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Girona 1-3, Edifici C1, 08034 Barcelona, Spain.sbadia@cimne.upc.edu,ramon.codina@upc.edu.
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Resumen

Variational multiscale methods lead to stable finite element approximations of the Navier-
Stokes equations, both dealing with the indefinite nature ofthe system (pressure stability) and
the velocity stability loss for high Reynolds numbers. These methods enrich the Galerkin for-
mulation with a sub-grid component that is modelled. In fact, the effect of the sub-grid scale
on the captured scales has been proved to dissipate the proper amount of energy needed to ap-
proximate the correct energy spectrum. Thus, they also act as effective large-eddy simulation
turbulence models and allow to compute flows without the needto capture all the scales in
the system. In this article, we consider a dynamic sub-grid model that enforces the sub-grid
component to be orthogonal to the finite element space inL2 sense. We analyze the long-term
behavior of the algorithm, proving the existence of appropriate absorbing sets and a compact
global attractor. The improvements with respect to a finite element Galerkin approximation
are the long-term estimates for the sub-grid component, that are translated to effective pres-
sure and velocity stability. Thus, the stabilization introduced by the sub-grid model into the
finite element problem is not deteriorated for infinite time intervals of computation.

1. Introduction

The dynamics of Newtonian incompressible flows are governedby the Navier-Stokes equa-
tions, a dynamical system that consists in a set of nonlinearpartial differential equations with a
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dissipative structure. For two-dimensional problems, theenergy of this system has been proved to
be bounded by the data (external forces and boundary conditions) for all times. It is also possi-
ble to bound theH1(Ω)-norm of the fluid velocity, which, together with the Rellich-Kondrachov
theorem, allows to prove that any fluid velocity orbit converges to a finite dimensional set, the so-
called global attractor, as the time variable goes to infinity (see [16, 31]). Fractal and Hausdorfd
dimensions of the global attractor have been estimated using Lyapunov exponents in dimension 2
and 3 [13, 17].

An accurate numerical approximation of the Navier-Stokes equations should mimic their long-
term behavior. For direct numerical simulation (DNS), a crude Galerkin approximation using inf-
sup stable finite elements admits a numerical global attractor, whose dimension has been estimated
in [27]. The convergence of the numerical global attractor to the one of the Navier-Stokes equations
has been analyzed in [21]. Similar results have been proved for finite differences [32].

The finite element approximation of the Navier-Stokes equations for large Reynolds numbers
(Re) presents two main difficulties that can make their numerical approximations meaningless: one
is the indefinite nature of the system, and the other the stability loss due to convection dominant
regimes. The first problem can be cured by using appropriate velocity-pressure finite element spa-
ces satisfying a discrete version of the Ladyzhenskaya-Babus̆ka-Brezzi condition (see [4]). These
finite element pairs are usually called inf-sup stable elements, and do not include many spaces that
would be interesting for their simplicity and/or efficiency. When using Galerkin approximations
and finite elements, the only way to solve the velocity stability loss is to capture all the spatial
scales of the flow, i.e. to reduce the computational mesh sizeup to the Kolmogorov microscale
λK , below which there are the smallest dissipative structuresof the flow. This approach, known as
direct numerical simulation, requires in dimension 3O(Re2,25) mesh nodes. Unsurprisingly, this
dimension is also related to the dimension of the continuousglobal attractor (see [13, 17, 31]). The
memory usage grows so fast with respect toRe that DNS computations are unaffordable in most
industrial applications, even at moderate Reynolds numbers. Anyway, DNS is a valuable tool in
theoretical turbulence research: it allows a deeper understanding of this phenomenon and helps to
validate turbulence models.

Both pressure instability and velocity stability loss for convection dominant regimes can be
solved by using finite element stabilization techniques (see e.g. [5, 24, 7, 9, 12, 2]). In fact, sta-
bilization is essential for the finite element approximation of highRe flows. The common feature
of this family of algorithms is to introduce consistent terms to the formulation that would improve
the stability properties of the numerical system without spoiling accuracy. Initially, these stabiliza-
tion techniques were developed without a sound motivation till they were justified by a multiscale
decomposition of the continuous solution into resolved (finite element) and unresolved (sub-grid)
scales. Using this decomposition in the variational form ofthe problem, and modelling the effect
of the subscales into the finite element problem, we end up with numerical methods that exhibit
enhanced stability properties. We refer to [23, 25] for a detailed exposition of this approach, coined
the variational multiscale (VMS) method. Applied to the Navier-Stokes equations, stabilized finite
elements lead to stable formulations without the need of representing all the scales of the flow.
Thus, coarser meshes can be used, drastically reducing the computational effort of DNS.

VMS sub-grid scale models have been motivated by numerical purposes (stability and con-
vergence of the numerical algorithms), but they have also been proved to introduce a numerical
dissipation that approximates well the physical dissipation at the unresolved scales [19, 9, 12, 22,
14, 29, 3]. So, these methods can be understood as large-eddysimulation (LES) turbulence models
that properly account for the effect of the smaller universal scales onto the large scale motions of
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the flow that can be captured by the mesh.
The VMS framework is clear for linear stationary problems, leading to effective and accurate

numerical methods. In those methods, the sub-grid component is modelled using local problems
(the global sub-grid problem is localized at every finite element of the mesh) and the differential
operator that defines the problem is replaced by an algebraicone (motivated by Fourier analysis in
our case). As a result, the sub-grid component is approximated at every finite element as a closed
form in terms of the finite element residual. Enforcing the sub-grid component to be orthogonal
to the finite element space we recover the orthogonal sub-grid scale (OSS) model proposed by
Codina in [7, 9], otherwise we get the algebraic sub-grid scales (ASGS) model, in the terminology
of [9]. OSS has been proved to introduce less numerical dissipation than ASGS in [7].

The extension of this framework to transient and nonlinear problems is not obvious. The main
difficulties lie in how to approximate the sub-grid time derivative in the sub-grid problem and
how to track the subscale in the nonlinear iterative process. A straightforward choice for the time
discrete system is to treat the time derivative of the sub-grid component as a reaction-like term,
with reaction coefficientδt−1, δt being the time step size. Whenδt → 0, the algorithm tends to the
non-stabilized Galerkin formulation, with the problems pointed out above. In [2, 11, 12] we have
devised two cures to this instabilities. The first solution is to use OSS formulations together with
a quasi-static approximation of the sub-grid scales, i.e. the sub-grid time derivative is neglected
and the steady-state sub-grid model used. A more consistentapproach is to consider dynamic
sub-grid models that keep the sub-grid time derivative. In this case, the sub-grid model turns into
an ordinary differential equation. Dynamic subscales havebeen proved to exhibit unconditional
stability properties in strong norms for convection-diffusion and Stokes systems (both for ASGS
and OSS formulations), the semi-discrete problem in space is well-posed and space and time
integration commute. We refer to [2, 11, 12] for some works showing the benefits of using dynamic
sub-grid scales and numerical analyses that prove the unconditional stability and convergence of
the method for some linear problems. With regard to turbulence modelling, the VMS dynamic
sub-grid model is able to represent backscatter [29].

1.1. Finite element approximation of the Navier-Stokes equations

From now on, we assume thatΩ is a subset ofRd (d = 2 or3) having a polygonal or polyhedral
Lipschitz-continuous boundary, and{Th}h>0 is a regular family of triangulations of̄Ω, that is,
Ω̄ = ∪K∈Th

K, with mesh sizeh = máxK∈Th
hK , hK being the diameter of the triangleK.

In order to get a conforming finite element approximation of the Navier-Stokes problem, we
consider conforming finite element spacesVh ⊂ H

1
0(Ω) andQh ⊂ L2(Ω)/R for velocity and

pressure respectively, with optimal interpolation properties. To simplify the exposition, we will
considerQh ∈ C0(Ω). Then, the semi-discrete problem in space consists of finding e.g.[uh, ph] ∈
L2(0, T ;Vh) × L1(0, T ;Qh) such that

{

(∂tuh,vh) + 〈(uh · ∇)uh,vh〉 + ν(∇uh,∇vh) − (ph,∇ · vh) = 〈f ,vh〉,
(qh,∇ · uh) = 0,

(1)

almost everywhere in time. Analogously to the continuous problem, it is easy to prove that the
semi-discrete system (1) satisfies

‖uh(x, t)‖2 + ν

∫ t

0
‖∇uh(x, s)‖2ds .

1

ν

∫ t

0
‖f‖2

−1ds + ‖uh(x, 0)‖2.
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Even for highRe, the viscous dissipative term of the continuous problem becomes dominant at
the smallest scales of the flow; viscous effects extract energy to the system at the smallest scales,
killing any fluctuation under a certain level, the Kolmogorov microscaleλK (see [26, 28]).λK

is obviously related to the number of nodes that are needed ina DNS computational mesh, since
all the scales of the flow must be captured in such computations. When the computational mesh
is substantially coarser than a DNS one, the smallest scalesareO(h) ≫ λK , i.e. they belong
to the inertial range. On the other hand, following the energy cascade, the energy from larger
scales is transfered to the smallest scales. Since eddies inthe rangeO(h) are much larger than
the dissipative eddies that exist at Kolmogorov scales, kinetic energy is essentially not dissipated
in this range. The viscous dissipation term never becomes important and, as a result, the smallest
scales exhibit an energy pile-up (see [20]), leading to space instabilities.

Pressure stability for the Galerkin approximation of the Navier-Stokes equations cannot be
attained from energy bounds. In order to mimic the mathematical structure of the continuous pro-
blem, we can build velocity-pressure finite element spaces satisfying a discrete inf-sup condition

ı́nf
qh∈Qh

sup
vh∈Vh

(qh,∇ · vh)

‖qh‖‖vh‖1
≥ β∗ > 0

whereβ∗ is uniform with respect toh. Obviously, the discrete inf-sup condition is not a direct
consequence of the continuous inf-sup condition. In fact, some interesting velocity-pressure pairs,
like equal-order velocity pressure approximations, fail to satisfy this condition, leading to pressure
instabilities.

Using VMS stabilized finite element approximations, we get numerical methods with enhan-
ced stability properties for which there is the hope that they can act as turbulence models. Pressure
stability does not rely on a discrete inf-sup condition and fluid velocity bounds remain effective
at highRe for mesh sizesh ≫ λK , placed in the inertial range. Furthermore, the effect of the
unresolved scales, i.e. scales in the range(h, λK ], into the captured scales is properly modelled;
in particular, the viscous dissipation that takes place at the smallest unresolved scales. In fact,
it has been proved that the energy spectra of VMS-based algorithms approximate accurately the
continuous spectra tillO(h) scales (see [19, 12, 29, 3]).

We do not include here the motivation of these algorithms, that can be found elsewhere (see
[23, 25]). In particular, we consider the sub-grid scales tobe orthogonal to the finite element
velocity space and dynamic. In order to state the problem, weintroduce the sub-grid velocity
component̃u, which is modelled. We assume the sub-grid pressurep̃ = 0, since the terms obtained
from this component are not essential for the good performance of the algorithm (see e.g. [8]). The
sub-grid velocity belongs to the sub-grid spaceṼ , to be defined. The finite element approximation
of the Navier-Stokes equations using a VMS dynamic orthogonal sub-grid model reads as follows:
find uh ∈ L2(0,∞;V h), ph ∈ L1(0,∞;Qh), andũ ∈ L2(0,∞; Ṽ ) such that

{

(∂tuh,vh) + b (uh,uh,vh) + ν (∇uh,∇vh)
− (ph,∇ · vh) − b (uh,vh, ũ) = 〈f ,vh〉 ,

(2a)

(qh,∇ · uh) − (ũ,∇qh) = 0, (2b)

(∂tũ, ṽ) + τ−1 (ũ, ṽ) = 〈f , ṽ〉 − b (uh,uh, ṽ) − (∇ph, ṽ) , (2c)

and
uh(0) = u0h, ũ(0) = ũ0. (3)
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A proper initialization of the problem is obtained by usingu0h andũ0 solution of the projection
problem

(u0h,vh) − (ξh,∇ · vh) = (u0,vh),

(∇ · u0h, qh) − (qh, ũ0) = 0,

(ũ0, ṽ) + (∇ξh, ṽ) = (u0, ṽ).

The nice feature of this choice is the fact that the initial velocity components satisfy the stabilized
mass conservation equation, which can have important effects on the stability of the fully discrete
problem (see [6]).

The so-called stabilization parameter is

τ =

(

Csν

h2
+

Cc‖uh‖ℓ

h|Ω|
1
ℓ

)−1

. (4)

Cs areCc are algorithmic constants independent of physical and numerical parameters that are
usually motivated from the analysis of one-dimensional tests (see e.g. [8]). For practical purposes,
a non-constantτ(x) is usually implemented, in which the global velocity norm isreplaced by
its pointwise modulus. The use of a variable stabilization parameter introduce some technical
complications in the numerical analysis that have been faced in [10] for the linearized Oseen
problem.

In the following, we assume that2 ≤ ℓ ≤ ∞. Furthermore, we use the skew-symmetric form
of the convective trilinear form (see [30])

b (uh,vh,w) = 〈(uh · ∇)vh,w〉 +
1

2
〈∇ · uh,vh ·w〉 .

For the shake of conciseness in the following exposition, let us introduce the operator

N (uh,vh) : Vh × Vh −→ L
1(Ω), N (uh,vh) = (uh · ∇)vh +

1

2
(∇ · uh)vh.

The weak form of the sub-grid model is not standard. We refer to [2, 11, 12] for stability and
convergence analyses for dynamic orthogonal sub-grid models applied to linear problems, namely
convection-diffusion-reaction systems and the Stokes problem. The linearized stationary problem
is fully analyzed in [10]. In the next sections we will analyze the stability of this nonlinear finite-
dimensional problem (2), with special emphasis on its long-term behavior.

2. Long-term stability in L∞(0,∞; L2(Ω)

Our first result proves that the VMS finite element approximation of the Navier-Stokes equa-
tions (2) exhibits an absorbing set inL2(Ω). A key difference with respect to previous analysis is
the proof of anL2(Ω) absorbing set for the sub-grid component too. We prove the existence of the
L

2(Ω) absorbing set and some long-term stability bounds in the next theorem that holds in 2 and
3 dimensions. When there is no confusion, we will omit the time label for the unknowns.

Let us introduce the nondimensional generalized Grashof numberG := |Ω|
2
d

ν2 ‖f‖L∞(L2) intro-
duced in [15]; G can also be interpreted asRe2. In the next theorems, we make use ofρ := νG

5



Santiago Badia, Ramon Codina, Juan Vicente Gutiérrez-Santacreu

Theorem 2.1 Let us assume that the elliptic regularity assumptions hold. Then, the solution of
problem (2) ford = 2, 3 satisfies

u ∈ L∞(0,∞;L2(Ω)), ũ ∈ L∞(0,∞;L2(Ω)),

∇u ∈ L2
loc(0,∞;L2(Ω)), τ− 1

2 ũ ∈ L2
loc(0,∞;L2(Ω)),

for u0 ∈ L
2(Ω) andf ∈ L∞(0,∞;L2(Ω)). On the other hand, the following inequality holds,

ĺım sup
t→∞

(

‖uh(t)‖2 + ‖ũ(t)‖2
)

.
|Ω|

4
d

ν2
‖f‖2

L∞(0,∞;L2)
. (5)

which implies the existence of an absorbing set inL
2(Ω).

In the next theorem we translate the sub-grid stability in terms of the finite element compo-
nents, as it is usual for stabilized methods. The extra estimates for scheme (2) in the next theorem,
that the Galerkin finite-element method does not provide, are weighted with a time-independent
parameterτ0 = ı́nft∈(0,∞) τ(t), i.e.

τ−1
0 =

Csν

h2
+

Cc supt∈(0,∞) ‖uh(t)‖ℓ

h|Ω|
1
ℓ

.

Observe that the paramaterτ−1
0 is well-defined for a fixedh > 0 by using an inverse inequality

‖vh‖Lℓ(Ω) . h−( 1
2
− 1

ℓ
)‖vh‖L2(Ω) (for 2 ≤ ℓ ≤ ∞) and estimate (5). Thus,τ0 does not degenerate

to 0. Let us stress the fact that the introduction of the weighting parameterτ0 comes from technical
aspects in the subsequent analysis but the results apply to system (2) with the time-dependent
expression ofτ in (4).

Theorem 2.2 LetΩ ⊂ R
d for d = 2 or 3. The algorithm (2) with2 < ℓ ≤ ∞ in (4) satisfies, for

any t̄ ≥ t0,

τ
1
2
0 ‖∇ph + N (uh,uh)‖

H
−1
0 (t0,t̄;Lq′ (Ω))

≤ C

for q′ = 2ℓ
ℓ−2 . The caseℓ = 2 satisfies

τ
1
2
0 ‖∇ph + N (uh,uh)‖

H
−1
0 (t0,t̄;W

−1,(d+ε)′

0 )
≤ C

for a fixedε > 0, where(d + ε)′ denotes its conjugate exponent, andC is a constant that depends
on (u0, ρ,Ω). In particular, for t0 → ∞, C only depends on(ρ,Ω)

3. Absorbing set inH
1(Ω) and the global attractor for d = 2

In this section, we prove the existence of an absorbing set inH
1(Ω), which is the key result

for the existence of a global attractor for algorithm (2). Inorder to get the bounds that lead to the
existence of theH1(Ω) absorbing set, let us introduce the scalar value

τ−1
U =

Csν

h2
+

CcU

h
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whereU > 0 is a bounded characteristic velocity of the problem. In particular,

U = sup
t∈(t0,∞)

|Ω|−
1
ℓ ‖uh‖

is a possible choice, sinceℓ ≥ 2 andsupt∈(t0,∞) ‖uh‖ has been bounded in Theorem 2.1. The long-

term stability of the sub-grid velocity in the next theorem is weighted byτ
1
2
0 , whose introduction

has been motivated by technical reasons. Again, the introduction of the weighting parameterτU is
purely technical and the following results apply to system (2) with the time-dependent expression
of τ in (4).

Theorem 3.1 (H1(Ω) absorbing set) LetΩ ⊂ R
2 have the elliptic regularity assumptions. Then,

the solution(uh, ph, ũ) of problem (2), for2 ≤ ℓ < ∞, satisfies the long-term stability bound

ĺım sup
t→∞

(

ν‖∇uh‖
2 + τ−1

U ‖ũ‖2
)

.
(

a3 +
a2

t̄

)

exp (a1)

with

a1 =

∫ t+t̄

t

(

‖f‖2 + U4
)

ds ≤ t̄
(

‖f‖2
L∞(L2) + U4

)

, (6a)

a2 =

∫ t+t̄

t

(

ν‖∇uh‖
2 + τ−1

U ‖ũ‖2
)

ds . ρ2

(

1 +
t̄ν

|Ω|

)

, (6b)

a3 =

∫ t+t̄

t

ν−2
(

ν−2‖uh‖
2 + 1

) (

ν‖∇uh‖
2 + τ−1

ν ‖ũ‖2
)

ds .
(

ν−4ρ2 + ν−2
)

a2 (6c)

for any fixedt̄ > 0. This bound proves the existence of an absorbing set inH
1(Ω) for the finite

element fluid velocity and an absorbing set inL2(Ω) for τ
− 1

2
U ũ.
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