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1. Introduction

The aim of WP3 is to deliver key mechanisms to mitigate and reduce variability and increase
reliability at layout, circuits and system level, as well as to determine and propose innovative
compensating and fault tolerant techniques considering the PVT variability and corresponding
yield impact. The key effects of that environmental fluctuations and process variations are
exposed in this deliverable. These objectives will be developed during the second and third year of
the project, milestones 4 to 8. Figure 1 shows the global framework of technologies and cell type
objective of Work Package 3 (WP3). At device level we differentiate between devices modelled by
TRAMS whose characteristics as well as variability and reliability performances are a goal of the
project (Bulk CMOS is scheduled for M12 (Milestone MS2), Finfets for M18 (Milestone MS3), CNT
for M18, the rest for M30 (Milestones MS5,6)) and medium/long term technology devices with
promising characteristics for memory systems that although they are not objective of device
modelling in TRAMS they will be considered at a exploratory level at circuit and system level (Task
2.3, M36). In this last set of technologies we will include Metal-Insulator-Metal devices (MIMs) [1],
RRAM [2], electromechanical CNT arrays (MCNT) [3], Nanobridge devices [4], Metal-Insulator-
Semiconductor (MIS) [5], Phase change memories (PCM) [6], Ferromagnetic RAMs [7], MRAM [8]
and other devices. The objective of T2.3 will be the analysis of new memory cells such as 1T-SRAM
and CB. In this first year and in relation with deliverable D3.6, Task 3.1 has been dedicated to
evaluate the impact of the PVT variations in a set of SRAM and DRAM cells (red boxes in Figure 1),
using device models previously available (PMT for Silicon and Stanford for CNTFET) and including
the new and original results from WP1 with the device modelling and variability evaluation from
18 and 13 bulk CMOS technologies.

| WP3 TECHNOLOGIES AND CELLS FRAMEWORK |

DEVICES MODELLED IN TRAMS NEW EMERGING DEVICES (EXPLORATORY ANALYSIS)
WP1
(TASK 2.3)
£3
SEMICONDUCTOR FET DEVICES NON-SEMICONDUCTOR/NON CONVENTIONAL EMERGING DEVICES
TECHNOLOGY: Si-Bulk | FinFET | I1I/V | CNTFET MIMs MCNT Nanobridge | MIS | PCM | FeRAM | OTHERS
Ti | M [ 10 | (Nantero) | Solide (OGCNT)
02 |OL| N Electrolyte
CELL TYPE
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RAM 8T
1T1C
Dynamic | 3T
RAM 2T1D
3T1D
1TCL [
Other 1T-SRAM | [ [ [ [ [ [ [ [ |
cells CB [ [ 1 | | \ | | |
Silicon BULK Technologies CNTFET
45 32nm | 22nm | 16nm 18 nm 13 nm 16 nm
PTM | PTM PTM PTM TRAMS WP1 | TRAMS WP1 TRAMS WP1
X X X X X (UOG) X (UOG) X (UPC)

Figure 1. Framework of technologies and memory cells considered in WP3. Red boxes show the technologies and cell considered in
this deliverable.
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2. Variability scenarios

2.1. Objectives and introduction

The aim of this document is the analysis of the environmental (power supply voltage and
temperature) fluctuations, the process variability for different technology nodes including sub-
22nm as well as BTl degradation and SEU impact on memory circuits. We will evaluate basic 6T,
1T1C and 3T1D bit cells, and 32KB and 4MB cache memory circuits for 6T and 3T1D and we
consider the following Si-bulk CMOS technologies 45, 32, 22, 18, 16, 13 and CNT (equivalent to
16nm node). Device models for 45, 32, 22 and 16 nm are the ones known as Predictive Technology
Models (University of Arizona [9]), the models for 18 and 13 nm are results of WP1, and the CNT
analysis uses a modification of the models of Stanford (see section 8) with preliminary results
about variability from TRAMS WP1..

Section 4 is dedicated to SRAM memories characterized by the 6T memory cell. Section 4.1
analyses the impact of VT and node variations on speed parameters and energy consumption, and
in section 4.2 the robustness of the cell in front of process parameter variations is presented.

Section 5 analyses DRAM memories, characterized by 1T1C in section 5.1 and 3T1D in the rest.
Section 5.2 analyses the impact of VT and node variations on speed parameters. In section 5.3 the
robustness of the 3T1D cell in front of process variation is investigated and in section 5.4 the
analysis of the impact of BTl degradation of 3T1D on memory performances and yield is
presented. The impact of the process variation on the cache memory performances (both 6T and
3T1D) are analysed in Section 6. In section 7 the impact of SEU on the memories reliability is
investigated, and in Section 8 the performances of CNT in comparison with the rest of Si-bulk
technologies are presented (for the 6T cell).

2.2. Variability scenarios

The margin of temperature variation considered in this document is, in general, the range 25 °C to
110 °C. The margin of Vpp variations due to Rl and Rdl/dt has been considered as a +/-10% of the
nominal power supply used in each technology. For process variation we have considered the
following different models:

Process variation model used for PTM technologies

For the four Si-bulk CMOS technologies, 45, 32, 22 and 16 nm, covered by PTM we have
considered the process variations of the threshold voltage of the devices (Vi ) and the device
geometry (L and W).

For the Vth we have assumed a Gaussian distribution and independent components for random
variation (due to random dopants distribution, RDD and line edge roughness, LER) and correlated
Gaussian for systematic variations. Geometry variations have been modelled as systematic
Gaussian distributions. In all the analysis at system level (cache) both systematic and random
variations have been considered and in the case of analysis at cell level, only Vth random
variations are contemplated. For each technology we have considered different variation
scenarios, standard for 45nm, moderated and high for 32nm and moderated, high and very high
for 22 and 16nm. Table 1 shows the standard deviations or second moment of the respective
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distributions. The levels of variability assumed in the high and very high variability scenarios are
consequent with that observed and deduced for 18 and 13 nm technologies, result of Work

Package 1.
Technology Scenario total systematic random(*)(**) Geometry
100 x 1 o/nominal |100 x 1 /nominal 100 x 1 ¢/nominal
Vth Vth LW
45 nm standard 2% 4% 2%
32nm moderated 3% 6% 2%
high 4% 15% 2%
22nm moderated 4% 8% 2.5%
high 4% 15% 2.5%
very high 5% 30% 2.5%
16nm moderated 5% 10% 3%
high 5% 20% 3%
very high 6% 40% 3%

(*) (random dopants distribution, RDD, and line edge roughness, LER), non correlate (**) for minimum size, for
general case correct with /sqrt(WL)

Table 1. Process variation model for the analysis with PTM technologies

Process variation model used for WP1 technologies

Devices models for 18 and 13 nm technologies provided by WP1 present a very high variability on
Vi, caused by RDD and LER mechanisms. The standard deviations have been obtained from WP1
analysis and are given in Table 2.

Process variation model used for CNT technology

The process variation model for CNTFET technology is part of the work done in WP1 (Task 1.1), an
introduction to the variation model used is presented in Section 8.

device o Vth 100xc /nominal
18nm NMOS 66.7mV 33%
18nm PMOS 116mV 58%
13nm NMOS 78.8mV 39%
13nm PMOS 116mV 58%
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(*) (random dopants distribution, RDD, and line edge roughness, LER), non correlate (**) for minimum size, for
general case correct with /sqrt(WL)

Table 2. Vth process variation model for analysis with 18 and 13 nm CMOS devices (VDD=0.9 volts).
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