
Hybrid MPI+OpenMP parallelization of an FFT-based 3D
Poisson solver that can reach105 CPU cores

A. Gorobets1,2, F. X. Trias1, R. Borrell3 M. Soria1 A. Oliva1

Corresponding author: andrey@cttc.upc.edu

1 Heat and Mass Transfer Technological Center, Technical University of Catalonia, Spain.
2 Keldysh Institute of Applied Mathematics of RAS, Russia.

3 Termo Fluids, S.L., Spain.

Abstract: This work is devoted to the development of efficient parallel algorithms
for the direct numerical simulation (DNS) of incompressible flows on modern su-
percomputers. A Poisson solver for problems with one uniform periodic direction is
presented here. It is extended with a two-level hybrid MPI+OpenMP parallelization.
Advantages and implementation details for the additional OpenMP parallelization are
presented and discussed. This upgrade has allowed to significantly extend the range
of efficient scalability. Here, the solver has been tested up to12800CPU cores for
meshes with up to109 nodes. However, estimations based on the presented results
show that this range can be potentially stretched beyond105 cores.

Keywords:Poisson solver, hybrid parallelization MPI + OpenMP, Direct numerical
simulation, preconditioned conjugate gradient, Schur complement, FFT

1 Introduction

Since the irruption of multi-core architectures, computing power growth is mainly based on increasing
both the number of nodes and the number of cores per node. However, these tendencies bring new
problems that must be solved in order to exploit efficiently the new computing potential. In the context
of CFD of incompressible flows, the Poisson equation, that has to be solved at least once per time step,
is usually the most difficult-to-parallelize part of the DNS algorithm.

The Poisson solver presented here is a combination of a block preconditioned Conjugate Gradient
(PCG) method and a Fast Fourier Transformation (FFT). The FFT decomposes the original system
into a set of independent 2D systems that are solved by means of the PCG algorithm. For the most
ill-conditioned systems that correspond to the lowest frequencies in the spectral space the PCG solver
is replaced by a Direct Schur-complement Decomposition (DSD) method to avoid slow convergence.
The overall solver, hereafter named Krylov-Schur-Fourier Decomposition (KSFD) was implemented
within distributed memory model using message-passing interface (MPI). Its applicability was limited
by around2000-6000CPU cores depending on the mesh size and the scheme order. Main limiting factors
are twofold: (i) the direct solver for the most ill-conditioned 2D system(s), and (ii) the parallelization in
the periodic direction. For details about the solver and its components the reader is referred to [1].

In the present paper, the solver is upgraded by means of a two-level hybrid MPI+OpenMP par-
allelization that exploits better supercomputers with multi-core nodes. MPI couples nodes within the
distributed memory model while OpenMP provides shared memory parallelism inside each node. Some

1



details about OpenMP parallelization issues, e.g. memory access problems, hardware and parallel bot-
tlenecks, can be found for instance in [2]. This hybrid model is rather common in CFD. MPI+OpenMP
based algorithms and comparison with the MPI-only approach can be found for example in [3]. In
general, the hybrid approach improves the performance but not significantly. In [4], comparison MPI
vs. MPI+OpenMP concludes that the latter outperforms the former only on a large number of CPUs.
However, migration to a more complex parallelization can hardly be justified by a relatively small gain
in performance. Hence, the present work is mainly devoted not just to improve the performance, but to
heal the above-mentioned limitations allowing to engage efficiently many times more CPUs.

2 Overview of the mathematical model

The turbulent incompressible flow of Newtonian fluid is considered. The velocity field,u, is governed
by the Navier-Stokes (NS) and continuity equations given by

∂u
∂t

+(u·∇)u =
1
Re

∇2u−∇p ; ∇ ·u = 0, (1)

whereReis the Reynolds number. Periodic boundary conditions are prescribed in thex-direction. The
finite-volume symmetry-preserving spatial discretization of these equations reads

Ω
duh

dt
+C(uh)uh +Duh−Mt ph = 0h, (2)

where the discrete incompressibility constraint is given byMuh = 0h. The diffusion matrix,D, is sym-
metric and positive semi-definite; the diagonal matrix,Ω, represents the sizes of the control volumes and
the convection matrix,C(uh), is skew-symmetric,i.e. C(uh)+Ct (uh) = 0. For a detailed explanation,
the reader is referred to [5].

For the temporal discretization, a second-order explicit one-leg scheme is used for both the convec-
tive and diffusive terms. The pressure-velocity coupling is solved with the fractional step projection
method in which a predictor velocity,up

h, is evaluated without considering the pressure gradient and
then the incompressibility constraint,Mun+1

h = 0h, leads to a Poisson equation forpn+1
h : Lpn+1

h =
Mup

h with L = −MΩ−1Mt , where the discrete Laplacian operator,L, is a symmetric negative semi-
definite matrix. Thus, the original 3D system to be solved isA3Dx3D = b3D, whereA3D =−L ∈ RN×N

andN = Nx×Ny×Nz is the total number of nodes (3D means each unknown is coupled with its neighbors
in the three spatial directions).

The Poisson solver is presented in detail in [1]. Shortly, the original 3D system is decomposed by
means of FFT into the set of independent 2D systems:Â2D

i x̂2D
i = b̂2D

i , wherei = 1, · · · ,Nx .. Since the
matricesÂ2D

i are symmetric and positive-definite a Preconditioned Conjugate Gradient (PCG) method
has been chosen. The 2D systems are ordered descending conditioning number, hence first planes that
correspond to lower Fourier frequencies are rather ill-conditioned. In this case the PCG algorithm is
inefficient and a direct method is used instead for the firstD planes, whereD is a delimiting parameter
that can be chosen. The resulting algorithm is following:

1. The change-of-basis from physical to spectral space for the right-hand-side with a standard FFT.

2. Solve the firstD decoupled 2D systems using the direct DSD solver.

3. Solve the remaining 2D systems using a PCG method.

4. Restore in the physical space the solution sub-vectors with inverse FFT.

The domain is partitioned by dividing the periodic direction intoPx parts and thex−orthogonal plane
into Pyz parts. The parallelization of the solver can be divided into two parts: (i) "explicit" steps 1 and 4
of the algorithm, and (ii) steps 2 and 3, that involve the solution of 2D systems.



Nx Ny Nz N Ra Pr Order
Mesh1 128 192 462 ≈ 11.4×106 1011 0.71 4th

Mesh2 256 800 1600 ≈ 327.7×106 1011 0.71 2nd

Mesh3 256 1400 2800 ≈ 1003.5×106 1011 0.71 2nd

Table 1: Physical and numerical parameters of the test cases.

Parallelization of FFT with MPI was out of consideration, instead it has been replicated in thex
direction. This requires additional broadcast communication to restore the wholeNx−subvectors within
Px-groups. Then each process can perform FFTs sequentially. FFTs itself do not take much time but this
group communication is the main limiting factor for thePx number. In [1] was shown thatPx can be
taken up to8 with reasonable efficiency.

On the other hand, the numberPyz is also limited due to the scalability limitations of the DSD solver
that is used on the step 2 of the algorithm. The main bottleneck comes from the solution of the Schur
complement (or interface) system that grows fast withPyz and with the mesh size and with the scheme
order. According to our experience, for real CFD applications this DSD solver is feasible forPyz up
to 200∼ 300and500∼ 800with the fourth- and second-order scheme, respectively. In summary this
MPI-only Poisson solver can be efficient only on up toP = Px×Pyz = 2000∼ 6000CPUs (depending
on the scheme order).

3 Extension with shared memory parallelization

If a parallel system hasPt cores per node then each MPI process can spawnPt OpenMP threads engag-
ing Px×Pyz×Pt CPU cores in total. The two-level decomposition is now used and MPI subdomains
are divided further intoPt parts. In this way, to engage a given number of CPU cores,P, the size of
MPI group,Px×Pyz, can be decreased by a factor ofPt meaning that eitherPx or/andPyz can be taken
smaller compared to the MPI-only approach. Doing so, the size of the Schur complement system of the
DSD solver reduces proportionally toPyz healing its scalability limitations. Similarly, the cost of group
communication in the periodic reduces proportionally toPx improving the parallel efficiency. Moreover,
the explicit part of the algorithm also benefits because the total size of MPI communications reduces
proportionally toPx×Pyz. Altogether, it allows the solver to engage efficiently aroundPt more CPUs
and adapt the code easily to different computer architectures.

Parallelization of the explicit parts of the CFD algorithm (momentum and energy equations, etc.)
is rather straightforward. Computations are divided among threads while MPI communications are
performed by the master thread only. The computations over a subdomain are mainly organized by
means of three nested loops alongz-, y- andx-directions, where the inner loop corresponds to the periodic
x-direction. Only the outer loop, inz-direction, is decomposed.

The FFT steps 1 and 4 of the Poisson solver are parallelized in the same vein. There are two nested
loops along thez-and y-directions. FFTs are called inside the inner loop for each subvector in the
periodicx-direction. Again, the outer loop is decomposed and each thread performs independently its
own subset of sequential FFTs. Finally, on steps 2 and 3 there is a set of independent2D systems that is
divided between threads. Each thread just solves its own systems completely isolated in memory.

The test case chosen to measure the performance corresponds to a DNS of a turbulent natural con-
vection flow in a differentially heated cavity (DHC) [6] illustrated on Figure 1 (right). Mesh size ranges
from 11million to 1 billion of grid points (see Table 1).

The first test shows the speedup with OpenMP for both the Poisson solver itself and the overall
CFD algorithm using Mesh1. The numbersPyz = 64, Px = 1 are fixed whilePt varies from 1 to 8.
The test has been carried out on the MVS-100K supercomputer and results are shown in Figure 1



(left). For MPI communications there is no parallel speedup as only the master thread communicates.
Nevertheless communications are around2.5 times faster with OpenMP because MPI processes are not
queueing to access the network. For computations speedup is higher and the overall speedup is around
5.5. The average wall clock time for the Poisson solver and the overall algorithm is0.11 and 0.29
seconds respectively on1024CPU cores.

0

1

2

3

4

5

6

7

8

64 128 256 512

N
or

m
al

iz
ed

 s
pe

ed
up

Number of CPU cores

Poisson solver
Overall algorithm
Linear Speedup
80% efficiency
60% efficiency

Figure 1: OpenMP speedups (Pt = 1∼ 8) of the Poisson solver and the overall algorithm on Mesh1with
64 MPI processes (left) and instantaneous temperature field in the DHC case (right).

The following tests were performed on the Lomonosov supercomputer to demonstrate the applica-
bility of the algorithm for bigger meshes and numbers of CPUs. In this case,Pyz = 200andPt = 8 are
kept constant whilePx varies from1 (1600CPU cores) to8 (12800CPU cores). The wall clock com-
puting time for the Poisson solver reduces from0.78 to 0.22 (Mesh2) and from3.82 to 1.00 (Mesh3)
seconds, respectively. Speedup results for both the Poisson solver and the overall CFD code are dis-
played in Figure 2 (left). Measurements show that speedup is not linear, the parallel efficiency of the
Poisson solver reduces around20%each timePx is doubled.

There were only12800cores available for the tests, therefore,Pyz = 200 was chosen to test the
limiting configuration whenPx andPt reach its maximal value, 8, at the end. Of course, it would be
more efficient to increasePyz instead ofPx to engage more CPUs and, in fact,Pyz could be taken much
bigger. The following test demonstrates this. Figure 2 (right) shows speedup results for Mesh2 and
Mesh3whenPyz ranges from200up to800while Px = 1 andPt = 8 are fixed. For the coarser Mesh2,
solver already starts loosing efficiency at the end whereas for the finer Mesh3 the speedup is still near
linear. TakingPx = 8 would allow us to engage800×8×8 = 51200CPU cores. In the light of this
results, we can estimate that the range of efficiency goes beyond50 thousand cores for meshes with 1
billion grid points or more.

Moreover, the Poisson solver can extend further by exploiting mesh symmetries that are common in
DNS. Let us consider the limitations onPyz related with the DSD solver. If there is a symmetry in at least
one of the two non-periodic directions then the solution a 2D systemAx = b with DSD can be reduced
to the independent solution of two twice smaller symmetric counterpartsA+x+ = b+ andA−x− = b−.
Doing so, instead of solving one system withPyz processes andNyz unknowns,2 systems withNyz/2
unknowns are simultaneously solved by two groups ofPyz/2 processes. This way the limitation on the
CPU number extends twice leading for the cases with a spatial symmetry beyond horizon of105 CPU
cores. Unfortunately, it is far beyond the commonly available computational resources and cannot be
demonstrated yet.



0

1

2

3

4

5

6

7

8

1600 3200 6400 12800

N
or

m
al

iz
ed

 s
pe

ed
up

Number of CPU cores

Poisson solver - Mesh2
Overall algorithm - Mesh2
Poisson solver - Mesh3
Overall algorithm - Mesh3
Linear Speedup
80% efficiency
60% efficiency

0

1

2

3

4

1600 4096 6400

N
or

m
al

iz
ed

 s
pe

ed
up

Number of CPU cores

Poisson solver - Mesh2
Poisson solver - Mesh3
Linear Speedup
80% efficiency
60% efficiency

Figure 2: Speedups on the Lomonosov supercomputer of the Poisson solver and the overall algorithm
on meshes Mesh2 (left) and Mesh3when varyingPx = 1∼ 8 and keepingPyz = 200andPt = 8 constant
(left).

4 Conclusion

A parallel Poisson solver with MPI+OpenMP parallelization for incompressible flows with one periodic
direction has been presented. OpenMP was preferred over other options such as POSIX Threads or a
second level of MPI because it combines simplicity, efficiency and portability. The hybrid two-level
MPI+OpenMP approach has significantly extended the range of scalability allowing the solver to use
efficiently many times more CPUs. Speedup results up to12800cores for meshes up to109 nodes have
demonstrated the feasibility in solving large-scale DNS problems. Moreover, presented estimations
show that more than105 cores can potentially be engaged.

This work has been financially supported by theMinisterio de Ciencia e Innovación, (ENE2010-
17801), (JCI-2009-04910) Spain, and the Russian Federation President grant MK-7559.2010.1. Cal-
culations have been performed on the Lomonosov, MVS-100K (Russia), and MareNostrum (Spain)
supercomputers. The authors thankfully acknowledge these institutions.

References

[1] A. Gorobets, F. X. Trias, M. Soria, A. Oliva, A scalable parallel Poisson solver for three-
dimensional problems with one periodic direction, Computers & Fluids 39 (2010) 525–538.

[2] R. Aubry, G. Houzeaux, M. Vázquez, J. M. Cela, Some useful strategies for unstructured edge-
based solvers on shared memory machines, International Journal for Numerical Methods in Engi-
neering (2010) n/a. doi: 10.1002/nme.2973.

[3] Kengo Nakajima, Three-level hybrid vs. flat MPI on the Earth Simulator: Parallel iterative solvers
for finite-element method, Applied Numerical Mathematics 54 (2) (2005) 237–255.

[4] Martin J. Chorley, David W. Walker, Performance analysis of a hybrid MPI/OpenMP application
on multi-core clusters, Journal of Computational Science 1 (3) (2010) 168–174.

[5] R. W. C. P. Verstappen, A. E. P. Veldman, Symmetry-Preserving Discretization of Turbulent Flow,
Journal of Computational Physics 187 (2003) 343–368.

[6] F. X. Trias, A. Gorobets, M. Soria, A. Oliva, Direct numerical simulation of a differentially heated
cavity of aspect ratio4 with Ra-number up to1011 - Part I: Numerical methods and time-averaged
flow, International Journal of Heat and Mass Transfer 53 (2010) 665–673.


