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Abstract: In the context of time-accurate numerical simulation ofoimpressible
flows, a Poisson equation needs to be solved at least ondengestiep to project the
velocity field onto a divergence-free space. Due to the weatinature of its solu-
tion, this elliptic system is one of the most time consuming difficult to parallelise
parts of the code. In this paper, a parallel direct Poissdvesoestricted to prob-
lems with one uniform periodic direction is presented. B isombination of a Direct
Schur-complement based Decomposition (DSD) and a Foudgodalisation. The
latter decomposes the original system into a set of mutiradigpendent 2D systems
which are solved by means of the DSD algorithm. Since noictisins are imposed
in the non-periodic directions, the overall algorithm isliveited for solving prob-
lems discretised on extruded 2D unstructured meshes. A meralbparallelisation
strategy with respect to our earlier works is presenteds s allowed us to solve
discrete Poisson equations with up td #0id points in less than half a second, using
up to 8192 CPU cores of the MareNostrum Supercomputer.

Keywords: Parallel Poisson solver, FFT, Schur Complement, DNS, Uattred
meshes

1 Introduction

Time-accurate DNS/LES simulations generally demand alargount of time-steps (for DNS appli-
cations it can reach- 1(f). If the mesh does not change during the simulation, thesBnisystem
also remains constant and is solved repeatedly with diffeight-hand-side terms. In this situation, a
pre-processing phase with relatively large computing deteaan be accepted. Another usual feature
in DNS/LES applications is to have at least one statistidatimogeneous or isotropic direction in the
flow. For this direction(s), periodic boundary conditiomglan uniform mesh are suitable, making the
Fourier diagonalisation [1] applicable. In this work, westrect ourselves to problems with only one
periodic homogeneous direction, examples of this kind ofigoiration are the flow around a cylinder,
airfoil sections or a differential heated cavity, and als® Rayleigh Benard or the flow around a sphere,
where the FFT-diagonalisation is applied to the azimutiraiction.

To solve the 2D systems obtained with the diagonalisatioDjrect Schur-complement based al-
gorithm is preferred. The robustness of this direct solvekes its performance irrespective of the
condition number or the specific application, and only dejean on the sparsity pattern of the matrix.



Moreover, it is very fast in the solution phase. In [2] we @ssfully compare it with different Pre-
conditioned Conjugate Gradient methods. As a main drawbhekDSD requires a computationally
demanding pre-processing phase and large memory resolNegsrtheless, as mentioned above, this
pre-processing cost becomes almost negligible for the-tioveirate applications here considered. And,
since the set of systems are 2D, the memory requirementsrrestilafeasible for the range of mesh
sizes required for DNS/LES application.

With regard to the overall parallelisation strategy, someartant improvements have been intro-
duced with respect to our previous works [3, 4]. Where theespatition was used for both the physical
and spectral spaces. This was a convenient approach fivesldow numbers of CPUs, but eventually
limited the number of partition elements in the periodiedtion. Here, in order to optimise the differ-
ent parts of the algorithm, the partitions of both spaceshosen independently. This has produced a
significant expansion on the range of efficient scalabilityhe overall solver. maximal tests with 128
partition elements in the periodic direction, engagingBC®U cores in total, show that the scalability
is not exhausted yet.

2 Poisson solver

In an operator-based formulation, the finite volume spdigdretisation of the Navier-Stokes equations
reads

Q% +C (Un) Un + Dun + QGpr = On, Mup = Op, (1)
whereu, and py, are the velocity and pressure field@sjs a diagonal matrix with the size of the control
volumesC(u,) andD are the convective and diffusive operators and, finMlandG are the divergence
and gradient operators, respectively. Arranging the presgelocity coupling by means of a classical
fractional step projection method [5], leads to a Poissamggn, with matrix. = —MQ~*M*, to be
solved on each time step in order to find the pressure-carefield:

Lpht = bp n=1,.. N, 2)

whereb}) depends om) and some of the previous velocity fields; the Laplacian dperh, is by con-
struction symmetric and negative-definite afds the total number of time-steps. Since the mesh does
not changel. remains constant during all the simulation. Thus, any megssing phase is reduckid
times.

The dimension of the Poisson systemNs= Nyg X Nper, WhereNyy andNper are the size of the
2D component of the mesh and of the extrusion direction,e@spely. The uniformly and periodicity,
permit to decompose the system, by means of a FFT-basedndigggdion [1], intoNper Uncoupled
two-dimensional systems:

L4 = pd k=0,...,Nper — 1, (3)

where each system, hereafter denotedremgiency system, corresponds to a frequency in the Fourier
space. These systems are solved by means of a direct Sahpternent based method [6, 7, 8, 9],
described shortly in the next paragraphs.

For each 2D system in (3), the set of unknowns, here nag¥iet partitioned intoP.yq subsets,
{90....9%,,—1}, becomingdi the local unknowns of procegs To decouple the system, it is needed an
interface subset§ C 9, fulfilling the following property:



{i€2nsS, jeanstandk 1} = {Ij =1j = 0}. (4)

whereS¢ is the complement af in 9. This is, twolocal noninterface variables of different processes
cannot be directly coupled by the system. The suhSets 9% NS and Uy := 9« NS¢, are here named
thelocal interface andlocal inner unknowns of procesk, respectively. Then, labeling the unknowns
in the order, ... Up,,—1,.S, and performing a block Gaussian elimination, the blockcitre of the

system becomes
B E X f
(5&)(3)-(a) ©

Pyy—1

B= @ Bi, (6)
i=0

is a block diagonal matrix. The sub-blocBsare the couplings between thth local inner unknowns.

E are the couplings between timner andinterface unknowns,F = ET are the coupling between the
interface and theinner unknowns.C are the linear couplings between tinterface variables and =

C — FB'E is the Schur Complement (SC) matrix that results from thesSian elimination. g =
g—FB~1fitsr.h.s. term. With this structure, once the interfacéaldes are evaluated, each subdomain
can be solved independently. Note that, althoughither systems with matriceB; are solved twice,
first to find g and then solve the inner unknowns, they are mutually indégr@nand can be solved
simultaneously. This is the main concept of the SC techmigte separate, by means of a common
distributedinterface, a subset of théocal unknowns of each process and solve them independently.

The determination and load balancing of the interface igesbby means of an in-house algorithm
(see [2] for more details). The setioher systems are solved by means of a sparse Cholesky factorisa-
tion [10]. The parallel solution of thimterface system is carried out by means of an explicit evaluation
of L.

The parallelisation of the overall (FFT+DSD) solver is lthea a geometric domain decomposition
into P subdomains, one for each parallel process. Standard MB&@to implement the algorithm. The
partition of the initial mest\/ is carried out by dividing itswo-dimensional, M>qy, and periodic Mper,
components intdq and Py parts respectively, beinB = Pag - Pper. This is referred as Bog x Pper-
partition. Different partitions are employed for the FFaskd change-of-basis (frgohysical to spectral
space and vice versa) and for the solution offtiequency systems. The former operation is performed
without partitioning the mesh in the periodic directionPa 1-partition is used. On the other hand,
when solving thdrequency systems, the number of processes employ&g, must be in the range of
linear scalability of the DSD algorithm. Despite the aduitl transmissions of data between these two
partitions, this strategy benefits the scalability of therall algorithm. This reads:

where

FFT+DSD algorithm:
1. Evaluateh = (I, ® FRie )P ON theP x 1-partition.
. Redistributeb from theP x 1- to thePxy x Pper-partition MPI_Alltoall.
. Solve the thérequency systems, [ %24 = b2, on thePsg x Ppe-partition.

2
3
4. Redistributex from theP,q x Pper- to theP x 1-partition,MPI_Alltoall.
5. Evaluatex = (In,, ® Fn,, )X On theP x 1-partition.

WhereFy,,, andFy  are theNpe-dimensional Fourier transform ant its inverse/adjoint.



3 Numerical experiment

All the numerical tests presented in this paper have beeiedarut on the MareNostrum supercomputer
of the Barcelona Supercomputing Center (BSC). To avoidedgpn, results have been obtained after
averaging over several time-steps.

Firstly, the DSD solver is tested separately. Speed-udtsestarting from 4 up to 100 CPUs are
displayed in Figure 1 for 2D meshes ranging between 250,0250m) and 2,000,000 (m2M) nodes.
At first sight, we can observe that all the meshes of diffesérgs show the same qualitative behavior.
Nevertheless, as expected, the speed-up improves witlizthefshe problem.
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Figure 1:Srong speed-up of DSD solution phase measured in meshes of diffsizes.

In Figure 2 (left), the weak scalability when the mesh growshie periodic direction is displayed.
The meshes for this test have been generated using m2M asni2boent, reaching up to 1024 million
grid points. Pyq is fixed equal to 64, which is in the limit of the linear speedepgion of the DSD
algorithm for this mesh (see Figure 1). Therefore, the perefficiency of the DSD component will be
close to one. InitiallyNpe andPyer are 8 and 1, respectively, thus the load per CPU is approzignat
125000 nodes. TheRy, andNpe are increased 128 times, while the solution time only grovés 1
times. Therefore, the size of the problem varies from 8 to4l®#lion nodes, and the wall clock time
spent in the solution from.27 to Q42 seconds. The setup time is less than 30 minutes in all.chses
practice, for time-accurate simulations on such a meshistine is almost negligible compared with
the expected accumulated solution time.

Finally, in Figure 2 (right), the strong speedup for the @llealgorithm is studied on a 512 million
nodes mesh, generated from the extrusion of MR (= 256). Initially P = 2048 Poq = 32, Pper = 64),
when doublingP,q and Py (up to 8192 CPUs) the parallel efficiencies obtained a8# @nd 087,
respectively. The walk clock time spent in the solution @aifrom 069 to 024 seconds.

4 Concluding remarks

A parallel direct algorithm for the solution of the Poissajuation arising in incompressible flows with
one periodic direction has been presented. It is a combimatf a Direct Schur-complement based
Decomposition (DSD) and a Fourier diagonalisation. Thdabd#ty and efficiency of the proposed

method have been shown by performing several numericatiexgets on the MareNostrum Supercom-
puter. Scalability tests using up to 8192 parallel processieh up to 18 million nodes meshes have

demonstrated the algorithm capability on solving largalesproblems with a very short time.



number of blocks in the periodic direction (Ppe,)
148 16 32 64 96 128 8000
2

- 6000
15 —

0.402
e

4000

0.268

normalised time
=
time [s]
speed up

05 2000 B

4% 2M per block —s— deal -

0 0
64 512 1024 2048 4096 6144 8192 2048 4096 8192
number of CPUs number of CPUs

Figure 2:Left: Weak speed-up in the periodic direction for meshes generatedéogsttrusion of the mesh m2M,
the load per CPU is kept around 125000 nodes. The size of tit#gun (and the wall-clock time) varies from
8 million (0.27s) to 1024 million (342s), respectively. RightSrong speedup of the overall algorithm for a 512
million nodes mesh generated from the extrusion of m2M. @rfitlst stepP,q is doubled from 32 to 64 and on
the secondPper is doubled form 64 to 128. The walk clock time spent in the Botuvaries from 069 to 024
seconds.
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