
FFT-based Poisson Solver for large scale numerical simulations
of incompressible flows

R. Borrell∗, O. Lehmkuhl∗, F.X. Trias∗∗, G. Oyarzún∗∗ and A. Oliva∗∗

Corresponding author: ricard@termofluids.com, cttc@cttc.upc.edu

∗ Termo Fluids, S.L., C/ Magí Colet 8, 08204 Sabadell, Spain.
∗∗ Heat and Mass Transfer Technological Center, Technical University of Catalonia, Spain.

Abstract: In the context of time-accurate numerical simulation of incompressible
flows, a Poisson equation needs to be solved at least once per time-step to project the
velocity field onto a divergence-free space. Due to the non-local nature of its solu-
tion, this elliptic system is one of the most time consuming and difficult to parallelise
parts of the code. In this paper, a parallel direct Poisson solver restricted to prob-
lems with one uniform periodic direction is presented. It isa combination of a Direct
Schur-complement based Decomposition (DSD) and a Fourier diagonalisation. The
latter decomposes the original system into a set of mutuallyindependent 2D systems
which are solved by means of the DSD algorithm. Since no restrictions are imposed
in the non-periodic directions, the overall algorithm is well-suited for solving prob-
lems discretised on extruded 2D unstructured meshes. A new overall parallelisation
strategy with respect to our earlier works is presented. This has allowed us to solve
discrete Poisson equations with up to 109 grid points in less than half a second, using
up to 8192 CPU cores of the MareNostrum Supercomputer.

Keywords: Parallel Poisson solver, FFT, Schur Complement, DNS, Unstructured
meshes

1 Introduction

Time-accurate DNS/LES simulations generally demand a large amount of time-steps (for DNS appli-
cations it can reach∼ 106). If the mesh does not change during the simulation, the Poisson system
also remains constant and is solved repeatedly with different right-hand-side terms. In this situation, a
pre-processing phase with relatively large computing demands can be accepted. Another usual feature
in DNS/LES applications is to have at least one statistically homogeneous or isotropic direction in the
flow. For this direction(s), periodic boundary conditions and an uniform mesh are suitable, making the
Fourier diagonalisation [1] applicable. In this work, we restrict ourselves to problems with only one
periodic homogeneous direction, examples of this kind of configuration are the flow around a cylinder,
airfoil sections or a differential heated cavity, and also the Rayleigh Benard or the flow around a sphere,
where the FFT-diagonalisation is applied to the azimuthal direction.

To solve the 2D systems obtained with the diagonalisation, aDirect Schur-complement based al-
gorithm is preferred. The robustness of this direct solver makes its performance irrespective of the
condition number or the specific application, and only dependent on the sparsity pattern of the matrix.

1



Moreover, it is very fast in the solution phase. In [2] we successfully compare it with different Pre-
conditioned Conjugate Gradient methods. As a main drawback, the DSD requires a computationally
demanding pre-processing phase and large memory resources. Nevertheless, as mentioned above, this
pre-processing cost becomes almost negligible for the time-accurate applications here considered. And,
since the set of systems are 2D, the memory requirements remain still feasible for the range of mesh
sizes required for DNS/LES application.

With regard to the overall parallelisation strategy, some important improvements have been intro-
duced with respect to our previous works [3, 4]. Where the same partition was used for both the physical
and spectral spaces. This was a convenient approach for relatively low numbers of CPUs, but eventually
limited the number of partition elements in the periodic direction. Here, in order to optimise the differ-
ent parts of the algorithm, the partitions of both spaces arechosen independently. This has produced a
significant expansion on the range of efficient scalability of the overall solver: maximal tests with 128
partition elements in the periodic direction, engaging 8192 CPU cores in total, show that the scalability
is not exhausted yet.

2 Poisson solver

In an operator-based formulation, the finite volume spatialdiscretisation of the Navier-Stokes equations
reads

Ω
duh

dt
+C (uh)uh + Duh + ΩGph = 0h, Muh = 0h, (1)

whereuh andph are the velocity and pressure fields,Ω is a diagonal matrix with the size of the control
volumes,C(uh) andD are the convective and diffusive operators and, finally,M andG are the divergence
and gradient operators, respectively. Arranging the pressure-velocity coupling by means of a classical
fractional step projection method [5], leads to a Poisson equation, with matrixL = −MΩ−1M∗, to be
solved on each time step in order to find the pressure-correction field:

Lpn+1
h = bn

h n = 1, ....,Nt , (2)

wherebn
h depends onun

h and some of the previous velocity fields; the Laplacian operator, L, is by con-
struction symmetric and negative-definite andNt is the total number of time-steps. Since the mesh does
not change,L remains constant during all the simulation. Thus, any preprocessing phase is reducedNt

times.
The dimension of the Poisson system isN = N2d ×Nper, whereN2d and Nper are the size of the

2D component of the mesh and of the extrusion direction, respectively. The uniformly and periodicity,
permit to decompose the system, by means of a FFT-based diagonalisation [1], intoNper uncoupled
two-dimensional systems:

L̂kx̂2d
k = b̂2d

k k = 0, ...,Nper −1, (3)

where each system, hereafter denoted asfrequency system, corresponds to a frequency in the Fourier
space. These systems are solved by means of a direct Schur-complement based method [6, 7, 8, 9],
described shortly in the next paragraphs.

For each 2D system in (3), the set of unknowns, here namedY , is partitioned intoP2d subsets,
{Y0,...,YP2d−1}, becomingYk the local unknowns of processk. To decouple the system, it is needed an
interface subset,S ⊂ Y , fulfilling the following property:



{i ∈ Yk ∩S
c
, j ∈ Yl ∩S

c andk 6= l} =⇒{li j = l ji = 0}. (4)

whereS c is the complement ofS in Y .This is, twolocal non-interface variables of different processes
cannot be directly coupled by the system. The subsetsSk := Yk ∩S andUk := Yk ∩S

c, are here named
the local interface and local inner unknowns of processk, respectively. Then, labeling the unknowns
in the orderU0, ...UP2d−1,S , and performing a block Gaussian elimination, the block structure of the
system becomes (

B E
0 C̃

)(
x
y

)
=

(
f
g̃

)
, (5)

where

B =
P2d−1
M

i=0

Bi, (6)

is a block diagonal matrix. The sub-blocksBi are the couplings between thei’th local inner unknowns.
E are the couplings between theinner and interface unknowns,F = ET are the coupling between the
interface and theinner unknowns.C are the linear couplings between theinterface variables andC̃ =
C − FB−1E is the Schur Complement (SC) matrix that results from the Gaussian elimination. ˜g =
g−FB−1 f its r.h.s. term. With this structure, once the interface variables are evaluated, each subdomain
can be solved independently. Note that, although theinner systems with matricesBi are solved twice,
first to find g̃ and then solve the inner unknowns, they are mutually independent and can be solved
simultaneously. This is the main concept of the SC techniques: to separate, by means of a common
distributedinterface, a subset of thelocal unknowns of each process and solve them independently.

The determination and load balancing of the interface is solved by means of an in-house algorithm
(see [2] for more details). The set ofinner systems are solved by means of a sparse Cholesky factorisa-
tion [10]. The parallel solution of theinterface system is carried out by means of an explicit evaluation
of C̃−1.

The parallelisation of the overall (FFT+DSD) solver is based on a geometric domain decomposition
into P subdomains, one for each parallel process. Standard MPI is used to implement the algorithm. The
partition of the initial meshM is carried out by dividing itstwo-dimensional, M2d , and periodic,Mper,
components intoP2d andPper parts respectively, beingP = P2d ·Pper. This is referred as aP2d ×Pper-
partition. Different partitions are employed for the FFT-based change-of-basis (fromphysical to spectral
space and vice versa) and for the solution of thefrequency systems. The former operation is performed
without partitioning the mesh in the periodic direction, aP× 1-partition is used. On the other hand,
when solving thefrequency systems , the number of processes employed,P2d , must be in the range of
linear scalability of the DSD algorithm. Despite the additional transmissions of data between these two
partitions, this strategy benefits the scalability of the overall algorithm. This reads:

FFT+DSD algorithm:

1. Evaluatêb = (IN2d ⊗F
∗
Nper

)b on theP×1-partition.

2. Redistributêb from theP×1- to theP2d ×Pper-partitionMPI_Alltoall.

3. Solve the thefrequency systems, L̂kx̂2d
k = b̂2d

k , on theP2d ×Pper-partition.

4. Redistribute ˆx from theP2d ×Pper- to theP×1-partition,MPI_Alltoall.

5. Evaluatex = (IN2d ⊗FNper)x̂ on theP×1-partition.

WhereFNper andF
∗
Nper

are theNper-dimensional Fourier transform ant its inverse/adjoint.



3 Numerical experiment

All the numerical tests presented in this paper have been carried out on the MareNostrum supercomputer
of the Barcelona Supercomputing Center (BSC). To avoid dispersion, results have been obtained after
averaging over several time-steps.

Firstly, the DSD solver is tested separately. Speed-up results starting from 4 up to 100 CPUs are
displayed in Figure 1 for 2D meshes ranging between 250,000 (m250m) and 2,000,000 (m2M) nodes.
At first sight, we can observe that all the meshes of differentsizes show the same qualitative behavior.
Nevertheless, as expected, the speed-up improves with the size of the problem.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

sp
ee

d 
up

number of CPUs

ideal
m250m
m500m

m1M
m2M

Figure 1:Strong speed-up of DSD solution phase measured in meshes of different sizes.

In Figure 2 (left), the weak scalability when the mesh grows in the periodic direction is displayed.
The meshes for this test have been generated using m2M as 2D component, reaching up to 1024 million
grid points. P2d is fixed equal to 64, which is in the limit of the linear speedupregion of the DSD
algorithm for this mesh (see Figure 1). Therefore, the parallel efficiency of the DSD component will be
close to one. InitiallyNper andPper are 8 and 1, respectively, thus the load per CPU is approximately
125,000 nodes. ThenPper andNper are increased 128 times, while the solution time only grows 1.5
times. Therefore, the size of the problem varies from 8 to 1024 million nodes, and the wall clock time
spent in the solution from 0.27 to 0.42 seconds. The setup time is less than 30 minutes in all cases. In
practice, for time-accurate simulations on such a meshes, this time is almost negligible compared with
the expected accumulated solution time.

Finally, in Figure 2 (right), the strong speedup for the overall algorithm is studied on a 512 million
nodes mesh, generated from the extrusion of m2M (Nper = 256). InitiallyP = 2048 (P2d = 32,Pper = 64),
when doublingP2d and Pper (up to 8192 CPUs) the parallel efficiencies obtained are 0.84 and 0.87,
respectively. The walk clock time spent in the solution varies from 0.69 to 0.24 seconds.

4 Concluding remarks

A parallel direct algorithm for the solution of the Poisson equation arising in incompressible flows with
one periodic direction has been presented. It is a combination of a Direct Schur-complement based
Decomposition (DSD) and a Fourier diagonalisation. The scalability and efficiency of the proposed
method have been shown by performing several numerical experiments on the MareNostrum Supercom-
puter. Scalability tests using up to 8192 parallel processes with up to 109 million nodes meshes have
demonstrated the algorithm capability on solving large-scale problems with a very short time.



 0

 0.5

 1

 1.5

 2

64  512 1024 2048 4096 6144 8192

0.268

0.402

1 4 8 16 32 64 96 128
no

rm
al

is
ed

 ti
m

e

tim
e 

[s
]

number of CPUs

number of blocks in the periodic direction (Pper)

4 x 2M per block
 0

 2000

 4000

 6000

 8000

 2048  4096  8192

sp
ee

d 
up

number of CPUs

fft-SCHUR
ideal

Figure 2:Left: Weak speed-up in the periodic direction for meshes generated by the extrusion of the mesh m2M,
the load per CPU is kept around 125000 nodes. The size of the problem (and the wall-clock time) varies from
8 million (0.27s) to 1024 million (0.42s), respectively. Right:Strong speedup of the overall algorithm for a 512
million nodes mesh generated from the extrusion of m2M. On the first stepP2d is doubled from 32 to 64 and on
the secondPper is doubled form 64 to 128. The walk clock time spent in the solution varies from 0.69 to 0.24
seconds.

Acknowledgements

This work has been financially supported by the Ministerio deCiencia e Innovación of Spain (Contracts/ Grants
No. ENE2010-17801 and No. ENE2009-09496), and Termo FluidsS.L. Calculations have been performed on the
MareNostrum supercomputer at the Barcelona supercomputing center. The authors thankfully acknowledge these
institutions.

References

[1] R. M. Gray, Toeplitz and Circulant Matrices: A review, Foundations and Trends in Communications and
Information Theory 2 (2006) 155–239.

[2] R. Borrell, O. Lehmkuhl, F. X. Trias, A. Oliva, Parallel direct Poisson solver for discretisations with one
Fourier diagonalisable direction, Journal of Computational Physics. 230 (2011) 4723–4741.

[3] A. Gorobets, F. X. Trias, M. Soria, A. Oliva, A scalable parallel Poisson solver for three-dimensional prob-
lems with one periodic direction, Computers & Fluids 39 (2010) 525–538.

[4] R. Borrell, O. Lehmkuhl, M. Soria, A. Oliva, Schur Complement Methods for the solution of Poisson equa-
tion with unstructured meshes, in: Parallel ComputationalFluid Dynamics, Elsevier, Antayla, Turkey, 2007.

[5] A. J. Chorin, Numerical Solution of the Navier-Stokes Equations, Journal of Computational Physics 22
(1968) 745–762.

[6] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, 2003.

[7] S. Kocak, H. U. Akay, Parallel Schur complement method for large-scale systems on distributed memory
computers, Applied Mathematical Modelling 25 (2001) 873–886.

[8] N. Rakowsky, The Schur Complement Method as a Fast Parallel Solver for Elliptic Partial Differential Equa-
tions in Oceanography, Numerical Linear Algebra with Applications 6 (1999) 497–510.

[9] M. Soria, C. D. Pérez-Segarra, A. Oliva, A Direct Parallel Algorithm for the Efficient Solution of the
Pressure-Correction Equation of Incompressible Flow Problems Using Loosely Coupled Computers, Nu-
merical Heat Transfer, Part B 41 (2002) 117–138.

[10] I. S. Duff, A. M. Erisman, J. K. Reid, Direct Methods for Sparse Matrices, Oxford University Press, 1989.


