ V

(12) ta(va) + (∂wd
i (v

d
i ))a = λd

i − λd
j + ξd

a, d ∈ D, i ∈ N̂d, a = (i, j) ∈ Ê(i),

(13) ta(va) = λd
i − λd

j + ξd
a, d ∈ D, i ∈ N̂d, a = (i, j) ∈ E(i) \ Ê(i),

(14) vd
a ≥ 0, ξd

a ≥ 0, vd
a ξd

a = 0,

which are, in fact, first order conditions of the following optimization problem for the
semicongested transit assignment problem in Spiess and Florian (1989):

(15)

Min v, w

∑

a∈A

∫ va

0
ta(α) dα +

∑

d∈D

∑

i∈N̂

wd
i

s.t : va =
∑

d∈D

vd
a, a ∈ A

vd
a ≤ raw

d
i , a ∈ Ê(i), i ∈ N̂ , d ∈ D

v ∈ V

Finally problem (15) reduces to the transit assignment model in Spiess (1984) for ta(va) =
ta = ctant which will be designated by [PL](r, t):

(16) [PL](r, t)

Min v, w

∑

d∈D

∑

a∈A

tav
d
a +

∑

d∈D

∑

i∈N̂

wd
i

s.t : vd
a ≤ raw

d
i , a ∈ Ê(i), i ∈ N̂ , d ∈ D

v ∈ V

Proposition 5.1 Assume now that ta > 0, ∀a ∈ A in problem (16). Let v∗ =
(..., v∗,d, ...; d ∈ D) be a per destination flow vector, solution of problem (16). Then,
each of the vectors v∗,d can be expressed as a convex combination of vertexes v̂d

ν ∈ V,
so that for each of them there exists a collection of reverse trees of acyclic paths on the
expanded network with common destination (root) d. If by Wd it is denoted the subset of
O-D pairs with common destination d ∈ D, then by loading a path tree with O-D flows
gω, ω ∈ Wd, a vertex v̂d

ν in the collection of vertexes for destination d ∈ D is obtained.

Proof: Problem (16) can be rewritten as:

(17) Min w≥0 U(w) +
∑

d∈D

∑

i∈N̂

wd
i

where function U(w) is defined for w ≥ 0 as:

(18)

U(w) ∆= Min v

∑

d∈D

∑

a∈A

tav
d
a

s.t : vd
a ≤ raw

d
i , a ∈ Ê(i), i ∈ N̂ , d ∈ D

v ∈ V
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By lagrangian duality, for any w ≥ 0, there exists γd
i ≥ 0 so that solutions of previous

problem (18) are also solutions of

(19) Min v∈V

∑

d∈D

∑

a∈A

tav
d
a −

∑

d∈D

∑

i∈N̂

γd
i (raw

d
i − vd

a)

and that there is null duality gap. Now it suffices to note that previous problem (19) has
the structure of a separable multidestination flow problem with positive arc costs, where
each of the subproblems per destination d ∈ D has as optimal basis those corresponding
with reverse shortest path trees rooted at destination d ∈ D. ¤

Let now consider Γω, the set of acyclic paths joining O-D pair ω ∈ W on the expanded
transit network and let Hω the polytope of path flows for acyclic paths joining O-D pair
ω ∈ W :

(20) Hω
∆=

{
h ∈ IR|Γω |

+

∣∣∣∣∣
∑

r∈Γω

hω
r = gω

}

Correspondingly let Hd, d ∈ D and H be defined as:

(21) Hd
∆=

⊗

ω∈Wd

Hω, d ∈ D

(22) H
∆=

⊗

ω∈W

Hω

The following corollary is a straightforward consequence of previous proposition 5.1.

Corollary 5.2 Let v∗ = (..., vd,∗, ...; d ∈ D) be a per-destination flow vector, solution of
problem (16) and let Wd be the set of O-D pairs with destination d ∈ D. Then each of the
vectors vd,∗ can be decomposed in terms of flows hd ∈ Hd on acyclic paths (generally non
unique decompostion). In other words, if ∆d = (δr

a) is a link-path incidence matrix for
paths with common destination d ∈ D on the expanded transit network, then ∃hd,∗ ∈ Hd

so that vd,∗ = ∆dhd,∗, or explicitly

(23) vd,∗
a =

∑

ω∈Wd

∑

r∈Γω

δr
ah

ω,∗
r , a ∈ A, d ∈ D

Corollary 5.3 Consider now a solution v∗ ∈ V∗ of variational inequality (VI) (8).
Then results in corollary 5.2 also hold for such v∗ ∈ V∗.

Proof: It is clear that, as link flows v∗ are a solution of PL[f(v∗), t(v∗)] and the
following equivalence must hold:

(24) v∗ ∈ Sol( [PL](f(v∗), t(v∗) )) ⇔ GCCF(v∗) = 0

being v∗ =
∑

d∈D vd,∗ the total link flows as usual. This equivalence implies that previous
corollary 5.2 must also hold for any v∗ ∈ V∗. ¤
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5.1 A smoothing approximation to C3F transit equilibrium model

A natural approximation for functions wd
i (·) is by replacing them by the smoothing

approximations φ(x, t). The relevant properties of these functions are summarized in
Appendix 7. In the context of this paper, let ψd

i (xd
i (v), z) be defined for some parameter

z > 0 at node i ∈ N̂d and destination d ∈ D as:

(25) ψd
i (xd

i (v), z) =
1
z

log


 ∑

a∈Ê(i)

exp (z vd
aσa(v) )




Now, variables ζd
a in (8) can be approximated by

(26) ζd
a ≈ ζ̄d

a = (∇xψd
i (xd

i (v), z) )a =
exp(z vd

aσa(v))∑
a′∈Ê(i) exp(z vd

a′σa′(v))
, a ∈ Ê(i), i ∈ N̂

Let T̃d(v, z) = (...Ψ̃d
a(v, z)...; a ∈ A) where Ψ̃d

a are defined as

(27) Ψ̃d
a(v, z) =

{
ta(v) + σa(v)(∇xψ

d
i (xd

i (v), z) )a, a ∈ Ê(i)
ta(v) a ∈ E(i) \ Ê(i)

d ∈ D, i ∈ Nd

By means of the smoothing functions ψd
i , the variational inequality (VI) in (8) can

be approximated by the following one

(28) (VIaprox)
0 ∈ T̃d(v, z) + NVd(vd), d ∈ D

vd ∈ Vd, d ∈ D

When z →∞ solutions v∗z of previous V.I. (28) lie in V∗, the solution set of (VI) in
(8).

5.2 Properties of the smoothing approximation with constant frequen-
cies

From previous conditions (11) to (14) it is clear that model (15) can be rewritten as

(29)
Min v

∑

a∈A

∫ va(v)

0
ta(r)dr +

∑

d∈D

∑

i∈N̂

wd
i (v

d
i )

s.t : v ∈ V

where va(v) =
∑

d∈D vd
a and functions wd

i (·) are defined with constant frequencies fa(v) =
fa. The objective function of previous program (29) is convex but non-differentiable. If,
for the case of constant frequencies, we define

(30) ψ̄d
i (vd

i , z, ri) =
1
z

log


 ∑

a∈Ê(i)

exp
(

z
vd
a

ra

)
 , i ∈ N̂ , d ∈ D

then a smooth approximation for problem (29) using functions ψ̄d
i (xd

i (v), z) results in
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(31)
Min v

∑

a∈A

∫ va(v)

0
ta(r)dr +

∑

d∈D

∑

i∈N̂

ψ̄d
i (vd

i , z, ri)

s.t : v ∈ V

where by ri = ( ..., ra, ...; a ∈ Ê(i) ) it is denoted a vector of constant frequencies at node
i ∈ N̂ .

Lemma 5.4 Assume that boarding links a ∈ Ê(i) at stops i ∈ N̂ have constant boarding
times, ta = ctant. Then solutions v∗ ∈ V∗ of model (31) are such that per-destination
flows at boarding links are unique, i.e. (vd,∗

i )a = {vd,∗
a } d ∈ D, i ∈ N̂d, a ∈ Ê(i).

Proof: Because objective function of program (31) is convex and differentiable for z > 0,
its gradient must be constant on the relative interior of the solution set (see, Mangasarian
(1988), lemma 1.a) and the set of equations

(32) ta +σa(∇xψ
d
i (xd

i (v), z))a = (ctant)a,d , ∀ vd
i ∈ (intV∗)i,d, d ∈ D, i ∈ N̂d, a ∈ Ê(i)

define unique per-destination flows vd,∗
a at boarding links a ∈ Ê(i) of stops i ∈ N̂ as ψd

i
is a strictly convex function ¤

Uniqueness of solutions in total flows on the remaining links depend on characteristics
of the travel time functions ta of that links. Assume now that the following representation
given in the left side of figure 7 below is adopted for the transit network. As per-
destination flows vd,∗

a are uniquely defined by problem (31), then it will suffice to consider
the original transit network on which boarding links have been suppressed and flows vd,∗

a

are injected on the boarding node of the corresponding transit line as shown in the right
side of the following figure 7.
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(a) (b) 

Figure 7. (a) A convenient representation of the transit network and
(b) an equivalent network after freezing boarding flows at a solution of
model (31)
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Formally consider now a traffic assignment network model G = (N, A) based on the
structure of the expanded transit network G = (N,A), with the following set of origin-
destination pairs W and with the following origin-destination trip matrix g, being all
them defined as follows

(33) A = A \

 ⋃

i∈N̂

Ê(i)


 ,

(34) W = W
⋃


 ⋃

d∈D


 ⋃

i∈N̂

{
(ja, d) | (i, ja) ∈ Ê(i)

}






(35) gd
p =





gd
i if (i, d) ∈ W & i /∈ N̂

gd
i −

∑
a∈Ê(i) vd,∗

a if (i, d) ∈ W & i ∈ N̂

vd,∗
a if p = ja, a = (i, ja) ∈ Ê(i), i ∈ N̂

(p, d) ∈ W

If Γω, ω = (p, d) ∈ W is the set of paths joining origin p with destination d, let H̃
denote the polyhedron of feasible path flows hr on paths r ∈ Γω

(36) H̃ =

{
hr ≥ 0 |

∑

r∈Γω

hr = gd
p, (p, d) ∈ W

}

and let Ṽ be the polyhedron of total flows on links

(37) Ṽ =





va, a ∈ A | va =
∑

ω∈W

∑

r ∈ Γω

r 3 a

hr





If travel time functions ta(·) are adopted for the links in A, with previous definitions
(33) to (37), the following fixed demand traffic assignment problem must be considered

(38)
Min v

∑

a∈A

∫ va(v)

0
ta(r)dr

s.t : v ∈ Ṽ

Assumption 5.5 Travel time functions ta(·) at links a ∈ A are such that the fixed
demand traffic assignment problem (38) has uniqueness of solutions in total link flows.

Sufficient conditions for uniqueness of solutions in total link flows in traffic assignment
problems can be found, for instance in Patriksson (1994), theorem 2.5, page 43.

Lemma 5.6 Assume, as in previous lemma 5.4, that boarding links a ∈ Ê(i) at stops
i ∈ N̂ have constant boarding times, ta = ctant and that link travel time functions ta(·)
for the remaining links verify previous assumption 5.5. Then total link flows v∗ ∈ V∗ of
model (31) are unique.
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Proof: Because of previous lemma 5.4, problem (31) has uniqueness of solutions in
per-destination flows at boarding links. The total flows at remaining links of the transit
network will be then given by solving previous fixed demand traffic assignment problem
(38). As a result problem (31) has uniqueness of solutions in total link flows. ¤

5.3 Elastic demand formulations from hierarchical logit models

Assume a transportation network composed by a set NT of transportation modes and
that users choose them by means of their perception of its utility. Assume that the mean
utility of all modes but the one corresponding to transit are known and constant. Let ũω

p

the mean utility for transportation mode p ∈ NT for the origin-destination pair ω ∈ W
Let T = (NT , AT ) be a tree where each leaf node represents a pure mode and each

non leaf node represents a composed mode. If ET (p) denotes the emerging nodes of a
node p in the tree, then L

∆= { p ∈ NT | ET (p) = ∅ } be the set of leaf nodes and
C

∆= { p ∈ NT | ET (p) 6= ∅ } the set of non leaf nodes. Root node will be assigned label
R and node corresponding to transit mode will be denoted by the label B.

Assume that the total demand (all modes) is fixed and known and given by gω
R , ω ∈

W . Let nt = |NT |. and that node B is a pure transportation mode corresponding to a
leaf in the tree T .

For a mode corresponding to a node p ∈ NT and destination d ∈ D, let gd
p denote

the vector of o-d trip flows, gd
p = ( ..., gω

p , ... ; ω = (i, d), i ∈ O(d) ) ∈ <|O(d)|. O-D trip
flows per mode gω

p , accordingly to the hierarchical tree T will be subject to the following
relationships

(39)
∑

p′∈ET (p)

gω
p′ = gω

p , | βω
p , ω ∈ W, p ∈ C

where βω
p are the corresponding dual variables. Consider also the vector gd = ( ..., gd

p, ...; p ∈
NT ) ∈ <|O(d)|+nt and the vector g = ( ..., gd, ...; d ∈ D ).

Let G be feasibility set for g which can be decomposed as G = ⊗d∈DGd, where each
of the Gd is defined as:

(40) Gd =
{

gd ∈ <|O(d)|+nt

+ | relationships (39) are verified
}

The set Ωd
G of feasible transit flows per destination on links and feasible trip o-d flows

per mode will be given now by
(41)

Ωd
G =



 (vd, gd) ∈ <|A|+|Nd|+nt

+

∣∣∣∣∣∣
gd ∈ Gd,

∑

a∈E(i)

vd
a −

∑

a∈I(i)

vd
a − gi,d

B = 0,

∑

a∈I(d)

vd
a −

∑

i∈O(d)

gi,d
B = 0, vd

a = 0, ∀a ∈ E(d), i ∈ Nd



 , d ∈ D

and ΩG = ⊗d∈DΩd
G. Consider now the function L(g) = (..., Lω

p (g), ...; ω ∈ W, p ∈ NT )
whose components Lω

p (g) are defined as:
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(42) Lω
p′(g) =





−ηp

ϑ
log

(
gω
p′

gω
p

)
+ ũω

p′ , if p′ ∈ L \ {B}

−ηp

ϑ
log

(
gω
p′

gω
p

)
, if p′ ∈ C ∪ {B}

, p′ ∈ ET (p), p ∈ C

where ηR
∆= 1.

If now Ld(g) = ( ..., Lω
p (g), ... ; ω = (i, d) ∈ W ), d ∈ D, the following V.I. (43)

defines an elastic transit assignment model where the elasticity is originated implicitly
by the hierarchical modal choice expressed by the tree structure T

(43) (VIcond−H)




Find (v, g, ζ) ∈ ΩG × S so that,

0 ∈
(

Td(v, ζd)

Ld(g)

)
+ NΩd

G
(vd, gd), d ∈ D

0 ∈ −xd
i (v) + NSd

i
(ζd

i ), d ∈ D, i ∈ N̂d




If we write out components of the previous V.I. in variational condition form corre-
sponding to variables gω

p

(44)

gω
p′ :





ηp

ϑ
log

(
gω
p′

gω
p

)
+ ũω

p′ = βω
p + µω

p′ , if p′ ∈ L \ B, {p} = IT (p′)

ηp

ϑ
log

(
gω
B

gω
p

)
= βω

p + µω
B − λd

i , if p′ = B, {p} = IT (B)

ηp

ϑ
log

(
gω
p′

gω
p

)
= βω

p + µω
p′ − βω

p′ , if p′ ∈ C, {p} = IT (p′)

,
p′ ∈ NT

ω ∈ W

Lemma 5.7 Solutions of V.I. (43) are such that g > 0 and reproduce a hierarchical logit
modal split model.

Proof: Consider p′ ∈ E(R), p 6= B, then because of (44)

(45) gω
p′ = exp (ϑ(βω

R + µω
p′ − ũω

p′))

Because a solution of V.I. (43) verifies Mangasarian-Fromovitz Constraint Quali-
fication (MFCQ) then the Kuhn-Tucker set is bounded (see, for instance Proposition
3.2.1, page 254 in [8]) and this implies that gω

p′ > 0 and consequently µω
p′ = 0. If

now ϑp
∆= ϑ/ηp, p ∈ C, then for p′ 6= B

(46) gω
p′ = exp (ϑp(βω

p − ũω
p′)), p′ ∈ L ∩ ET (p), ω ∈ W

(47) gω
p′ = exp (ϑp(βω

p − βω
p′)), p′ ∈ C ∩ ET (p), ω ∈ W

Because of (39) a log-sum relationship applies for node p ∈ C, such that B /∈ ET (p):

(48) exp (−ϑpβ
ω
p ) =

∑

p′∈C∩ET (p)

exp (−ϑpβ
ω
p′) +

∑

p′∈L∩ET (p)

exp (−ϑpũ
ω
p′)
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and for p ∈ C, B /∈ ET (p):

(49)
gω
p′

gω
p

=
exp (−ϑpβ

ω
p′)

exp (−ϑpβω
p )

=
exp (−ϑpβ

ω
p′)∑

p′∈C∩ET (p) exp (−ϑpβω
p′) +

∑
p′∈L∩ET (p) exp (−ϑpũω

p′)
,

whereas for node B, the corresponding term βω
B is the o-d travel time λd

i , ω = (i, d) ∈ W ,
as stated in (44)

(50)
gω
B

gω
p

=
exp (−ϑpβ

ω
B)

exp (−ϑpβω
p )

, {p} = IT (B) ¤

Lemma 5.8 The jacobian
(

∂Lω

∂gω

)
is positive definite.

Proof: Without loss of generality it will suffice to examine the example shown in figure
8 below:

 

R=(1,1) 

(2,1) (2,2) 

(3,1) (3,2) 

(4,1) (4,2) (4,3) (4,4) 

Figure 8. A sample hierarchical tree.

(51)
(

∂Lω

∂gω

)
=

1
ϑ




1
g2,1 0 0 0 0 0 0 0
0 1

g2,2 0 0 0 0 0 0

0 −η2,2

g2,2
η2,2

g3,1 0 0 0 0 0
0 −η2,2

g2,2 0 η2,2

g3,2 0 0 0 0

0 0 −η3,1

g3,1 0 η3,1

g4,1 0 0 0
0 0 −η3,1

g3,1 0 0 η3,1

g4,2 0 0

0 0 0 −η3,2

g3,2 0 0 η3,2

g4,3 0
0 0 0 −η3,2

g3,2 0 0 0 η3,2

g4,4



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where the superscript ω has been omitted for clarity. Because of lema 5.7 all g(m,n) >
0, thus implying that g(m,n) < g(m−1,n′) and always the previous matrix is diagonally
dominant and thus definite positive:

ηm−1,n′

g(m,n)
>

∣∣∣∣
−ηm−1,n′

g(m−1,n′)

∣∣∣∣ ¤

6 Conclusions

Service setting models for public transportation lines in congested situations have been
presented under two different passenger transit assignment approaches. The first model
assumes that passengers make a choice accordingly to a user equilibrium principle fol-
lowing no recommendation but without assuming possible strategies. The second model
assumes that passengers follow a recommendation based on a shortest congested route.
Both models have been formulated as nonlinear mixed integer programming problems.
The first one by means of simulated annealing and the second one by means of an ad hoc
developed heuristic. Also, the congested transit assignment model based on strategies
developed in [6] and its formulation in V.I. in [2] has been briefly introduced. Compu-
tational results using an MSA algorithm have been presented on a small test network
with strict capacities. The adaptation of the model to the elastic demand case is is also
described.
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[3] E. Codina, A. Maŕın, Link restoration for rapid transit network incidences. Preprints of the XXIII
EURO Conference, Bonn, Germany (2009)
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[10] F. Kurauchi, M.G.H. Bell, J-D. Schmöcker (2003) Capacity constrained transit assignment with
common lines. Journal of Mathematical modelling and algorithms 2, 309-327.

[11] H.X. Liu, X. He and B. He, Method of successive weighted averages and self-regulated averaging
schemes for solving stochastic user equilibrium problems. Networks and Spatial Economics 9 (2009)
485-503.
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7 Appendix

7.1 Mangasarian-Fromovitz constraint qualification

Assume a (generally non-convex) set X ⊂ IRn with a finite representation as:

(52) X = {x ∈ IRn |h(x) = 0, g(x) ≥ 0 }
where h : IRn → IR`, g : IRn → IRm, are continuously differentiable functions. By
definition, the Mangasarian Fromovitz Constraint Qualification, abbreviated as MFCQ,
holds at a vector x ∈ X if

(1) the gradients ∇hi(x), i = 1, ..., ` are linearly independent, and
(2) there exists a vector u ∈ IRn such that

(53) ∇hi(x)>u = 0, 1 ≤ i ≤ `
∇gj(x)>u > 0, j ∈ I(x)

being I(x) ∆= { 1 ≤ k ≤ m | gk(x) = 0 } the set of active indexes at x.
Any point in a simplex S = {x ∈ IRn

+ |
∑n

k=1 xk = 1 } trivially satisfies MFCQ.
A relevant characteristic of a V.I. with continuous operator defined on a set X whose

points verify MFCQ is that multipliers for the corresponding constraints are bounded (see
Facchinei and Pang (2002), proposition 3.2.1 (b) ). Let M(x) the polyhedral set of
multipliers for a V.I. 0 ∈ F (x) + NX(x) defined for a point x ∈ X as follows

(54)

M(x) ∆= { (u, v) ∈ IR`+m |F (x) =
∑̀

i=1

ui∇hi(x) +
m∑

j=1

vj∇gj(x), g(x)>v = 0, vj ≥ 0 }

If F is continuous on X, and MFCQ hold at x ∈ X then M(x) is a bounded set.

7.2 Properties of H

Let Hn(·), be the function on IRn, given by

(55) Hn(x) = Max
1 ≤ ` ≤ n

{x`}

Property 7.1 Let I(x) = { 1 ≤ ` ≤ n | x` = Hn(x) }. Then, Clarke’s subgradient of Hn

at x ∈ IRn
+ is

(56) ∂H(x) =



α ∈ IRn

+ |
∑

`∈I(x)

α` = 1, α` = 0 if ` /∈ I(x)



 , x ∈ IRn

+

Property 7.2 The function H is homogeneous of degree 1, i.e. it verifies the differential
inclusion:

(57)
n∑

`=1

x`ζ` = H(x), ζ ∈ ∂H(x)



27

Proof: (of properties 7.1 and 7.2 ) Function H(x) can be expressed as the optimal value
function of the linear program

(58)
H(x) = Min w, s w

s.t. : w − s` = x` | ζ`, ` = 1, 2, ...n
(P) s` ≥ 0

with dual (D) given by:

(59)

H(x) = Max ζ

n∑

`=1

x`ζ`

(D) s.t. :
n∑

`=1

ζ` = 1

ζ` ≥ 0, ` = 1, 2, ...n

This result clearly states that H is the dual support function of the simplex Sn in IRn

and that ∂H is the set defined in (56). See, for instance Corollary 8.25 in Rockafellar and
Wets (1998). Because of complementary slackness it must be verified that (w∗−x∗`)ζ

∗
` = 0

or equivalently:

(60) (H(x)− x`)ζ` = 0, ` = 1, 2, ..., n

which is precisely (57) as
∑

` ζ = 1. ¤
For simplicity this section will be restricted to x ∈ IRn

+. Typically, two smoothing
family of functions to H are:

(61) φ(x, t) =

(
n∑

`=1

x
1/t
`

)t

, t > 0

(62) ψ(x, t) = log φ( expc(x), t) = t log

(
n∑

`=1

exp (x`/t)

)
, t > 0

here expc(x), x ∈ IR denotes the componentwise exponential function, i.e.: expc(x) =
(exp(x1), ..., exp(xn)). This notation will be extended to any scalar function h : IR → IR:
i.e. hc(x) = (h(x1), ..., h(xn))>.

Functions φ(·, t) and ψ(·, t) are strictly convex in x for t > 0 and their gradients have
the following formulas:

(63) (∇xφ(x, t))` =
(

x`

φ(x, t)

) 1
t
−1

, ` = 1, 2, ...n

(64) (∇xψ(x, t))` =
exp (x`/t)∑n

j=1 exp (xj/t)
=

(
exp (x`)

exp(ψ(x, t))

) 1
t

, ` = 1, 2, ...n

Property 7.3 Let {x(k} → x and let {t(k} → 0+, then both ψ(x(k, t(k) → H(x) and
φ(x(k, t(k) → H(x)
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Property 7.4 (See lemma 2.1, vii in Peng (1999)), p. 296) If {x(k} and {t(k} are
convergent sequences, {x(k} → x̄ and {t(k} → 0+, then also for both approximations:

(65) `imk→∞d( ∇xψ(x(k, t(k), ∂H(x̄) ) = 0

(66) `imk→∞d( ∇xφ(x(k, t(k), ∂H(x̄) ) = 0

Proof: for (65) see Peng (1999), p. 296. For (66) just notice that as ex is an increasing
function, then I(expc(·)) ≡ I(·) and this implies that ∂H(expc(x)) = ∂H(x). Now let
the sequence {z(k} be defined as z(k = logc(x(k) and let z = logc(x); then

d( ∇xφ(z(k, t(k), ∂H(z) ) = d( ∇xφ(z(k, t(k), ∂H(expc(z)) ) = d( ∇xψ(x(k, t(k), ∂H(x) ) → 0. ¤

Property 7.5 Let x ∈ IRn
+. For any η ∈ ∂H(x), ∃{(xk, tk)} t>0→ (x, 0), xk ≥ 0, so

that lim k→∞ ∇xψ(xk, tk) = η. The same property applies for function φ.

Property 7.6 Complementary slackness condition (60), or equivalently (57), is approx-
imately verified by φ(x, t) at x ∈ IRn

+and t > 0:

Proof:

(67)
CS`(x, t) ∆= (φ(x, t)− x`)(∇xφ(x, t))` = (φ(x, t)− x`)

(
x`

φ(x, t)

) 1
t
−1

=

= x`

(
1− x`

φ(x, t)

) (
x`

φ(x, t)

) 1
t
−2

≤ x`

(
1− x`

φ(x, t)

)(
x`

φ(x, t)

)

Clearly, if ` ∈ I(x) then `imt→0+φ(x, t) = x` and if ` /∈ I(x), then

`imt→0+

(
x`

φ(x, t)

) 1
t
−2

= 0

Thus `imt→0+CS`(x, t) = 0, 1 ≤ ` ≤ n ¤
Property 7.7 Complementary slackness condition (60), or equivalently (57), is approx-
imately verified by ψ(y, t) at y ∈ IRn

+and t > 0:

Proof: Using CS for φ defined in (67),

(68) CS`( expc(y), t) ∆= (exp (ψ(y, t) )− exp (y`))
(

exp (y`)
exp (ψ(y, t))

) 1
t
−1

, 1 ≤ ` ≤ n

and this proofs that the following CS’ will be approximately zero at t → 0+.

(69) CS′`(y, t) ∆= (ψ(y, t)− y`)
(

exp (y`)
exp (ψ(y, t))

) 1
t t→0+−→ 0 , 1 ≤ ` ≤ n ¤


