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A NODAL-BASED FINITE ELEMENT APPROXIMATION OF THE MAXWELL
PROBLEM SUITABLE FOR SINGULAR SOLUTIONS

SANTIAGO BADIA* AND RAMON CODINAT

Abstract. A new mixed finite element approximation of Maxwell’'s prallés proposed, its main features
being that it is based on a novel augmented formulation ottminuous problem and the introduction of a mesh
dependent stabilizing term, which yields a very weak cdrdgrothe divergence of the unknown. The method is
shown to be stable and convergent in the natéféturl; 2) norm for this unknown. In particular, convergence
also applies to singular solutions, for which classicalaldzhsed interpolations are known to suffer from spurious
convergence upon mesh refinement.

1. Introduction. The simulation of electromagnetic phenomena with increpsbm-
plexity demands accurate and efficient numerical methatede for large-scale computing.
Finite element (FE) methods are commonly used in this cobiesause they can easily han-
dle complicated geometries by using unstructured gridsyige a rigorous mathematical
framework and allow adaptation.

In many applications of current interest, the electromégmeoblem is coupled to other
physical processes. Salient examples of multiphysics ginena that include electromag-
netics are magnetohydrodynamics (MHD) and plasma physit®se two problems have
experienced increasing attention due to the need to deweloyrical laboratories in fusion
technology design. The simulation of these problems (anayro¢hers) would benefit of an
all-purpose FE method that would be suitable for the difieseib-problems at hand, simpli-
fying the implementation issues and the enforcement ofdlipling conditions. In particular,
an all-purpose continuous nodal-based formulation woel@ lfavored candidate. E.g. the
Navier-Stokes equations are commonly solved with staddlliEE approximations that can
deal with the singularly perturbed nature of the system fghliReynolds numbers and cir-
cumvent the restrictions related to the correspondingugf-condition (see e.g. [13, 14]). In
plasma physics, fields computed by discontinuous FE Maxsadliers create a considerable
numerical noise when embedded in a plasma code, e.g. usngaittticle-in-cell method
(see [2]). Furthermore, nodal approximations are pawityiwell-suited for time-dependent
electromagnetic problems because the mass matrix can sestzorily lumped without loss
of accuracy, leading to inexpensive transient solvers.

The Maxwell operator has a saddle-point structure, withpheicularity that the La-
grange multiplier introduced to enforce the divergenae fronstraint is identically zero. Ex-
isting FE methods that satisfy the discrete counterpatefitherent inf-sup condition for
this problem are based on Nedelec's or edge elements (sg@&.83]); edge elements lead
to fields with discontinuous normal component on elemenesdy faces. We also refer to
alternative formulations based on discontinuous Galegkiproximations [28, 24, 23, 34].
With the aim to solve the Maxwell problem with Lagrangiantiénelements (FEs), the dif-
ferential operator of the problem can be transformed intelfptic one, by adding an exact
penalty term containing the divergence (see [26]); the Ibgigexact because the Lagrange
multiplier vanishes. The resulting method satisfies thepatihility conditions over the ele-
ment faces in a pointwise sense. Unfortunately, this meihadt able to converge to nons-
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mooth solutions that appear in nonconvex domains, e.g. thamath re-entrant corners (see
[25, 17] and Section 3).

Using an innovative idea, Costabel and Dauge proposed ing[t@habilitation of ! -
conformingC® nodal (i.e. Lagrangian) FEs based on a weighted versioneopémalty term
that was able to converge to the“good” solution in noncord@xains. In order to use the
resulting numerical method, singularity regions have tddemtified a priori, and proper
weighted functions constructed, based on this informationthe negative side, it clearly
complicates the numerical integration (of the weightedhjetoses computational efficiency
and complicates the automatization of the simulations. lerrative approach to solve the
Maxwell problem is the decomposition of the solution intaggilar and smooth part (see
[2, 26]) but this method is harder to generalize, speciallthree dimensions. Very recently,
Duanet al. have designed in [19] a method based on local projectiorisites a FE space
composed of cubic nodal elements enriched with edge andealidmbbles. The introduction
of the local projection in the penalty term allows to coneetg nonsmooth solutions, but the
same projection weakens convergence, which is only attaimeae L2 norm. There are other
nodal-based FE methods, but they converge to spurious@mdlih nonconvex domains (see
e.g. [30, 31]).

In this work, we aim at developing a new mixed FE formulationlfagrangian finite ele-
ments, based on a stabilized approximation of a novel autgdéormulation of the Maxwell
problem. We also refer to [6] for a similar approach, regditdehe eigenvalue problem. The
compatibility condition associated to the inf-sup coratitcan be avoided by the introduction
of the stabilization and exact penalty terms. The methodbsannderstood as a residual-
based FE method heuristically motivated in a variationdtiszale framework [29]. On the
other hand, the resulting numerical algorithm is able tdwapnonsmooth solutions, so it is
suitable for problems in nonconvex domains. The methodaislstand convergent for any
pair of nodal FE spaces for the unknown and the Lagrange ptiaiti The implementation
is straightforward, since the extra terms are standard ande integrated numerically like
the Galerkin terms. It can be implemented in a stabilized &lies for the Navier-Stokes
equations with minor modifications. Thus, the method is acekent candidate for being
used in MHD; we have developed a nodal-based FE formulafitimeovisco-resistive MHD
problem where the magnetic sub-problem is approximatéalfioig the ideas in this work in
[5], reporting excellent results.

The outline of the paper is as follows. In Section 2 we inticeithe Maxwell problem
and different augmented and/or penalized formulationgti@e 3 is devoted to the numer-
ical approximation of the problem by Lagrangian FEs. Thebfgm related to honconvex
domains is discussed and the new formulation introducedorApiete stability and conver-
gence analysis is also provided. In Section 4 we present smmerical experiments that
confirm the theoretical analysis. Section 5 closes theladi@wing some conclusions.

2. The Maxwell problem. In this section, we introduce some notation and state the
Maxwell problem. We consider different augmented and peediformulations that will be
used throughout the paper.

2.1. Notation. Let ©2 be a bounded domain iR¢, with d = 2, 3 the space dimension.
Given a Banach spacg€, we denote its associated norm|byi x; for the sake of conciseness,
we will omit the subscript for thd.?(£2) space of square integrable functions. The space of
vector-valued functions with componentsihis denoted byX ¢. The dimension superscript
will be omitted in the norm, i.e. we will simply denote its moby/||-|| x instead of|-|| x«. The
dual space o is denoted as(’. The inner product between two scalar or vector functions
f1, fo € L3(Q2) is denoted by 1, f2), whereag fi, f-) is used for a duality pairing.
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Wwem(€) is used for the standard Sobolev space, with real coeffiient0 andm > 1.
Hilbert spaces$? *2(£2) are denoted by7*(£2). We write H{ (€2) for the space of functions
in H'(Q) with null trace ond2. We will make use of the following spaces of vector fields:

H(div; Q) :== {v € L*(Q)* such that V - v € L*(Q)},
H(curl; Q) := {v € L*(Q)? such that V x v € LQ(Q)d} ,
and the subspaces

H(div0; Q) := {v € H(div; Q) such that V- v =0},
Hoy(curl; Q) := {v € H(curl; Q) such that n x v.= 0 on 0Q} .

We use the notatiodl < B to indicate thatd < C'B, whereA and B are expressions
depending on functions that in the discrete case may depetitealiscretization as well, and
C'is a positive constant.

2.2. Problem statement.In this work, we consider the Maxwell problem, which physi-
cally describes magnetostatics in a bounded dofianrrounded by a perfect conductor. Let
us considef2 c R? to be a simply connected nonconvex polyhedral domain witmaected
Lipschitz continuous boundaigf. Besides its range of applicability, this system of partial
differential equations exhibits the mathematical congilans encountered in more involved
model problems (see e.g. [19, 10]). The Maxwell problem casthted as a minimization
problem that consists in finding the vectorial fieldmagnetostatic field) that minimizes the
potential

Ev) = / AV x v|* —2v - f) dx,
Q

with the constrain¥/ - v = 0 and the homogeneous boundary conditior v = 0 over the
boundaryo(?, for some divergence-free datuin\ is a positive physical parameter.

2.3. Augmented and penalized formulations.The Maxwell problem can be recasted
as a saddle-point problem by enforcing the divergence cainsivith a Lagrange multiplier
p. The Euler-Lagrange equations read as follows: seek gpgir) solution of

(2.18) AV x (V xu)—Vp=T1,

(2.1b) V-u=0,

withn x u = 0 andp = 0 on9f2. As we will see later onp vanishes in the appropriate
functional setting. Thus, the problem consists of findinguch that\V x V x u = f andV -

u = 0 on Q. It has motivated thexact penaltyapproach, in which the divergence constraint
is penalized and the Lagrange multiplier eliminated; itsists of seeking solution of

(2.2) AV XV Xxu—AV(V-u)=f inQ.

The regularization requires to add the boundary condNiem = 0 on the boundaryf? (see
[26]). This re-statement of the problem is (in principlejywappealing from a numerical point
of view. However, as we will see in the next section, this épanalty modifies the functional
setting of the original problem, leading to spurious saln$ for nonconvex domains.

The variational interpretation of the mixed problem (2.djréts two functional settings.
The so-called curl formulation reads as: fiad Hy(curl; Q) andp € H}(Q) such that

(2.3a) AV xu,V xv)—(Vp,v)=(f,v), Vv € Hy(curl; Q),
(2.3b) (Vg,u) =0, Vg € Hy(Q),
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wheref € H(div0; ) is assumed. However, this is not the only functional sefitinghich

the problem is well-posed; thE! () regularity forp can be “transferred” ta, leading to a
curl-div variational formulation: findr € Hy(curl; Q) N H(div; Q) andp € L?(Q)/R such
that

(24a) (AVxuVxv)+(pV-v)=(fv), VveHy(curl;Q)nN H(div;),
(2.4b) —(¢,V-u) =0, Vg € L2(Q).

On the other hand, the exact penalty method only allows adiuflormulation. Thus, its
variational form reads as: seeke Hy(curl; 2) N H(div; 2) such that

(2.5) AV xu,Vxv)+(AV-u,V-v) = (f,v),

foranyv € Hy(curl; Q)N H(div; ©2). For the sake of conciseness, we introduce the bilinear
forms

a(u,v) = (AV xu,V xv), b(v,p) =—(Vp,v),

and c(u,p;v,q) = a(u,v) + b(v,p) — b(u,q). Let us also denote the Hilbert spaces
Hy(curl; Q) andH}(Q) by V andQ respectively, supplemented with the norms

1
(2.6) HV”V = ||VHH(cur1;Q) = ZHVH + HV X V||7
1
(2.7) lglle = llall 3 @) = Fllall + Vall;

wherel = ¢(Q) is a constant with dimensions of length that makes the noimersionally
consistent. In the following, will denote a length scale, not necessarily the same atdiffe
appearances. The norm associated to the product $pace€ is denoted by

1 1
lIv, qll = Az l[vilv + €A~ =lgll-

From the standard theory of saddle-point problems, wedlepoess of the curl formulation
(2.3) is proved in the next theorem.
THEOREM 2.1. The following inf-sup condition is satisfied,

(2.8) inf sup M > [ >0.
(1,0)€VXQ\{0,0} (v.)ev 0\ {0,0} 10, PV, qll

As a consequence, formulation (2.3) is well-posed.

Proof. The forma : V x V' — R is bilinear, continuous and coercive when it is restricted
to V N H(div0; ) (the closed subspace ofin the kernel ofb(-, ¢) for anyq € Q), since
a(v,v) > M|V x v||? foranyv € V N H(div 0; ). The L?(2) control ofv is consequence
of the Poincaré-Friedrichs inequality

1
SVl < erVx vl vv eV nH(divoQ)

(see [32, Corollary 3.51]). On the other hahtk, p) is a continuous bilinear form such that,
for anyp € @, there existsv, € V with ||v,|v = 1 that satisfied(v,,p) > Bullpllo-
This is true, sincévp € V for anyp € Q. The coercivity ofa in the kernel ofb, and
the inf-sup condition satisfied byare necessary and sufficient conditions for proving (2.8)
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(see [21, Proposition 2.36]). We know from the theory of $agubint problems that (2.3) is
well-posed if and only if condition (2.8) is satisfied (se&,[Zheorem 2.34])L

The curl-div formulations are equivalent to the curl foriion (2.3).

PROPOSITION2.2. Formulations (2.4) and (2.5), with € H (div 0; 2), are well-posed.
Furthermore, they are equivalent to (2.3) in the sense theay tead to the same.

Proof. Let us only show thap = 0 in (2.3), which will be systematically used along
the paper. Takingg = Vp (which clearly belongs td”) in (2.3), and using the fact that
V xVp =0andV - f = 0a.e. inQ, we obtain||Vp| = 0. Sincep vanishes ord(?, it
impliesp = 0 a.e. inQ by virtue of Poincaré’s inequality. We refer to [25, Propiosis 3.4
and 3.5] for the completion of the proif.

2.4. A novel augmented formulation for the Maxwell problem. In this work, we
propose a novel numerical approximation of the Maxwell feobwhose starting point is a
different augmented formulation. Since we are interestea ¢url formulation for reasons
that will become obvious in the next section, the idea cangisadding the terrrf;Ap to
(2.1b); ¢ > 0 is the penalty value, with dimension of length. A length scal inherent
to the problem, since it is needed to define dimensionallysistent norms in (2.6)-(2.7).
Theoretically, this length scale comes from the Poindaiédrichs inequality of the problem
at hand. The augmented formulation in strong form consisisding u andp such that

AV xVxu—Vp=T{,
62
7V~quAp:0,

in €, satisfyingn x u = 0 andp = 0 on0f. Sincep € @ is identically zero, the penalty is
exact. The weak form of the new formulation reads as: fired V andp € @ such that

(2.9a) a(u,v) +b(v,p) = (f,v), Vv ev,
(2.9b) —b(u,q) + s,(p,q) = 0, Vg€ Q,
where

62
sp(p,q) = X/QVP'quX-

We now show the equivalence of the new formulation (2.9).

PROPOSITION2.3. Formulation (2.9) is well-posed and its solution, p) is the solution
of (2.3) forf € H(div0; ).

Proof. Well-posedness is simply verified by proving that 0 in (2.9) (using the ideas
introduced above) and testing the system agdnst) = (u,p). The new formulation is
clearly stable in the norrij - ||, because of the stability of the original curl formulatiarda
the positivity of the term added. Equivalence is now striagiwvardd

3. Numerical approximation.

3.1. Finite element approximation. Let 75, be a partition of2 into a set of finite ele-
ments{ K }. For every elemenk’, we denote by.x its diameter, and set the characteristic
mesh size a8 = maxxcT, hi. We consider a non-degenerate fandif§f, } - of finite ele-
ment partitions. The space of polynomials of degree lesgwaldok > 0 in a finite element
K is denoted byP,(K). The space of continuous piecewise polynomials is defined as

(3.1) Ni(Q) = {v), € C°(Q) such that vy|x € Py(K) VK € T}
5



This type of finite element space is the one that we considénignwork for both scalar
fields and every component of vectorial fields. These apprations are usually calleH! -
conforming approximations, because of the inter-elementicuity. Any function/y(£2)
can be uniquely determined by its values on a set of poindgsians? (see [7, 21]), and so
this is a nodal finite element approximation.

For quasi-uniform partitions, there is a constéhyt,, independent of the mesh size
(the maximum of all the element diameters), such that

(32) vahHLQ(K) < Cinvh]_(leh”L?(K); ||Avh||L2(K) < C’invh;(1||Vvh||L2(K)

for all finite element functions,, defined onkK € 7,. This inequality can be used for scalars,
vectors or tensors.

3.2. The corner paradox. Although all the formulations introduced above are equiva-
lent, stable and consistent, numerical approximations@fcurl-div formulations (2.4) and
(2.5) lead to spurious solutions for nonconvex domains,@gains with re-entrant corners.
Costabel provided in [15] a mathematical justification tis $urprising observation.

LEMMA 3.1. If Q is not convexV N H'(2)? is a closed proper subspace &f N
H(div; Q).

Out of this resultH *-stable finite element formulations cannot converge tot&ois in
V N H(div; Q) that do not belong t&” N H(2)?. We can prove that this is the case of the
curl-div formulation: finduy, € X, ¢ H*(Q)¢ NV such that

(33) ()\Vxuh,vah)+(AV-uh,V-vh): (f,Vh), Vv € Xy,

whereX}, is a H'-conforming finite element space. From Lemma 3.1 we then:have
COROLLARY 3.2.If Q is not convex

Jim la —anllvam@ive) # 0,

in general.

Proof. Every element of the sequen¢ay, },~o belongs toH ' (Q)?. Further, everyay,
is solution of (3.3) and thus\||V x up||? + A|V - u,||* < C||f]|||un]|, for C uniform with
respect toh. From [15, Theorem 4.1], we have that,| o) < |V x wsl| + |V - u]],
for 2 being a polyhedron (see also [15, Corollary 2.2] in the calsen®2 € C1!). Thus,
AV < up|l + AV - w| < |If]l and {up,}n>0 is uniformly bounded inf!(Q2)¢ € V' N
H (div; Q) and cannot approximate an elementim H (div; Q) which is not inH! ()40

This result implies that approximations based on (2.4) &ris) Cannot capture solutions
u ¢ Vn HY(Q)? of the Maxwell problem (2.3), and so, are not suitable for etioal
purposes. This kind of solutions are callednsmoottor singular solutions. Note thathe
key for this negative result is the spurious control on theedjence of the approximations
based on (2.4) and (2.5which implies that the whole gradient imiformly boundedn
L%(Q), sinceuy, is aH' ()4 function for all h.

Let us consider conforming finite element approximationtghef spaced” and @, de-
noted byV}, and @y, respectively. A crude Galerkin approximation of the cunhfmyming
mixed problem (2.3) reads as: fing, € V}, andp;, € @}, such that

(3.4a) a(up,vy) +b(vh,pn) = (f,vn), Vv, € Vi,
(3.4Db) —b(up,qn) =0, Van € Qn-



The well-posedness of this finite dimensional problem setie the discrete version of the
inf-sup condition (2.8):

. c(Wn, pr; Vi, qn)
inf sup
(ur,pn)EVR X QR \{0,0} (v, .gn)eVi x @\ {0,0} 1A, PRIIVE, gnll

for 84 > 0 uniform with respect té (see e.g. [8]). As far as we know, it is not known whether
there is any nodal interpolation f&f, x @} satisfying this inf-sup condition. However, it is
satisfied wherV}, is given by the celebrated Nedelec’s (or edge) elementsgthlements are
only conforming inH (curl; 2), since they do not satisfy normal continuity over the elemen
faces. A nodal finite element space can then be use@fqsee e.g. [35]).

As a result, nodal finite elements have only been used withad” formulation (3.3),
leading to spurious solutions for nonconvex domains, eagains with re-entrant corners.
On the other hand, the “good” formulation (3.4) has beenimtst to edge elements, since
they do satisfy (3.5). Since the problem is the fact that adinformulation is not suitable for
numerical purposes, a rehabilitation of nodal finite eletséas been proposed in [17]. The
key idea of this approach is to introduce a weight in the pgrdi-div term in (3.3) which
depends on the distance to the singularities. The resyftioglem is posed in a weighted
Sobolev space that does satisfy an approximability prgpert

For the previous reasons, nodal elements have always Hatsdrto curl-div conforming
formulations, whereas edge elements have always beeadataturl formulations. Instead,
in this article we construct a new curl mixed formulation @ancbrresponding residual-based
stabilized finite element approximation that can be solvét nodal finite elements. Thus,
our approach is very different to the one in [17]. Furthereadhe formulation we propose
can be automatically used for any problem without the nedehtov where the singularities
are and to define a weight function around every singularity.

3.3. A mixed finite element formulation suitable for nodal agroximations. Itis ob-
vious that a nodal finite element approximation that woudegks provide the “physical” so-
lution would be favored in many situations. In particul&e priginal motivation of this work
lies in the multi-physics magnetohydrodynamics (MHD) gesb. The numerical application
of this phenomenon, with increasing interest in fusion r@adesign, couples Navier-Stokes
and Maxwell solvers. The ability to solve both problems vathall-purpose stabilized finite
element method would make the extension of existing fluigesslto MHD multi-physics
very easy.

Our approach can be motivated as a residual-based stabdligeretization of the ex-
act augmented formulation (2.9), although we will simplgtstthe method without fur-
ther heuristic motivation. The finite element formulatioe wropose is designed fai!-
conforming finite element spaces. Thén, = N, (Q)? NV andQ;, = N(Q) N Q, for
k,l > 0 the order of approximation fon andp, respectively; there is no restriction be-
tweenk and/, and equal-order approximations are allowed. The methadists of seeking
u, € V, andp, € @y, solution of

(3.6a) a(un,vp) + 0(vVr, pr) + su(un, vi) = (£, vn), Vv, € Vi,
(3.6b) =b(un, qn) + sp(pn, qn) = 0, Yan € Qn,

where the stabilization term reads

n h2
(3.7) su(up, vp) = Z cu)\/ E_I;V cup V- vidx,
KeTy, K
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¢, being an algorithmic constant. We can easily see that (8 &)ésidual-based FE approx-
imation of the augmented formulation (2.9) (see e.g. [29). IPhe stabilization parameter
cu)\hei; must provide a dimensionally consistent method and it canebeistically justified
by using Fourier transform techniques (see e.g. [3]). Tmefieof this approach is twofold:
it allows us to circumvent the need of a discrete inf-sup @iordand stabilizes singularly
perturbed problems (see e.g. [21]).

The reason why the,, term is needed becomes evident from both theoretical asalys
and numerical experimentation. Obviously,/as+ 0 this term vanishes, and the method is
not a div-curl conforming algorithm. In the sequel, we amalyhis method. We denote by

cs(Why Ph; Viy gn) = ¢(Uh, PR Vi gn) + Su(Un, Vi) + $p(Phs qn)
the stabilized counterpart of

3.3.1. Stability analysis. In the next theorem we establish stability of the bilineanfo
introduced above with respect to the mesh-dependent norm

) i h2 2y
(3.8) Vi, gulln = N2[IV x va|| + A2 ( > 7§IIV . wll%) + A—%IIV%H-
KeTy,

LEMMA 3.3. The bilinear forme, : Vi, x Qp x Vi, x Qp — R is coercive with respect
to the mesh-dependent norm (3.8).

The proof of the lemma is straightforward. Unfortunatehjstnorm is not enough for
numerical purposes, since it does not explicitly providéarm control with respect té in
L?(2). However, we show in the next lemma that the “continuousmfjay,, py, || for the
FE solution can be bounded by its mesh-dependent norm.

LEMMA 3.4.The solutionwy,, ay,) € Vi, x Qy, of the discrete problem

(3.9) cs(Wh, an; Vi, qn) = (£, vr) + (9, qn), V(Vh,qn) € Vi X Qn

forf € V' andg € @', satisfied||ws, an|| < ||wWh, anlln + |lg]lg-- Furthermore, for any

(Vh,qn) € Vi x Qn, we have| vy, qulln S [V, anll-
Proof. SinceV}, x Q) C V x @, by virtue of the continuous inf-sup condition (2.8),
there existgw, &) € V x @ such that|w, a|| = 1 and

c(Wh, an; W, &) > B||wn, anl||.

Let us denote by Z,,(-) the Scott-Zhang interpolation operator (see e.g. [7]) th&ocorre-
sponding finite element space; the space (either Q},) is easily understood by the context.
We have

(3.10) (Wh, ap; W, &) = c(Wp, ap; W, & — SZp(Q)) + ¢(Wh, an; 0,SZ(&)).
We bound the first term in the right-hand side as follows:

c(Wh, an; W, & — SZp(@))

SAMV xwill|V x %l + Y IV-wallklld = SZn(@)|x + [ Van| [ W]
KeTy,
SAMY x wall[IVx W]+ D hie|V-wall k|| @l @) + | Vanll| %]
KeTn
(3.11) S was anllnllw, &lf,



where we have used the interpolation properties of the Sdwihg projector (see e.g. [7]).
Using the fact thatwy,, «;,) is the solution of the stabilized problem (3.9), the secamntht
in (3.10) can be treated as

c(Wh,an;0,8Z,(a)) = (9,SZn(@)) — sp(an, SZi(a))
- 02 -
<9l l|ISZn(@)]lq + XHV%HHVSZh(Oé)H
< (W, anllln + llgllQr) 1w, all,

by using the continuity o§Z(-) in H*(Q2). Since||w,a&|| = 1 by construction, we get
the upper bound foff - ||| in the lemma. The lower bound is easily obtained using arrgeve
inequality (see (3.2)).

REMARK 3.1. We infer from the previous lemma the importance of ii& - wy,||
stabilization term, which is essential for boundifig - w,, & — SZ,(&)) in (3.11). In fact,
the requirement of having this stabilization is not onlyheical, as is shown in Section 4
using numerical experimentation.

The following corollaries are consequences of Lemmata 3d33a4.

COROLLARY 3.5. The stabilized bilinear forme, : V, x Qn x Vi, x Qn, — R is
continuous with respect to the notn ||.

COROLLARY 3.6. Problem (3.6) is well-posed, i.e. it admits a unique solufiay, p,)
bounded by the data as follows:

(3.12) lFan, pall < NE-

Proof. The coercivity in Lemma 3.3 with the upper bound in Lemmaf8t4 = 0 imply
that

(3.13) llan, prlll® < es(un, pr;an, pr).

Therefore, (3.6) is a squared linear system of equationis, aypositive definite system matrix.
So, it proves existence and uniqueness of solutions. Onttiex band, using the Cauchy-
Schwarz inequality we g€t, uy,) < [[f||||un| < |If]|||un, pr||. Combining this result with
(3.13), we prove the corollafy.

Thus, the numerical approximation (3.6) is stable in thertswous” norm. On the other
hand, the consistency of the method is easily checked byatttetat bothp andV - u are
zero a.e. if).

3.3.2. Error estimates. As commented above, numerical methods based on the curl-
div formulation fail to converge to singular solutions duetihe lack of an approximability
condition (see Corollary 3.2). Formulation (3.6) avoidis fhroblem, since both stability and
continuity hold for the same norif- || in which the continuous problem is well-posed.

In order to define the interpolation error function, we make of the following result.
We refer to [1, Proposition 3.7] for the proof of this lemmadslso [27, Lemma 4.2]).

LEMMA 3.7.1f v € V N H(div; ) thenv € H"(Q)? for some real number > 1, and
there holds

MV ) SV X V[V v

The previous lemma leads to the following result, that isdugethe definition of the error
interpolation function.



COROLLARY 3.8. Any functionv € V N H(div; Q) belongs toL?(0K ), for any K €
Th.

Proof. As a consequence of the previous lemma; H" (K )<, for somer > % Now,
using the trace theorem for fractional Sobolev spaces in Th@orem 1], we obtain that
v € H"~2(K), which proves the resulfl

The interpolation error for the new formulation, which canieom the subsequent con-
vergence analysis, is defined as

(3.14) n(u,p) (wh,rhl)réVhXQh o(u—wp,p—14)
where
1 hK 2 :
(3.15) o(v,q) := |lv,ql| + Az ZE—QHVIIH(@K) :
K

THEOREM 3.9. The solution(uy,, p;,) of problem (3.6) for the family of finite element
partitions {7, },~0 approximates the continuous soluti6m, p) of problem (2.3) in the fol-
lowing sense

llar = v, pn = pl| < En(u,p).
Proof. On one hand, the Galerkin orthogonality, the consisterfithe@method and the

fact that the finite element approximation is conforminglléa

Cs(uh — Wh, Ph — 7’h§Vh7Qh> = Cs(u — Whp, D — Th;Vhth)

(3.16) =c(u—Wp,p— T Vi, qn) + Su( — Wi, V) + sp(p — Thy qn)

for any (wy, ) and (v, gn) in Vi, X Q. On the other hand, using integration by parts
within each element domaiR' € 7}, for the s, term, we get:

2
Sy(u—wp,vp) = Z cu)\/ h—KV-(u—Wh)V-vhdx

h2
= > cu)\/ K—I;(u—wh)-vv-vhdx
K

KeTy
h2
+ Z cu)\/ e—g(ufwh)~nV~vhdx
KeTy oK
h2
<Y curJg 10 = wall 2 V'V - Va2
KeTy,

h2
+ 3 Cu}‘f_fg(”u_WhHL?(BK)”v'Vh||L2(8K)-
KeTy,

Using the inverse inequalities (3.2) and the relatj@n, || 22 (ox) S h;(%Hd)hHLz(K), that

~

holds for any piecewise polynomial function, together wittung’s inequality and the conti-
10



nuity of ¢ ands,,, we get

Cs(uh — Wh,Ph — Th; Vh, Qh)
|||Vhth|||

1 hi
(317) +)\2 (Z g—zllu—Wh”%z(aK))

K

Sl = whn,p— 7]

2

By virtue of Lemma 3.4 with(f, g) = ¢s(u — wy, p — rp; -, -) and the fact that

—b(u —wp,q) +5,(p =71, q)

lgllg:r = sup Sa—wa,p —7allls
4€Q\{0} lallo
we get:
llan —wn, pr — 7all S llun — Wa, pr = ralln + [0 — W, p — 74|
(3.18) S ap — Wi, o — ralln + o(a — wy,p — ).

Testing (3.17) againstvy, ¢n) = (up, —wp, pp, —rp,) @and using the coercivity af; in Lemma
3.3, Cauchy-Schwarz and Young’s inequalities, we obtain

llun = wh,pn — ralli S llan = wh,pn — rallo(a — wi,p — 1)
S (lap — Wi, pn = 7alln + o(a = wp,p —rp))o(a — wp,p — 1)
1
(3.19) < @Illuh —wh,pn — i + 1+ B)o(u — wh,p — i),

for 8 > 0. Takingg large enough in (3.19) together with (3.18), we obtgin, — w,, pr, —
rilll < o(u — wp, p — r1,). Combining this bound and the triangle inequality , we get:

(3.20)
llar —w,pr = plll < e —wn,p = rall + llan — Wa,pp = 72l S 0w — Wh,p —72)

for any (wy,, ry) € Vi, x Qy,. Taking the infimum fow,, € V,, andr;, € @}, and invoking
the expression for the interpolation error (3.14), we pribvetheorentl

In the following, we obtain soma priori error estimates. Let us consider the interpola-
tion estimates:

(321) inf ||V_Wh||HS(K)gh?SHVHHf(K)v 0§S§t§k’+1,
wpEVR

(3.22) dnf g = rallme ) < hig *llall ae e 0<s<t<I+1,

forany K € T, (see [17]). We get the following order of convergencerégular solutions,

which in fact does not depend on the ordef the approximation fop:

COROLLARY 3.10. Let the solution of the continuous problem (2.3)we H (),
with » > 1. Then, the solutiofiuy, py) of problem (3.6) satisfies the error estimate

1 _
o =, p = pall S A7ATH [l ey,

wheret := min{r, k + 1}.
Proof. We infer from (3.21) that

inf - _ < Az pt-l
(wh,rhl)révthh o = wn,p =7l S llall ze (o),
11



where we have used the fact that 0 a.e. in€). On the other hand, the trace inequality
(3.23) oll720m) S P 10llT20r0) + Pl VOl 720y
that holds forr € H!(K), K € T, allows us to obtain

hicllu = whll7205) S 10— Wall7a) + hicla = wall 3 -

The proof follows by taking the infimum with respect ter,, 71,) in (3.20), the previous
result and (3.210L

We can prove a sharparpriori error estimate that is also applicable to nonsmooth solu-
tions, under some assumptions over the partifipand/or the polynomial degréeof V;,. In
order to do that, we will make use of the following lemma andnloea 3.7.

LEMMA 3.11. Letu € V N H(div; ) be the solution of (2.3). Then,can be decom-
posed into a regular part and a singular part as follows:

u=up+ Ve,

whereuy € H'*"(Q)4NHo(curl; Q), ¢ € Hi(Q)NH*"(2) for some real number > 3.

Lemma 3.11 is a consequence of the deep analysis about thessities for the Maxwell
problem due to Costabel and Dauge in [16] (see also [17,@e6}).

Error estimates for nonsmooth solutions can be provedinglgn an assumption over
the finite element spadé,:

AssUMPTION3.1. There exists a finite element spacgdefined over the mesh partition
Tn such that, for any function,, € G}, V¢, € V;,. Furthermore, this space satisfies the
approximability property

¢3161th 16 = dnllmecrey S R Sl e i

foranyK € Ty, for¢p € H'(K)and0 < s <t <1+k.

Lemma 3.7 proves that the solutiarof the Maxwell problem (2.3) for a forcing terfne
H (div 0; ©2) belongs taf " (€2)¢ for somer > 1. Without any assumption over the regularity
of the solution, we get the following error estimate that &sdéd on the decomposition in
Lemma 3.11:

COROLLARY 3.12.Under Assumption 3.1, the soluti¢ay,, p;,) of problem (3.6) satis-
fies the error estimate

1 AT,
e —wnp—pall S <A2h‘}<||uOIIH1+t<K>+Wh§< IIsDIIH1+t<K>>7
KeTy,

for anye €]0,¢ — 1/2[ and fort = min{r, k}.

Proof. Following [17], we use the decompositien= uy + V¢ in Lemma 3.11 and
consider optimal interpolations, ;, € V;, andg;, € G, for ug andyp, respectively. Then,
we have

luo — To,nll =iy S i laol| e sy,
(3.24) Il = @nllmey S b~ llllarve ),
for0 < s < ¢+ 1, witht := min{r, k}. These estimates also hold locally, within each
element. Now, we pickv;, = Gg 5, + V@p, € V3. We can easily see that

1 1

A2 B A2 B
lla = wi. pll S5 lluo — G0l + -1V (e — @n)l
FAZ |V x (ug — o)),

12



where the contribution fronp has been neglected becayse- 0. For the second term in
Ej(u) we use

hilla—wallz20x) S hicllwo — Bo.nllL2ory + hilIV(e — @n)llL2 (oK)

The first term in the right hand side of the previous inequalitn be treated as above, using
the trace inequality (3.23). For the second term, we usenitgedding ofil’ <™ (0K) into
Wetamm(K) (see [22]) fore > 0 andm = 2, getting:

hi V(e = én)llezor)y S hillIV (e — on)ll me (ax)

l ~
<RIV~ o)l e

1 ~
1 _3_
ShElhid 2 ol e,

where in the last step we have used the second interpolatiimage in (3.24) withs =

3 + € < 1+t. Note also that in the first step the fractional derivativehinorm inH (0K )
would scale a%f., but we need to introduce a length scaiadependent of the element size
to bound the wholéZ (0K )-norm.

Combining the previous results, we easily get the desinext estimaté]

REMARK 3.2. When Assumption 3.1 is satisfied, the previous result is stesng, in
the sense that we have not only proved convergence towagdgptdsolution, but an (al-
most) optimal order of convergence, even for nonsmoottiieokl We can also weaken the
approximability assumption ovér;,, and in the limit case

lim inf 16 = nllae@ =0, s<1+4m
we would get strong convergence towards the solution witbaler. Alternatively, instead of
considering the decompositionaf an interpolation result

: : r—1
Jim inf (" Ha = whl @) + IV x (u—wy)[l) =0,
for V}, would also lead to convergence towards the good solutiotihowt the need to intro-
duceGy,.

REMARK 3.3. Let us note that a similar method has recently been propas¢g] ifor
electromagnetic eigenvalue problems. The method in [6kddp on a coefficiernt and cor-
responds to the method proposed hereinder 1 with the only difference that no restriction
over the FE spaces or meshes is assumed. Unfortunatelyptivergence of the proposed
algorithm is deteriorating in the limit — 1 and the corresponding numerical analysis in
[6] does not apply for the limit case considered in this work.

3.4. FE meshes and spaces satisfying Assumption 3 Assumption 3.1 is known to
hold fork > 4 in dimension 2 without any assumption on the mesh typolagshis case, we
can taker;, as the finite element space obtained for the Argyris trianfgtek > 2, G, can
be constructed by using the Bogner-Fox-Schmidttrianglerder to do this, the triangulation
Tr should admit a coarser mesh of macroelements. We refer 1édid detailed discusion.

For the most interesting case of linear interpolations gurtide same kind of restriction
over the mesh topology, the discrete space recently intediin [36], based on a Powell—-
Sabin interpolant (see Figure 3.1 right), makes true Assiom3.1 fork > 1, both in two
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and three dimensions (see also [9, 11]). Furthermore, we bagerved from numerical
experiments that a mesh with the crossed-box typology (s&perd-3.1 left) also satisfies
this assumption. In a numerical code, it implies to perforcheap pre-processing of the
original mesh. Given any original triangular mesh, the Ab®abin mesh is obtained by
introducing additional nodes on the mid-points of the edgesthe element barycentes, and
re-connecting the nodes properly. On the other hand, aldsse meshes are obtained from
a quadrilateral mesh by placing a node on its center, andige@ur triangles; in fact, the
additional node can be condensed. These are the two typslofimeshes considered in
Section 4. We refer to [4] for detailed numerical experinseaitout the effect of having a
suitable macro-element structure in the convergence ahtitbod. In [5] we have extended
this work to three-dimensions in the frame of MHD applicaipwe have considered both the
3d Powell-Sabin element and a 3d extension of the crosshuik;dhoices exhibit excellent
convergence properties.

FI1G. 3.1.Crossed-box (left) and Powell-Sabin (right) macro-eletigpologies.

4. Numerical experiments.

4.1. Stabilized curl formulation. In order to check, using numerical experimentation,
that the nodal-based finite element approximation proposéus article converges to both
smooth and nonsmooth physical solutions, we take the dasuoh that the solution of (2.3)
in polar coordinateér, 6) is:

20 2n0
(4.1) u=V (rT sin %)

in the nonconvex domaift = [—1,1]2\ [0, 1]?, with one re-entrant corner. We have that
u € H% ()2, for anye > 0. Since forn = 1 we have thatr ¢ H'(Q)2, by virtue of
Corollary 3.2, curl-div based finite element approximasi@onverge to spurious solutions.
On the other hand, as proved in Theorem 3.9, the solutiorrofiftation (3.6) must converge
to the physical solution (4.1) by usirigrefinement and appropriate meshes. In order to ob-
serve this, we have considered a family of structured tuéargneshes obtained by a partition
of the domain into squares and a subsequent division of thersg in the crossed-box fashion
(see Figure 3.1). We consider linear elements in the reguttiesh. The number of divisions
in every direction has been set2bwith i = 3,4, 5, 6; the characteristic mesh sizeis 2*
and the number of triangular elemegts!. In Figure 4.1(a), we show the numerical errors
ey = u, —uande, = p, —p for differentnorms ag — 0. The convergence rate at every re-
finement level and numerical values of the error have beeriged in Table 4.1. From these
results, it is clear that the method we propose herein iskitagga approximate numerically
nonsmooth solutions, as Theorem 3.9 says. In fact, the ofdmnvergence of the method
is surprisingly high when compared to those for the weighégalilarization in [15] and the
discontinuous Galerkin technique in [28] (for the same pesblem). Furthermore, optimal
convergence ir.?(2) is obtained for this method.

14
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FiG. 4.1. Error plots for different quantities

in,2(€2) norm for Formulation (3.6) and the problem with

analytical solution (4.1), with different values af Plot (b) corresponds to (3.6) without the stabilizatiomnte

Su(“hv vh)'

elements for botlu; andp.

TABLE 4.1
Experimental errors for Method (3.6) fai;, and rate of convergence (in brackets). Piecewise lineatefini

| || n=1 | n =2 | n=4 |

LA [ el [ IVxeal [ fleall [ IV Xeull | Tfleull [ [V xeal |
273 2.67e-1(-) 3.92e-1 () 6.75e-2 (-) 9.96e-2 (-) 7.31e-3(-) 2.66e-2 (-)
274 1.51e-1(0.82)| 2.03e-1(0.95)| 2.49e-2(1.44)| 3.20e-2(1.64)| 1.93e-3(1.92)| 3.44e-3(2.95)
27° 8.11e-2 (0.90) | 9.22e-2 (1.14)| 8.68e-3(1.52)| 9.08e-3(1.82)| 4.89e-4 (1.98)| 4.34e-4(2.99)
276 4.52e-2 (0.84) | 3.98e-2(1.21)| 3.12e-3(1.48)| 2.44e-3(1.89)| 1.22e-4 (2.00)| 5.43e-5(3.00)

Now, in order to stress the importance of thgV - u,|| stabilization, we have switched
offthe term(h%V - uy,, V - v;,) from the formulation (3.6). In the previous stability arsity
this term is crucial for recovering?(Q2)-control ofu,. We perform the same convergence
test as above and show the plots in Figure 4.1(b). As expectenwyergence is not attained

for the quantity||e,||. So, the introduction of this term is motivated by both tleiwal and
numerical observations.

Going back to the full formulation (3.6), we perform the sacnavergence analysis with
n = 2andn = 4 in (4.1). In the cases = 2, the solutionu;, belongs toH s ~<(Q)2 C

15



TABLE 4.2

Experimental errors for Method (3.6) fqgr, and rate of convergence (in brackets). Piecewise lineatefini
elements for botlu;, andp.

| || n=1 | n =2 n =4 |

[ A ] llepl [Veoll | llepl [ [Vepll | llepl [ Vel |
273 1.56e-1 (-) 1.05e+0 (-) 3.72e-2(-) 2.68e-1(-) 8.69e-4 (-) 1.14e-2 (-)
2-4 8.70e-2 (0.83)| 8.75e-1(0.27)| 1.30e-2(1.51)| 1.39e-1(0.95)| 1.0le-4(3.10)| 2.10e-3 (2.44)
27 4.09e-2 (1.09) | 6.29e-1(0.48)| 3.85e-3(1.76)| 6.27e-2(1.15)| 1.09e-5(3.22)| 3.56e-4 (2.56)
276 1.76e-2 (1.22)| 4.19e-1(0.59)| 1.04e-3(1.89)| 2.63e-2(1.25)| 1.10e-6 (3.30)| 5.88e-5 (2.60)

TABLE 4.3

Experimental errors for Method (3.6) far;, and rate of convergence (in brackets) for the test probleth wi
n = 1 and Powell-Sabin triangle meshes. Piecewise linear finéments for botha;, andp.

n =

1

I
L~ ]

lleu]l [ [V x eul
273 2.13e-le-1(-)| 2.99e-1(-)
274 || 1.13e-1(0.91)| 1.40e-1(1.10)
275 || 5.98e-2(0.92)| 5.99e-2(1.22)
276 || 3.34e-2(0.84)| 2.48e-2(1.27)

H'(©2)2. Then, both curl-div and curl formulations are able to capthe solution. In any
case, the smoothness of the solution does not allow us tindht&oretically optimal conver-
gence for first order approximation of batly andpy,, sinceu ¢ H?(2)2. The convergence
plot and convergence rates at every level of refinement céouvel in Figure 4.1(c) and Ta-
ble 4.2, respectively. The method exhibits some superergence. Fon = 4 the solution
u belongs tQH%—f(Q)2 and the optimal error estimate should apply. We can seehfsaitst
in fact the case for both andp in the continuous norrfiley, e, ||| in Figure 4.1(d) and Table
4.1. Again, the method exhibits super-convergence.
Finally, we solve the singular problem (with = 1) with a Powell-Sabin mesh. As
expected, the method shows a very similar convergence asdbe one obtained for crossed-
box meshes. The numerical errors and slopes with respécitte shown in table 4.3.
Let us remark the fact that the stabilized finite element fdation (3.6) leads to a
positive-definite linear system. In this work, this linegstem has been solved using a direct
solver. For larger scale problems, a Krylov iterative solwéh a Schur complement type
preconditioner could be explored (see [20]). This type afcktpreconditioner allows one
to decouple the computation af, andp;, at the preconditioner level, reducing the original
problem into two smaller ones, for which effective precaiogiers can be used.

4.2. Stabilized curl-div formulation. Following the same idea as at the continuous
level, in which we went from (2.3) to (2.4) passing regulafibom p to u, we can pass from
(3.6) to a curl-div stabilized finite element formulationroBeeding this way, we get the
discrete problem: finah, € V}, andp;, € Q, solution of

(4.2a)

(4.2b)

n h2
7b(uh7 Qh) + Z / TKVph . thdX = 0,
K

KeTy,

a(up, vy) +0(vi,pn) + (cuAV -up, V-vy) = (f,vy)

Vv € Vi,

th S Qh .

Again, this method is a residual-based finite element metimoghich the stabilization pa-

rameter has been chosen todye. The second term in the right-hand side comes from the
penalty term in (2.9) but takinéAL as penalty coefficient. The numerical analysis of this
16



method uses similar arguments to the ones for (3.6). Sindeawe control over both the curl
and the divergence af;,, and the controh||Vp;, | only leads toL?(2) stability for p;, this
problem is well-posed for the curl-div norm, for which théseno approximability property.
Thus, this formulation is not able to deal with the singutaution (4.1) withn = 1; we show
this in Figure 4.2(a). However, as expected, the methoderges fom = 2 andn = 4 to the
good solution, since € H'(£2). We show the error plots in Figures 4.2(b) and 4.2(c). Let us
point out that in the curl-div formulation there is no cotweer Vp,,, and so, no convergence
can be expected for it (see Figure 4.2(b)).

lrg—— . . . .
1.5 ! ! ! ! o _--‘-D"““‘--u —-u
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FIG. 4.2. Error plots for different quantities in’.%(£2) norm for Formulation (4.2) and the problem with
analytical solution (4.1), with different values of

5. Conclusions. The finite element formulation proposed in this paper to apipnate
Maxwell’s problem has been shown to allow one to use contisli@grangian interpolations
for the unknown, yielding stable and convergent approxiomatto any solution of the con-
tinuous problem, including singular solutions. Convergeto smooth solutions is reached
with optimal order.

The essential point to converge to singular solutions isstodathe spurious control on
the L2(£2)-norm of the divergence of the unknown, typical of penalipedurl-div formu-
lations. Instead of avoiding this by using weighteé(2)-inner products, we resort to the
introduction of a Lagrange multiplier to enforce the zereedgence restriction. However,
to ensure stability of this in the appropriate functionatisg, a novel augmented formula-
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tion has been introduced, which consists of adding a Lagtaaf the multiplier in the zero
divergence restriction. Since the multiplier is zero in toatinuous problem, consistency
remains unaltered. The final ingredient is to use a stabifi@emulation at the discrete level,
in our case consisting only in adding a least-square fornm@fzero divergence condition.
The stabilizing term is multiplied by the square of the meigle,sso that it mimics stabil-
ity of the divergence of the unknown iff ~1(Q), not in L?(92), as curl-div formulations
wrongly do. This new term is also responsible for obtainitadpiity in the L2(2) part of the
whole H (curl; Q) norm of the unknown. Finally, in order to have approximapifor lin-
ear Lagrangian elements, particular mesh typologies neugsbd for singular solutions that
can easily be generated by a cheap post-processing of ajigadiriangular or quadrilateral
mesh, both in two and three dimensions.

A classical numerical test has been used to check the theadrptedictions. Notably,
very good convergence has been observed in the case wherlutiersis singular, as com-
pared to other formulations that can be found in the liteatu

The practical interest of our approach is clear. Even ifoteil approximations for
Maxwell’s problem may be afforded at a reasonable compartaticost when it is an iso-
lated problem, it is obvious that a classical Lagrangiam tgpproximation greatly simplifies
its implementation in situations where this problem is dedpgo others, as in MHD (see
[5]). On the other hand, our approach may be viewed as amattee to the use of the
so called compatible discretization, satisfying the appede inf-sup conditions. In simple
model problems, such as Stokes’, Maxwell’'s and Darcy’s,fotmulation allows us to use
the same interpolation for the unknowns in all cases, instéane compatible for each case.
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