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Resumen

Variational multiscale methods lead to stable finite eletapproximations of the Navier-
Stokes equations, both dealing with the indefinite natute@&ystem (pressure stability) and
the velocity stability loss for high Reynolds numbers. Thewethods enrich the Galerkin for-
mulation with a sub-grid component that is modelled. In faut effect of the sub-grid scale
on the captured scales has been proved to dissipate the prapant of energy needed to ap-
proximate the correct energy spectrum. Thus, they alsosaeffective large-eddy simulation
turbulence models and allow to compute flows without the rteezhpture all the scales in
the system. In this article, we consider a dynamic sub-gadehthat enforces the sub-grid
component to be orthogonal to the finite element spadé isense. We analyze the long-term
behavior of the algorithm, proving the existence of appiaiprabsorbing sets and a compact
global attractor. The improvements with respect to a finikenent Galerkin approximation
are the long-term estimates for the sub-grid component atteatranslated to effective pres-
sure and velocity stability. Thus, the stabilization imweed by the sub-grid model into the
finite element problem is not deteriorated for infinite timeervals of computation.

1. Introduction

The dynamics of Newtonian incompressible flows are govelnethe Navier-Stokes equa-
tions, a dynamical system that consists in a set of nonlipedial differential equations with a
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dissipative structure. For two-dimensional problems ghergy of this system has been proved to
be bounded by the data (external forces and boundary consljtfor all times. It is also possi-
ble to bound the7! (2)-norm of the fluid velocity, which, together with the Rellitondrachov
theorem, allows to prove that any fluid velocity orbit comes to a finite dimensional set, the so-
called global attractor, as the time variable goes to infisee [16, 31]). Fractal and Hausdorfd
dimensions of the global attractor have been estimated) lsi@apunov exponents in dimension 2
and 3 [13, 17].

An accurate numerical approximation of the Navier-Stolgegaéons should mimic their long-
term behavior. For direct numerical simulation (DNS), ader@alerkin approximation using inf-
sup stable finite elements admits a numerical global attrazhose dimension has been estimated
in [27]. The convergence of the numerical global attractdhé one of the Navier-Stokes equations
has been analyzed in [21]. Similar results have been prawefihite differences [32].

The finite element approximation of the Navier-Stokes d@quatfor large Reynolds numbers
(Re) presents two main difficulties that can make their numéapproximations meaningless: one
is the indefinite nature of the system, and the other thelgyaloiss due to convection dominant
regimes. The first problem can be cured by using appropreteity-pressure finite element spa-
ces satisfying a discrete version of the Ladyzhenskayasfl@bBrezzi condition (see [4]). These
finite element pairs are usually called inf-sup stable etggjeand do not include many spaces that
would be interesting for their simplicity and/or efficien&/hen using Galerkin approximations
and finite elements, the only way to solve the velocity sifgbibss is to capture all the spatial
scales of the flow, i.e. to reduce the computational meshugizeo the Kolmogorov microscale
Ar, below which there are the smallest dissipative structaféise flow. This approach, known as
direct numerical simulation, requires in dimensio®8Re??%) mesh nodes. Unsurprisingly, this
dimension is also related to the dimension of the continghotsal attractor (see [13, 17, 31]). The
memory usage grows so fast with respecRtothat DNS computations are unaffordable in most
industrial applications, even at moderate Reynolds nusalfaryway, DNS is a valuable tool in
theoretical turbulence research: it allows a deeper utatedig of this phenomenon and helps to
validate turbulence models.

Both pressure instability and velocity stability loss famgection dominant regimes can be
solved by using finite element stabilization techniquee @&g. [5, 24, 7, 9, 12, 2]). In fact, sta-
bilization is essential for the finite element approximataf high Re flows. The common feature
of this family of algorithms is to introduce consistent tartn the formulation that would improve
the stability properties of the numerical system withoutikipg accuracy. Initially, these stabiliza-
tion techniques were developed without a sound motivatibtihéy were justified by a multiscale
decomposition of the continuous solution into resolvedtéielement) and unresolved (sub-grid)
scales. Using this decomposition in the variational fornthef problem, and modelling the effect
of the subscales into the finite element problem, we end up mimerical methods that exhibit
enhanced stability properties. We refer to [23, 25] for ailied exposition of this approach, coined
the variational multiscale (VMS) method. Applied to the ManStokes equations, stabilized finite
elements lead to stable formulations without the need afemsmting all the scales of the flow.
Thus, coarser meshes can be used, drastically reducingnmgutational effort of DNS.

VMS sub-grid scale models have been motivated by numerizgdgses (stability and con-
vergence of the numerical algorithms), but they have alsm lproved to introduce a numerical
dissipation that approximates well the physical dissgratt the unresolved scales [19, 9, 12, 22,
14, 29, 3]. So, these methods can be understood as largesiaahation (LES) turbulence models
that properly account for the effect of the smaller univessales onto the large scale motions of
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the flow that can be captured by the mesh.

The VMS framework is clear for linear stationary problengsading to effective and accurate
numerical methods. In those methods, the sub-grid compesenodelled using local problems
(the global sub-grid problem is localized at every finitengbmt of the mesh) and the differential
operator that defines the problem is replaced by an algebna¢motivated by Fourier analysis in
our case). As a result, the sub-grid component is approgitnat every finite element as a closed
form in terms of the finite element residual. Enforcing the-guid component to be orthogonal
to the finite element space we recover the orthogonal subsgdle (OSS) model proposed by
Codinain [7, 9], otherwise we get the algebraic sub-gridesc@ASGS) model, in the terminology
of [9]. OSS has been proved to introduce less numericalpdisn than ASGS in [7].

The extension of this framework to transient and nonlingablems is not obvious. The main
difficulties lie in how to approximate the sub-grid time deative in the sub-grid problem and
how to track the subscale in the nonlinear iterative pracésdraightforward choice for the time
discrete system is to treat the time derivative of the suth-gpmponent as a reaction-like term,
with reaction coefficiendt—!, §t being the time step size. Whén— 0, the algorithm tends to the
non-stabilized Galerkin formulation, with the problemsmted out above. In [2, 11, 12] we have
devised two cures to this instabilities. The first solutietid use OSS formulations together with
a quasi-static approximation of the sub-grid scales, he.sub-grid time derivative is neglected
and the steady-state sub-grid model used. A more consigbach is to consider dynamic
sub-grid models that keep the sub-grid time derivativehigs tase, the sub-grid model turns into
an ordinary differential equation. Dynamic subscales Haeen proved to exhibit unconditional
stability properties in strong norms for convection-difon and Stokes systems (both for ASGS
and OSS formulations), the semi-discrete problem in spaceell-posed and space and time
integration commute. We refer to [2, 11, 12] for some worksrghg the benefits of using dynamic
sub-grid scales and numerical analyses that prove the ditimoral stability and convergence of
the method for some linear problems. With regard to turtedemodelling, the VMS dynamic
sub-grid model is able to represent backscatter [29].

1.1. Finite element approximation of the Navier-Stokes ecations

From now on, we assume thats a subset aR? (d = 2 or 3) having a polygonal or polyhedral
Lipschitz-continuous boundary, arfd}, },,- is a regular family of triangulations d®, that is,
0= UreT, K, with mesh sizéh = maxg e, hi, hix being the diameter of the triangl€.

In order to get a conforming finite element approximationhaf Navier-Stokes problem, we
consider conforming finite element spadés ¢ H(Q) andQ;, ¢ L%*(Q)/R for velocity and
pressure respectively, with optimal interpolation projesr To simplify the exposition, we will
considerQ,, € C°(Q2). Then, the semi-discrete problem in space consists of firelig.[uy,, p;] €
L?(0,T; V) x L'(0,T;Qp,) such that

(Orap, vp) + ((up - V)up, vi) +v(Vup, Vve) — (pr, V - vi) = (£, va), 1)
(qh> V- llh) = 07

almost everywhere in time. Analogously to the continuowsbfam, it is easy to prove that the
semi-discrete system (1) satisfies

t 1 t
s )12+ [ [V )Ps 55 [0 s+ s, 0]
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Even for highRe, the viscous dissipative term of the continuous problenobes dominant at
the smallest scales of the flow; viscous effects extractggrerthe system at the smallest scales,
killing any fluctuation under a certain level, the KolmogemmicroscaleAx (see [26, 28]) Ak
is obviously related to the number of nodes that are needaddNS computational mesh, since
all the scales of the flow must be captured in such computifhen the computational mesh
is substantially coarser than a DNS one, the smallest seads9(h) > M\, i.e. they belong
to the inertial range. On the other hand, following the epargscade, the energy from larger
scales is transfered to the smallest scales. Since eddtbs irangeO (%) are much larger than
the dissipative eddies that exist at Kolmogorov scalestldrenergy is essentially not dissipated
in this range. The viscous dissipation term never becomepsritaint and, as a result, the smallest
scales exhibit an energy pile-up (see [20]), leading to sjrastabilities.

Pressure stability for the Galerkin approximation of thevidaStokes equations cannot be
attained from energy bounds. In order to mimic the matherabsiructure of the continuous pro-
blem, we can build velocity-pressure finite element spaatisfging a discrete inf-sup condition

inf sup 7(Qh’v.vh)

>3°>0
h€QL v, eV}, HQhHHVhHl

where 5* is uniform with respect td. Obviously, the discrete inf-sup condition is not a direct
conseguence of the continuous inf-sup condition. In farhesinteresting velocity-pressure pairs,
like equal-order velocity pressure approximations, fasatisfy this condition, leading to pressure
instabilities.

Using VMS stabilized finite element approximations, we ganerical methods with enhan-
ced stability properties for which there is the hope thay ttan act as turbulence models. Pressure
stability does not rely on a discrete inf-sup condition amdbfivelocity bounds remain effective
at highRe for mesh sizes > A, placed in the inertial range. Furthermore, the effect ef th
unresolved scales, i.e. scales in the raffge\ |, into the captured scales is properly modelled;
in particular, the viscous dissipation that takes placehatdmallest unresolved scales. In fact,
it has been proved that the energy spectra of VMS-basedithlger approximate accurately the
continuous spectra titD(h) scales (see [19, 12, 29, 3)).

We do not include here the motivation of these algorithmat dan be found elsewhere (see
[23, 25]). In particular, we consider the sub-grid scaled¢oorthogonal to the finite element
velocity space and dynamic. In order to state the problemjniveduce the sub-grid velocity
componenii, which is modelled. We assume the sub-grid presgute, since the terms obtained
from this component are not essential for the good perfoomaithe algorithm (see e.g. [8]). The
sub-grid velocity belongs to the sub-grid spateto be defined. The finite element approximation
of the Navier-Stokes equations using a VMS dynamic orthagsub-grid model reads as follows:
finduy, € L2(0,00; V), pr € L'(0,00;Qy), andar € L?(0, 00; V') such that

{ (Opun, va) + b (an, up, vi) + v (Vup, Vva) (2a)
— (pn, V- vp) = b(up, vp,a) = (£,vy),
(g, V - up) = (0, Vagr) =0, (2b)
(O, v) + 771 (@, V) = (£,¥) — b (up,up, V) — (Vpp, V), (2c)
and
u;,(0) = ugp, 0(0) = . )
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A proper initialization of the problem is obtained by usiag, andug solution of the projection
problem

(won, vi) — (€n, V - vi) = (ug, vp),
(V -uon, qn) — (qn, ) =0,
(T, V) + (V&x, V) = (g, V).

The nice feature of this choice is the fact that the initidbedy components satisfy the stabilized
mass conservation equation, which can have importantteféecthe stability of the fully discrete
problem (see [6]).

The so-called stabilization parameter is

-1

CSV Cc”uhHZ

= =SS 4 = ) (4)
<h2 h|Q7

Cs are C, are algorithmic constants independent of physical and nicaigparameters that are
usually motivated from the analysis of one-dimensionaktésee e.g. [8]). For practical purposes,
a non-constant (x) is usually implemented, in which the global velocity normréplaced by
its pointwise modulus. The use of a variable stabilizati@emameter introduce some technical
complications in the numerical analysis that have beendfaicd10] for the linearized Oseen
problem.

In the following, we assume that< ¢ < co. Furthermore, we use the skew-symmetric form
of the convective trilinear form (see [30])

1
b(up, vi, W) = ((un - V)vp, w) + 5 (V- up, vp - w).
For the shake of conciseness in the following expositionj¢antroduce the operator
1
N(uh,vh) Ve x Vy, — LI(Q), N(uh,vh) = (uh . V)Vh + i(V . U_h)Vh.

The weak form of the sub-grid model is not standard. We ref¢2 t11, 12] for stability and
convergence analyses for dynamic orthogonal sub-grid re@ghplied to linear problems, namely
convection-diffusion-reaction systems and the Stokeblpm. The linearized stationary problem
is fully analyzed in [10]. In the next sections we will anaythe stability of this nonlinear finite-
dimensional problem (2), with special emphasis on its Itergs behavior.

2. Long-term stability in L>(0, co; L*(Q)

Ouir first result proves that the VMS finite element approxiorabf the Navier-Stokes equa-
tions (2) exhibits an absorbing setli¥ (Q2). A key difference with respect to previous analysis is
the proof of anl?(Q2) absorbing set for the sub-grid component too. We prove tistemce of the
L?(Q) absorbing set and some long-term stability bounds in thétheorem that holds in 2 and
3 dimensions. When there is no confusion, we will omit theetilabel for the ;Jnknowns.

Let us introduce the nondimensional generalized GrashobenG := ﬂy'ﬁHfHLm(Lg) intro-
duced in [15]; G can also be interpretedRe. In the next theorems, we make usepat= vG

5
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Theorem 2.1 Let us assume that the elliptic regularity assumptions hdlikn, the solution of
problem (2) ford = 2, 3 satisfies

u € L>(0,00; L*()), i € L°°(0,00; L*()),
Vu € L2,(0,00; L*(Q)), 7720 € L, (0,00 LA(92)),

forug € L?(Q2) andf € L>(0, oo; L?(£2)). On the other hand, the following inequality holds,

ttmsup (Jlun (8) 2 + [§O]P) S ’Q‘

t—o0

HfHLoo (0,00;L?)" (5)

which implies the existence of an absorbing seE#().

In the next theorem we translate the sub-grid stability imgof the finite element compo-
nents, as it is usual for stabilized methods. The extra estigfor scheme (2) in the next theorem,
that the Galerkin finite-element method does not provide vaxighted with a time-independent
parametery = inf;c (g o) 7(t), i.€.

1 Csv Cesupye(oo0) [an(t)le
Ty = 72 1 .
h Qe

Observe that the paramatfg‘1 is well-defined for a fixedch > 0 by using an inverse inequality
IVillze) S h‘(%‘%)thHLQ(Q) (for 2 < ¢ < o0) and estimate (5). Thusy does not degenerate
to 0. Let us stress the fact that the introduction of the weighgiarametet, comes from technical

aspects in the subsequent analysis but the results applstens (2) with the time-dependent
expression of in (4).

Theorem 2.2 LetQ) ¢ R for d = 2 or 3. The algorithm (2) witl2 < ¢ < o in (4) satisfies, for
anyt > to,
||Vph +N(uhauh)”H L(to,5: L9 (Q)) <C

for ¢ = /2. The case = 2 satisfies

||Vph +N(uh>uh)” <C

t W, 1, (d+5)’)

for a fixede > 0, where(d + €)' denotes its conjugate exponent, afids a constant that depends
on (uy, p, 2). In particular, forty — oo, C' only depends ofyp, 2)

3. Absorbing set in H'(Q) and the global attractor for d = 2

In this section, we prove the existence of an absorbing sEFif€2), which is the key result
for the existence of a global attractor for algorithm (2)ohder to get the bounds that lead to the
existence of the ! (Q2) absorbing set, let us introduce the scalar value

-1 _ CSV CCU
v = h2 + h
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whereU > 0 is a bounded characteristic velocity of the problem. Inipaldr,

1
U= sup [Q 7wy
te(to,00)

is a possible choice, sinée> 2 andsup;¢ (4, ) [[ur|| has been bounded in Theorem 2.1. The long-

1
term stability of the sub-grid velocity in the next theoresnwieighted byr?, whose introduction
has been motivated by technical reasons. Again, the inttagiuof the weighting parameter; is
purely technical and the following results apply to syst@nwith the time-dependent expression
of 7in (4).

Theorem 3.1 (H'(Q2) absorbing set) LetQ ¢ R? have the elliptic regularity assumptions. Then,
the solution(uy,, p,, 1) of problem (2), for2 < ¢ < oo, satisfies the long-term stability bound

’ _ ~ Qa
limsup (v V| + 77 [a)?) £ (a3 + F ) exp (@)
—00
with

i 2 4 I 2 4
o= [ R+ 0" ds < F (181 + UY) (62)

i 2 1y~ 112 2 tv
o= [ IVl ) ds < <1+@), (6b)
t

t+t
as = / v (v lun)? + 1) (V|| Vup|? + a2 ds S (v 4+ v72) ag (6¢)
t

for any fixed? > 0. This bound proves the existence of an absorbing s&f Q) for the finite
_1
element fluid velocity and an absorbing sefif((2) for 7, 2 a.
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