

Source-to-Source Transformations for Efficient
SIMD Code Generation

Alejandro Berna1, Marta Jiménez1, Jose M. Llabería1

Abstract
In the last years, there has been much effort in commercial com-
pilers to generate efficient SIMD instructions-based code se-
quences from conventional sequential programs. However, the
small numbers of compilers that can automatically use these
instructions achieve in most cases unsatisfactory results. There-
fore, the code often has to be written manually in assembly lan-
guage or using compiler built-in functions to achieve high
performance. In this work, we present source-to-source transfor-
mations that help commercial vectorizing compilers to generate
efficient SIMD code. Experimental results show that excellent
performance can be achieved. In particular, for the problem of
matrix product (SGEMM) we almost achieve as high perfor-
mance as hand-optimized numerical libraries. Our source-to-
source transformations are based on the scalar replacement and
unroll and jam transformations presented by Callahan et all. In
particular, we extend the use of scalar replacement to vectorial
replacement and combine this transformation with unroll and jam
and outer loop vectorization to fully exploit the vector register
level and thus to help the compiler to generate efficient SIMD
code. We will show experimentally the effectiveness of our pro-
posal.

Categories and Subject Descriptors

D.3.4 [Processors]: compilers, optimization: C.1.2 [Multiple
Data Stream Architectures (Multiprocessors)]: Single-
instruction-stream, multiple-data-stream processors (SIMD)

General Terms

Algorithms, Performance.

Keywords

SIMD; vectorization; source-to-source transformations; register
tiling;

1. Introduction
The ISA of all today´s microprocessors has been extended with
multimedia instructions [9]. Multimedia extensions follow the
SIMD paradigm by exploiting wide data paths and functional
units that simultaneously operate on narrow data paths of packed
data elements (relatively short vectors that reside in memory or
registers). The number of packed data elements (VL) supported
by the SIMD instructions has been increased with each micro-
processor generation, going from 64 bits data registers in the
Pentium II with the MMX technology to the 256 bits data regis-
ters in Sandy Bridge with the AVX1 technology. Moreover,
SIMD extensions have also evolved in number of instructions

and data types. MMX technology has 57 SIMD instructions and
handles only integer data types while AVX1 technology has hun-
dreds of instructions and handles both integer and floating-point
(single and double) data types[12][20].

SIMD instructions are useful in multimedia and signal
processing applications [23][30], but also in scientific and nu-
merical applications [1][8][18]. They offer higher performance, a
good performance/power ratio, and better resource utilization.
However, compilers still do not have good support for SIMD
instructions due to the difficulty of automatically vectorizing
conventional sequential programs. The few commercial compi-
lers that can automatically use these instructions achieve in most
cases unsatisfactory results.

To overcome the lack of adequate compiler support for SIMD
extensions, often the code has to be written manually in assembly
language or using compiler built-in functions [12]. However,
these methods, although very effective, are tedious, error prone
and result in highly machine-specific code, so that porting an
application to a new target processor requires significant pro-
gramming effort.

Manufacturers have tried to minimize the complexity of writ-
ing SIMD optimized codes by providing numerical libraries (such
as MKL [11]) that attain high performance under their particular
microprocessor. However, not all applications can take advantage
of these libraries and there are many situations in which none of
the routines provided can specifically solve the task at hand.

We believe that restructuring a code to better exploit SIMD
capabilities should be the job of a compiler. Compilers, not pro-
grammers, should handle the machine-specific details required to
obtain high performance on each particular architecture. Algo-
rithm should be expressed in a natural machine-independent
form and the compiler should apply the appropriate transforma-
tion to optimize the resulting code.

In this paper, we present high level (source-to-source) trans-
formations that help actual commercial vectorizing compilers to
generate efficient SIMD code on scientific numerical applica-
tions. The proposed transformations are simple enough to be
suitable for automatic implementation by compilers.

Our proposal is based on an effective use of the vector regis-
ters. As already known, the existence of a gap between memory
and CPU performance made effective use of the register file im-
perative for excellent performance. It is well-known that the
allocation of array values that exhibit reuse to registers can sig-
nificantly improve the memory performance of programs. How-
ever, in many production compilers array references are left as
references to main memory rather than references to registers
because the data flow analysis used by the compiler is not power-
ful enough to recognize most opportunities for reuse in sub-
scripted variables.
Callahan et all in [5] presented a source-to-source transforma-
tion, called scalar replacement, that exposed the reuse available
in array references in an innermost loop. They also showed expe-
rimentally how another loop transformation called unroll and

 1Departament d’Arquitectura de Computadors, Universitat Politècnica de
Catalunya, Barcelona, Spain, e-mail:{aberna, marta, llaberia}
@ac.upc.edu

Actas XXII Jornadas de Paralelismo (JP2011) , La Laguna, Tenerife, 7-9 septiembre 2011

JP2011-719

jam, could expose more opportunities for scalar replacement by
moving reuse across an outer loop into the innermost loop.

In this work, we will apply the idea of scalar replacement and
unroll and jam to vectorized loop nests and show experimentally
their effectiveness. We refer as vectorial replacement to the sca-
lar replacement transformation applied to SIMD vectorized loop
nests.

Summarizing, the contribution of this paper are the following:
• An approach that combines 3 source-to-source trans-

formations (outer-loop vectorization, unroll and jam of
vectorized loops and vectorial replacement) that help
compilers to generate efficient SIMD code in scientific
numerical applications.

• Experimental evaluation exhibiting the impact of these
transformations using simple kernels of loop nests on a
Nehalem platform.

The rest of this paper is organized as follows: Section 2 ex-
plains previous work related to source-to-source loop transforma-
tions. Section 3 describes our approach to help the compiler to
vectorize outer loops and to apply unroll and jam and vectorial
replacement. Section 4 gives an extended example using matrix
product kernel. In Section 5 we show performance results of our
approach compared to scalar version, inner-loop vectorized ver-
sions and vendor supplied numerical libraries. Finally, Section 6
concludes.

2. Related Work
Little published work exists which directly deals with high level
code transformation techniques for processors with SIMD capa-
bilities. Several researchers [3][7][15][19][21][24] have worked
on vectorizing compilers, but not on high level (source-to-source)
code transformations to help compilers to generate efficient
SIMD codes. These researchers focus on automatically identify
vectorizable section of code and generate appropriate SIMD in-
structions. Their proposals are low level optimizations to be im-
plemented inside compilers. Our work instead proposes high
level transformations for generating efficient SIMD code while
waiting for commercial compilers to implement novel approaches
from previous researchers.

Moreover, most of these auto-vectorization approaches focus
on innermost loops [7][15][24] or block vectorization [4]. Only
Nuzman et all in [19] deals with outer loop vectorization and
show its effectiveness. Their proposal consists on implementing
in-place outer loop vectorization inside the GCC compiler. In
contrast, we perform outer loop vectorization as a high level
(source-to-source) transformation.

Aditionally, Callahan et all in [5] presented a source-to-source
transformation, called scalar replacement, that exposes the reuse
available in array references in an innermost loop. They also
showed experimentally how another loop transformation, called
unroll and jam, could expose more opportunities for scalar re-
placement by moving reuse across an outer loop into the inner-
most loop. In our work, we extend the use of scalar replacement
and unroll and jam to SIMD vectorized loop nests and show ex-
perimentally their effectiveness. We do not know any previous
work that extends these techniques for SIMD codes.

Finally, there exist several hand-coded numerical libraries op-
timized for SIMD processors [11][25] that achieve very high
performance for some particular class of microporcessors and for
some particular functions. However, as already mentioned, not
all applications can take advantage of these libraries and there

are many situations in which none of the routines provided can
specifically solve the task at hand. Our techniques, instead, can
be applied to more general codes.

3. Source-to-Source Code Transformations
Our approach to combine source-to-source transformations pro-
posed in this work are based on three observations. First, we
observe that commercial compilers only perform inner loop vec-
torization. However, in most codes it is necessary to vectorize
outer loops to achieve high performance.

Second, we observe that compilers are not able to unroll and
jam loops with non unit stride. As we will see later, optimizing
transformations like register tiling [6][13][14] requires inner
loops to be fully unrolled. Therefore, when combining register
tiling with vectorization it sometimes becomes necessary to fully
unroll strip-mined (non-unit stride) loops and jam together the
inner (vector) loops.

Third, we observe that compilers are not able to allocate adja-
cent array values to vector registers and exploit the reuse availa-
ble in array references in an innermost loop. However, it is well-
known that the allocation of array values that exhibit reuse to
registers can significantly improve the memory performance of
programs [6][13][14].

In the next subsections we show how we solve these three
compilers limitations by applying source-to-source transforma-
tions. For the rest of this section and for simplicity, we assume
that loop nests are fully permutable and perfectly nested, and
loop bounds are constants. For handle more general loop bounds
that are max or min functions of surrounding loop iteration vari-
ables, we would need to use the theory of unimodular transfor-
mations when performing loop permutation [16] and Index Set
Splitting [29] for making sure that a particular loop perform a
constant number of iterations.

We also assume that previous analysis to decide which loops
should and could be vectorized has already been performed. This
paper only focuses on the code generation phase of source-to-
source transformations. Dependence and decision analysis to
know if transformations are legal and to decide which loop is the
best candidate to vectorize are out of the scope of this paper
[2][17][22][23][26][27].

3.1 Outer Loop Vectorization
Let consider the following loop nest:

 for (i1=L1; i1<U1; i1++)
 for (i2=L2; i2<U2; i2++)
 ….
 for (in=Ln; in<Un; in++){
 F(i1,…,in)
 }

and assume that loop ij should be vectorized.
Outer-loop vectorization can be implemented by combining

two well-known transformations: strip-mining and loop permuta-
tion. Strip-mining is used to partition one dimension of the itera-
tion space into strips and loop permutation is a unimodular
transformation [29] used to establish a new order of the loops in
a nest.

Strip-mining decomposes a single loop into two nested loops;
the outer loop steps between strips of consecutive iterations, and
the inner loop (element loop) traverses the iterations within a
strip. The loop bounds after strip-mining a loop are directly ob-
tained by applying the following formula (assuming U is multiple
of S):

Actas XXII Jornadas de Paralelismo (JP2011) , La Laguna, Tenerife, 7-9 septiembre 2011

JP2011-720

where i is the outer loop, vi is the element loop and S is the
strip size.

To perform outer-loop vectorization, we apply strip-mining to
the desired vector loop ij with step size equal to the vector
length (VL) and then permute the resulting element loop of VL
iterations to become innermost. Thus, we expose the vector
statement as an inner loop and commercial compilers are able to
vectorize it. After vectorizing loop ij, we obtain the following
code:

As an example, Figure 1 shows the original code of a cross
addition of two vectors and how this code is vectorized by the icc
compiler. We can see that icc performs inner loop vectorization
(vectorize loop j) and also unrolls loop j by a factor of 8 (two
vectors). Finally, icc performs a reduction to store the result in
vector A. Figure 2 shows the SIMD optimized code (after apply-
ing outer-loop vectorization) and how this code is vectorized by
the compiler. We can observe that the compiler remove loop vi
and convert it to a set of vector instructions and thus outer loop i
has been vectorized. Later in Section 5, we will see the differ-
ence in performance between these two codes.

3.2 Unroll and Jam

Unroll and Jam is a transformation that can be used to shorten
the distances between references to the same array location and
therefore it enhances register reuse. It consists in unrolling an
outer loop and then fusing the inner loops back together. As we
will see later in Section 4 unroll and jam is a necessary transfor-
mation when combining register tiling with vectorization. As
already mentioned, we observed that commercial compilers are
not able to unroll strip-mined loops (loops with non-unit stride).

Original Source code ASM

void cross_add(float *A, float *B,
 int dimi, int dimj){
 long int i, j;
 for (i=0; i<dimi; i++)
 for (j=0; j<dimj; j++)
 A[i]=A[i]+B[j];
 }

.LOOP_I:
movss (%rdi,%r8,4), %xmm0 #ld A[i]
xorps %xmm1, %xmm1
.LOOP_J:
addps (%rsi,%rax,4), %xmm0 #A[i]+B[j:j+3]
addps 16(%rsi,%rax,4),%xmm1 #A[i]+B[j+4:j+7]
addq $8, %rax
cmpq %r11, %rax
jb ..LOOP_J
addps %xmm1, %xmm0
haddps %xmm0, %xmm0
haddps %xmm0, %xmm0
movss %xmm0, (%rdi,%r8,4) #st A[i]
incq %r8
cmpq %rcx, %r8
jb ..LOOP_I

Figure 1. Cross addition of two vectors. The left column shows
the source code and the right the assembly code.

 Optimized code ASM
void cross_add(float *A, float *B,
 int dimi, int dimj){
long int i, j, vi;
for (i=0; i<dimi; i+=VL)
 for (j=0; j<dimj; j++)
 #pragma vector always
 for(vi=i;vi<i+VL;vi++)
 A[vi]=A[vi]+B[j];
}

..LOOP_I:
xorl %r9d, %r9d
movq %rcx, %r10
shlq $4, %r10
movups (%r10,%rdi), %xmm0 #ld A[i:i+3]
..LOOP_J:
movss (%rsi,%r9,4), %xmm1 #ld B[j]
shufps $0, %xmm1, %xmm1
addps %xmm1, %xmm0 #A[i:i+3]+B[j]
incq %r9
cmpq %rax, %r9
jb..LOOP_J
movups %xmm0, (%r10,%rdi) #st A[i]
incq %rcx
cmpq %rdx, %rcx
jb ..LOOP_I

Figure 2. Cross addition after applying outer-loop vectorization.
The left column shows the source code*, the right the assembly.

However, to generate efficient SIMD code we need the compiler
to perform this transformation. To this end, we help the compi-
ler by directly unrolling the strip-mined loop in the source code
and jaming together the inner loops as follows:
Consider the following loop nest where outer loop vectorization
has been applied to loop ij:
 ….
 for (ij=Lj; ij<Uj; ij=ij+VL)
 ….
 for (vij=ij; vij<ij+VL;vij++)

 F(vij) /* vector statement */
After unrolling loop ij with an unroll factor of UF, we obtain the
following code:
 ….
 for (ij=Lj; ij<=Uj; ij=ij+VL*UF)
 { …
 for (vij=ij; vij<ij+VL;vij++)

 F(vij)
 for (vij=ij+VL;vij<ij+2*VL;vij++)
 F(vij)

 ….
 for(vij=ij+(UF-1)*VL; vij<ij+UF*VL;vij++)
 F(vij) /* vector statements */

and after fusion becomes:
 ….
 for (ij=Lj; ij<Uj; ij=ij+VL*UF)
 ….
 for (vij=ij; vij<ij+VL;vij++){
 F(vij)
 F(vij+VL)
 F(vij+2*VL)
 ….
 F(vij+(UF-1)*VL)

 } /* vector statements */
Now, reuse between several vector statements are exposed in the
loop body.

Using again the example of cross addition from Section 3.1,
we observed in Figure 2 that icc does not unroll loop i after ap-
plying outer loop vectorization. Vector B is loaded dimi/VL
times during the execution of the program. In each iteration of
loop j, B[j] is loaded on register %xmm1.

However, if we apply unroll and jam to loop i by a factor UF,
we can enhance data reuse of reference B[j] by keeping this
value in a register during the execution of the unrolled loop body.
Thus, vector B will only be loaded dimi/(UF*VL) times dur-
ing the execution of the program. In Figure 3 we show the code
of Figure 2 after applying unroll and jam by a factor of 2 to loop
i. Element B[j] is loaded on register %xmm1 only once during
the execution of the unrolled loop body, thus enhancing reuse of
B by a factor of 2.

*We use pragmas in the codes to force vectorization (see section 5).

}

Step 1: Strip-mining ij

for (i1=L1; i1<U1; i1++)
 for (i2=L2; i2<U2; i2++)
 ….
 for (ij=Lj; ij<Uj; ij=ij+VL)
 for (vij=ij; vij<ij+VL;vij++)
 ….
 for (in=Ln; in<Un; in++)
 F(i1,…,vij,…,in)

Step 2: Loop permutation to make
vij innermost

for (i1=L1; i1<U1; i1++)
 for (i2=L2; i2<U2; i2++)
 ….
 for (ij=Lj; ij<Uj; ij=ij+VL)
 ….
 for (in=Ln; in<Un; in++)
 for (vij=ij; vij<ij+VL;vij++)

 F(i1,…,vij,…,in)

for (i=L; i<U; i++)

for (i=L; i<U; i=i+S)

 for (vi=i; vi<i+S; i++)

Strip-mining loop i

Actas XXII Jornadas de Paralelismo (JP2011) , La Laguna, Tenerife, 7-9 septiembre 2011

JP2011-721

Source code ASM
void cross_add(float *A, float *B,
 int dimi, int dimj){
long int i, j, vi;
for (i=0; i<dimi; i+=2*VL)
 for (j=0; j<dimj; j++)
 #pragma vector always
 for(vi = i; vi <i+VL; vi++){
 A[vi]=A[vi]+B[j];
 A[vi+VL]=A[vi+VL]+B[j];
 }
}

..LOOP_I:
xorl %r10d, %r10d
..B7.4:
movq %rax, %r9
shlq $5, %r9
..LOOP_J:
movups (%r9,%rdi), %xmm0 #ld A[i:i+3]
movups16(%r9,%rdi),%xmm2 #ld A[i+4:i+7]
movss(%rsi,%r10,4), %xmm1 #ld B[j]
shufps $0, %xmm1, %xmm1
addps %xmm1, %xmm0 #A[i:i+3]+B[j]
movups %xmm0, (%r9,%rdi) #st A[i:i+3]
addps %xmm1, %xmm2 #A[i+4:i+7]+B[j]
movups%xmm2,16(%r9,%rdi) #st A[i+4:i+7]
incq %r10
cmpq %rcx, %r10
jb..LOOP_J
incq %rax
cmpq %rdx, %rax
jb..LOOP_I

Figure 3. Cross addition after performing outer-loop vectoriza-
tion and unroll and jam to loop i. The left column shows the
source code and the right the assembly code.

Although data reuse has been exposed by applying unroll and
jam to loop i in the source code, the icc compiler is not able to
eliminate redundant loads and stores in the new unrolled loop
body. In Figure 3, we can see that reference A[vi] and A[vi+VL]
are loaded on/stored from registers %xmm0 and %xmm2, re-
spectively, in each iteration of loop j. However these two refer-
ences are invariant with respect to loop j. Note that this problem
does not happen if we do not perform unroll and jam to loop i.
In Figure 2, reference A[vi] is loaded on/stored from register
%xmm0 only once during the execution of loop j. To overcome
this problem, we also need to perform vectorial replacement to
the source code.

3.3 Vectorial Replacement
Vectorial replacement (VR) can be used to eliminate redundant
vector loads and stores in the loop body. Most compilers fail to
recognize even simplest opportunities for reuse of subscripted
variables between iterations of the innermost loop. This happens
in spite of the fact that standard optimization techniques are able
to determine that the addresses of the subscripted variables are
invariant in the inner loop. The principal reason for the problem
is that the data-flow analysis used by standard compilers is not
powerful enough to recognize most opportunities for reuse of
array variables. Scalar replacement, proposed by [5][6], is a
source-to-source transformation that uses dependence informa-
tion to find reuse of array values and expose it by replacing the
references with scalar temporal variables.

We apply the idea of scalar replacement to vectors to help the
compiler to eliminate redundant vector loads and stores in the
innermost loop. For that, we identify individual array references
with array variables and expose vector register reuse in the
source code. In particular, for each invariant vectorized reference,
we create a new temporary array variable of dimension VL. Then
we replace each invariant vectorized reference by the new tempo-
rary array and expose data reuse in the source code by initializing
and storing the temporary arrays out of the innermost loop. Vec-
torial replacement can be implemented using both temporary
arrays variables or pointer variables.

Continuing with the cross addition example, after applying
vectorial replacement to the code of Figure 3 we obtain the code
of Figure 4. Notice that after applying vectorial replacement to
the source code, the icc compiler is able to remove redundant

Source code ASM
void cross_add(float *A, float *B,
 int dimi, int dimj){
 long int i, j, vi;
 float A1[VL], A2[VL];
 for (i=0; i<dimi; i+=2*VL){
 for(vi = 0; vi < VL; vi++){
 A1[vi]=A[i+vi];
 A2[vi]=A[i+VL+vi];
 }
 for (j=0; j<dimj; j++)
 #pragma vector always
 #pragma ivdep
 for(vi = 0; vi < VL; vi++){
 A1[vi]=A1[vi]+B[j];
 A2[vi]=A2[vi]+B[j];
 }
 #pragma vector always
 for(vi = 0; vi < VL; vi++){
 A[i+vi]=A1[vi];
 A[i+VL+vi]=A2[vi];
}}}

..LOOP_I:
movups (%rax,%rdi),%xmm1 #ld A[i:i+3]
movups 16(%rax,%rdi),%xmm0 #ld A[i+4:i+7]
xorl %r9d, %r9d
testq %r8, %r8
jle ..B7.7
..LOOP_J:
movss (%rsi,%r9,4), %xmm2 #ld B[j]
shufps $0, %xmm2, %xmm2
addps %xmm2, %xmm1 #A[i:i+3]+B[j]
addps %xmm2, %xmm0 #A[i+4:i+7]+B[j]
incq %r9
cmpq %r8, %r9
jb ..LOOP_J
..B7.7:
movups %xmm1, (%rax,%rdi) #st A[i:i+3]
movups %xmm0,16(%rax,%rdi) #st A[i+4:i+7]
addq $32, %rax
incq %rcx
cmpq %rdx, %rcx
jb ..LOOP_I

Figure 4. Cross addition after performing outer-loop vectoriza-
tion, unroll and jam and vectorial replacement using temporary
vectors variables. The left column shows the source code and the
right the assembly code.

loads and stores from the loop body. In Figure 4, reference
A[i+vi] and A[i+VL+vi] are loaded and stored only once during
the execution of the j-loop.

Finally, in Figure 5 we show the same example as Figure 4
but using temporary pointers variables instead of arrays for the
implementation of vectorial replacement.

4. Matrix product example
This section shows how efficient SIMD code can be obtained by
applying all the transformations explained in section 3 to the
register tiled matrix product (SGEMM).

First of all, we compiled the original matrix product, shown
in Figure 6, using icc with all compiler optimizations (including
vectorization) turned on. It can be seen that icc always permutes

Source code ASM
void cross_add(float *A, float *B,
 int dimi, int dimj){
long int i, j, vi;
float *A1, *A2;
A1 = A;
A2 = A1+VL;
for (i=0; i<dimi; i+=2*VL){
 for (j=0; j<dimi; j++)
 #pragma vector always
 #pragma ivdep
 for(vi = 0; vi < VL; vi++){
 A1[vi]=A1[vi]+B[j];
 A2[vi]=A2[vi]+B[j];
 }
 A1+=2*VL;
 A2+=2*VL;
 }
}

..LOOP_I:
xorl %r8d, %r8d
movq %rcx, %r9
shlq $5, %r9
movups16(%r9,%rdi),%xmm1 #ldA[i+4:i+7]
movups (%r9,%rdi), %xmm0 #ldA[i:i+3]
..LOOP_J:
movss (%rsi,%r8,4), %xmm2 #ld B[j]
shufps $0, %xmm2, %xmm2
addps %xmm2, %xmm0 #A[i:i+3]+B[j]
addps %xmm2, %xmm1 #A[i+4:i+7]+B[j]
incq %r8
cmpq %rax, %r8
jb..LOOP_J
movups%xmm1,16(%r9,%rdi) #st A[i+4:i+7]
movups %xmm0, (%r9,%rdi) #st A[i:i+3]
incq %rcx
cmpq %rdx, %rcx
jb..LOOP_I

Figure 5. Cross addition after performing outer-loop vectoriza-
tion, unroll&jam and VR using temporary pointers. The left co-
lumn shows the source code and the right the assembly code.

Actas XXII Jornadas de Paralelismo (JP2011) , La Laguna, Tenerife, 7-9 septiembre 2011

JP2011-722

Source code ASM
void multiply(float* A, float* B,
 float* C, int dimi,
 int dimk, int dimj){
 long int i, j, k;
 for (i = 0; i < dimi; i++)
 for (j = 0; j < dimj; j++)
 for (k = 0; k < dimk; k++)
 C[i*dimj+j]+=A[i*dimk+k]*
 B[k*dimj+j];
}

..LOOP_I:

...

..LOOOP_K:
movq %rbx, %rcx
movq %r14, %rcx
movss (%r12,%rbp,4), %xmm0
shufps $0, %xmm0, %xmm0
..LOOP_J:
movups (%rdx,%rcx,4), %xmm1
movups 16(%rdx,%rcx,4),%xmm2
mulps %xmm0, %xmm1
mulps %xmm0, %xmm2
addps (%rsi,%rcx,4), %xmm1
addps 16(%rsi,%rcx,4),%xmm2
movaps %xmm1, (%rsi,%rcx,4)
movaps %xmm2, 16(%rsi,%rcx,4)
addq $8, %rcx
cmpq %r10, %rcx
jb ..LOOP_J
addq %r9, %r15
incq %rbp
cmpq %r8, %rbp
jb ..LOOP_K
...
jb ..LOOP_I

Figure 6. Matrix product. The left column shows the source
code and the right the assembly code.

the loop nest (no matters which is the original loop order) mak-
ing loop j the innermost loop. Since icc only performs inner loop
vectorization, this loop order allows icc to vectorize loop j.
Moreover, loop j is unrolled by a factor of 8 (2 vectors). Finally,
icc also exploits the reuse of the invariant reference of matrix A
in the inner loop j by loading it only once in a vector register
during the execution of loop j.

Our objective in this section is to generate an efficient code
that fully exploits the register level of the memory hierarchy and
the SIMD capabilities of the target machine. To this end, we first
apply register tiling [6][14][26] to the source code as shown in
Figure 7a. BI and BJ are the tile sizes in dimension i and j, re-
spectively, and their values depend on the available SIMD regis-
ters and their sizes on the target architecture. For simplicity and
without loss of generalization, we assume dimi and dimj to be
multiple of BI and BJ, respectively.

It is well-known that loop tiling [16] is loop transformation
that a compiler can use to automatically create block algorithms.
The advantage of block algorithms is that, while computing with-
in a block, there is a high degree of data locality, allowing better
register, cache or memory hierarchy performance. Loop tiling for
any memory level can be implemented by combining two well-
known transformations: strip-mining and loop interchange. How-
ever, the implementation of tiling for the register level requires
an extra phase not needed for other memory levels. Since regis-
ters are only addressable using the register number, it is neces-
sary to fully unroll the loops that traverse the iterations inside the
register tiles. Therefore, in our example of Figure 7a, it is neces-
sary to fully unroll loops i and j to exploit the register level. At
last, scalar replacement [5][6] can be used to eliminate redundant
loads and stores in the new unrolled loop body.

When combining register tiling with vectorization we need
first vectorize the desired loop (loop j, in our example) before
fully unroll the register tile. Thus, the outer loop j is vectorized
as explained in subsection 3.1. We apply strip-mining to loop j
with a step size of VL and then permute the resulting element

loop of VL iterations to become the innermost (the vector state-
ment). The resulting code is shown in Figure 7b assuming BJ is
multiple of VL for simplicity.

As already mentioned, now it is necessary to fully unroll the
loops that traverse the iterations inside the register tile (loop i
and j in Figure 7b). To fully unroll the strip-mined loop j we
perform unroll and jam as explained in Section 3.2. The resulting
code is shown in Figure 8a, assuming BI = 2 and BJ=2*VL.

At this point icc vectorizes dimension j keeping loop k as in-
nermost loop. However, icc does not remove redundant vector
loads and stores from the new unrolled loop body. As we can see
in Figure 8c, the elements of C are loaded and stored in each
iteration of loop k unnecessarily. Therefore we need to apply
vectorial replacement to reference C as explained in section 3.3.
Figure 8b shows the resulting source code using pointers as tem-
porary variables to identify the adjacent array references. We can
see in Figure 8d how icc is now able to remove redundant memo-
ry instructions.

Summarizing, by combining register tiling with the source-to-
source transformations proposed in Section 3, we help icc compi-
ler to generate efficient code that fully exploit the register level
and the SIMD capabilities of the target machine.

5. Performance Results
First details of our evaluation environment are presented includ-
ing a description of the architecture, compiler and kernels used.
Then, kernel performance is described and analyzed.

5.1 Evaluation environment
All kernels in this study have been executed in the same machine
and compiled by the same version of the icc with the same flags
and options.

Target architecture
The machine used for this work is the Intel Xeon E5520 which
implements the Intel Nehalem architecture with 4 cores. Since
we are evaluating single core executions, we only use one of the
four available cores. The SIMD capabilities of these cores in-
clude from MMX and SSE to SSE4 instructions being SSE3 the
most important for our purposes. The memory hierarchy charac-
teristics offered by this machine are listed in Table 1.

This machine also provides CPU throttling and automatic pre-
fetcher capabilities which have been disabled to prevent interac-
tions with the performance measures. In the same way, we
always execute an infinite loop on the 3 cores where our kernels
are not running.

long int ii, jj, i, j, k; a)
for (ii = 0; ii < dimi; ii+=BI)
 for (jj = 0; jj < dimj; jj+=BJ)
 for (k = 0; k < dimk; k++)
 for(j = jj; j < jj+BJ; j++)
 for(i = ii; i < ii+BI; i++)
 C[i*dimj+j]+=A[i*dimk+k]*B[k*dimj+j];

long int ii, jj, i, j, k, vj; b)
for (ii = 0; ii < dimi; ii+=BI)
 for (jj = 0; jj < dimj; jj+=BJ)
 for (k = 0; k < dimk; k++)
 for(j = jj; j < jj+BJ; j+=VL)
 for(i = ii; i < ii+BI; i++)
 for(vj=j; vj<j+VL;vj++)
 C[i*dimj+vj]+=A[i*dimk+k]*B[k*dimj+vj];

Figure 7. a) Register tiled matrix product. b) Register tiled matrix prod-
uct after applying outer loop vectorization to loop j.

Actas XXII Jornadas de Paralelismo (JP2011) , La Laguna, Tenerife, 7-9 septiembre 2011

JP2011-723

Icc compiler
Our kernels and code were compiled using Intel C compiler [10]
version 11.1 for intel64 architectures. This version includes sev-
eral vectorization capabilities as well as memory hierarchy opti-
mizations. To enable them, all the kernels have been compiled
with the flags –O3, -restrict, -fno-alias and –msse3. With the
same objective the keyword “restrict” has been added in all the
function’s headers. Finally, to help the compiler with the vectori-
zation, the pragmas “ivdep” and “vector always” have been used.

Kernels

Three kernels have been evaluated to show the effectiveness of
our transformations. Table 2 contains a short description and the
characteristics of each of them. The third column indicates the
iteration space (IS) shape of the loops being transformed. If the
IS is not rectangular, then the loop nest contains bound compo-
nents that are affine functions of the surrounding loops iteration
variables. As pointed out in Section 3, for those kernels having
non-rectangular iteration space, we use the theory of unimodular
transformations to perform loop permutation [16] and Index Set
Splitting [29] to make sure that a particular loop performs a con-
stant number of iterations.

5.2 Performance Results
In this section we will present the performance results obtained
by our source-to-source transformations. To this end, we evaluate
four different versions of each kernel: one is the original version
(ORI) with no previously restructuring transformation, a second
one generated after optimizing the ORI version for scalar execu-
tion (Scalar), a third one generated after applying outer-loop
vectorization and unroll and jam to the original source code
(SIMD) and the fourth one generated after applying all three
transformations (outer loop vectorization, unroll and jam and
vectorial replacement) to the original code (SIMD+VR). After
generating the different versions for each program, we use the icc
compiler as mentioned previously to generate the final execu-
tables.

Figure 10a shows the performance obtained on the Nehalem
architecture for the cross addition kernel. In the ORI version, icc
was able to perform inner loop vectorization of loop j and unroll
it by a factor of 8 (2 vectors). Icc also performs scalar replace-
ment on reference A. In the other three versions (Scalar, SIMD
and SIMD+VR) loop i has been unrolled by a factor of 24 (6
vectors) and kept as the outermost loop. Moreover, in the Scalar
and SIMD+VR version scalar and vectorial replacement has been
respectively applied.

Source code ASM
long int ii, jj, k, vj; a)
for (ii = 0; ii < dimi; ii+=2)
 for (jj = 0; jj < dimj; jj+=2*VL)
 for (k = 0; k < dimk; k++)
 #pragma ivdep
 for(vj=jj; vj<jj+VL;vj++) {
 C[ii*dimj+vj]+=A[ii*dimk+k]*B[k*dimj+vj];
 C[ii*dimj+vj+VL]+=A[ii*dimk+k]*B[k*dimj+vj+VL];
 C[(ii+1)*dimj+vj]+=A[(ii+1)*dimk+k]*B[k*dimj+vj];
 C[(ii+1)*dimj+vj+VL]+=A[(ii+1)*dimk+k]*B[k*dimj+vj+VL];
 }

long int ii, jj, k, vj; b)
float *C1, *C2, *C3, *C4;
const float *B1, *B2, *A1, *A2;
for (ii = 0; ii < dimi; ii+=2){
 A1 = &A[ii*dimk];
 A2 = &A[(ii+1)*dimk];
 for (jj = 0; jj < dimj; jj+=2*VL) {
 C1 = &C[ii*dimj+jj];
 C2 = &C[(ii+1)*dimj+jj];
 C3 = &C[ii*dimj+jj+4];
 C4 = &C[(ii+1)*dimj+jj+4];
 for (k = 0; k < dimk; k++) {
 B1 = &B[k*dimj+jj];
 B2 = &B[k*dimj+jj+VL];
 #pragma ivdep
 for(vj = 0; vj<VL; vj++){
 C1[vj] += A1[k]*B1[vj];
 C3[vj] += A1[k]*B2[vj];
 C2[vj] += A2[k]*B1[vj];
 C4[vj] += A2[k]*B2[vj];
 }
 }
 }

..LOOP_I: c)

...

..LOOP_J
xorl %r8d, %r8d
xorl %ebp, %ebp
movq %rbx, %rcx
shlq $5, %rcx
lea (%r11,%rcx), %rax
..LOOP_K:
movups (%rax,%rbp,4), %xmm4
movups (%r12,%rcx), %xmm1
movups 16(%rax,%rbp,4), %xmm6
movups 16(%r12,%rcx), %xmm3
movss (%rdx,%r8,4), %xmm2
movss (%r13,%r8,4), %xmm7
shufps $0, %xmm2, %xmm2
movaps %xmm2, %xmm0
mulps %xmm6, %xmm2
mulps %xmm4, %xmm0
shufps $0, %xmm7, %xmm7
mulps %xmm7, %xmm4
mulps %xmm6, %xmm7
addps %xmm0, %xmm1
movups %xmm1, (%r12,%rcx)
addps %xmm2, %xmm3
movups %xmm3, 16(%r12,%rcx)
movups (%rcx,%rsi), %xmm5
movups 16(%rcx,%rsi), %xmm8
addq %r10, %rbp
addps %xmm4, %xmm5
movups %xmm5, (%rcx,%rsi)
addps %xmm7, %xmm8
movups %xmm8, 16(%rcx,%rsi)
incq %r8
cmpq %r14, %r8
jb ..LOOP_K
incq %rbx
cmpq %r9, %rbx
jb ..LOOP_J
...
jb ..LOOP_I

..LOOP_I: d)

...

..LOOP_J:
xorl %ebp, %ebp
xorl %ecx, %ecx
movq %r12, %rsi
shlq $5, %rsi
movups (%r8,%rsi), %xmm3
movups 16(%r8,%rsi), %xmm2
movups (%rdx,%rsi), %xmm1
movups 16(%rsi,%rdx), %xmm0
lea (%r11,%rsi), %rax
..LOOP_K:
movups (%rcx,%rax), %xmm6
movups 16(%rcx,%rax), %xmm7
movss (%r13,%rbp,4), %xmm5
movss (%rbx,%rbp,4), %xmm8
shufps $0, %xmm5, %xmm5
movaps %xmm5, %xmm4
mulps %xmm7, %xmm5
mulps %xmm6, %xmm4
shufps $0, %xmm8, %xmm8
mulps %xmm8, %xmm6
mulps %xmm7, %
addps %xmm4, %xmm3
addps %xmm5, %xmm2
addps %xmm6, %xmm1
addps %xmm8, %xmm0
lea (%rcx,%r10,4), %rcx
incq %rbp
cmpq %r14, %rbp
jb ..LOOP_K
movups %xmm0, 16(%rsi,%rdx)
movups %xmm1, (%rdx,%rsi)
movups %xmm2, 16(%r8,%rsi)
movups %xmm3, (%r8,%rsi)
incq %r12
cmpq %r9, %r12
jb ..LOOP_J
...
jb ..LOOP_I

Figure 8. a) Source code of the register tiled matrix product after applying outer loop vectorization and unroll and jam to loop j. b) Source code
of the register tiled matrix product after applying outer loop vectorization, unroll and jam and vectorial replacement. c) Assembly code of a.
d) Assembly code of b.

Actas XXII Jornadas de Paralelismo (JP2011) , La Laguna, Tenerife, 7-9 septiembre 2011

JP2011-724

Device Size Associativity/#
L1 I-Cache 32 KB 4-way
L1 D-Cache 32 KB 8-way

L2 Cache 256 KB 8-way
L3 shared Cache 8 MB 16-way

TLB1 32 entries 4-way
TLB2 512 entries 4-way

General Purpose
Registers (GPRs)

64-bit-wide 16 registers

XMM registers 128-bit-wide 16 registers

Table 1. Memory hierarchy of the Intel Xeon E5520.

Description Loop depth IS
Cross addition of 2 vectors (Figure 1) 2 Rectangular
Rectangular matrix product (Figure 6) 3 Rectangular
Triangular matrix product (Figure 9) 3 Triangular

Table 2. Characteristics of the evaluated kernels.

void multiply(const float *restrict A,const float *restrict B,float *restrict C,int dimi,
 int dimk,int dimj){
 long int i,j,k;
 for(k = 0; k < dimk; k++)
 for(i = k; i < dimi; i++)
 for(j = k; j < dimj; j++)
 C[i*dimj+j] += A[i*dimk+k] * B[k*dimj+j];
}

Figure 9. Triangular matrix product.

We can observe that vector executions (ORI, SIMD and
SIMD+VR) obtain always better performance than scalar execu-
tions (Scalar). On the other hand, SIMD version is still far away
to the ORI version because SIMD does not apply vectorial re-
placement, performing therefore excessive redundant memory
operations inside the innermost loop. Finally, it can be seen that
SIMD+VR outperforms ORI version because better register reuse
is done.

Figure 10b shows the performance obtained for the rectangu-
lar matrix product. In the ORI version (code of Figure 6) of this
kernel, icc was able to vectorize loop j (inner loop vectorization)
and unroll it by a factor of 8 (2 vectors). Again, icc was also able
to perform scalar replacement to reference A of the loop body. In
the other three versions (Scalar, SIMD and SIMD+VR) register
tiling has been applied with tile sizes 6 and 8 for dimension i and
j, respectively. Moreover, in the Scalar and SIMD+VR version
scalar and vectorial replacement has been respectively applied.

In this case, ORI version again performs better than the Scalar
version since it is vectorized. However, the SIMD version per-

forms slightly better than the ORI version because SIMD exploits
better the register level due to the register tiling transformation.
Although SIMD version does not perform vectorial replacement,
it exploits reuses of accesses to A and B inside the register tile.

 Finally version SIMD+VR again obtains highest performance
since it highly reduces the memory operations (it avoids loads
and stores of C in the innermost loop). Moreover, we can also
see in Figure 10b that the performance of SIMD+VR starts to
decrease at problem size of 216. For medium problem sizes,
tiling only at the register level can substantially increase TLB
misses and cache misses are not moderated. This problem can
be solved by performing tiling also for higher levels of the mem-
ory hierarchy.

Figure 10c shows the performance obtained for the triangular
matrix product. In the ORI version of this kernel, icc was not
able to vectorize because it does not support non-rectangular loop
structure, but it applies scalar replacement to reference A in the
innermost loop j. In the other three versions (Scalar, SIMD and
SIMD+VR) we apply tiling at the register level with tile sizes 6
and 8 for dimensions i and j respectively and use Index Set
Splitting [29] to distinguish loop nests that traverse (non-
rectangular) boundary tiles from loop nests that traverse (rectan-
gular) non-boundary tiles. These later loop nests can be vecto-
rized and fully unrolled.

 In this kernel, both ORI and Scalar versions are executed in
scalar. The slight difference in performance between them is due
to the loop order. The loop order in ORI version is ikj and there-
fore reference to A exhibit reuse between different iterations of
the innermost loop. In the ORI version, the loop body contains
three memory operations (1 load from B and C and 1 store from
C). However, the loop order in Scalar version is ijk and thus
reference to C exhibit reuse between different iterations of the
innermost loop. In this version, the loop body only contains two
memory operations (1 load from A and B).

 Again, we can also see in Figure 10c that SIMD version ob-
tain better performance than ORI and Scalar versions thanks to
the vector execution, but SIMD+VR outperforms them. In all
three kernels, the SIMD version shows speedup of around 2x
over the Scalar version and the SIMD+VR version obtains an
additional 2x speedup over the SIMD version.

Finally, we want to point out the difference in performance
for small problem sizes between the triangular and the rectangu-
lar matrix product kernels. We can observe that SIMD+VR ob-
tains very high performance for small problem sizes (from 24 to
196) in the rectangular matrix product while the same version
obtains very low performance in the triangular matrix product.
The reason is that for very small problem sizes, the execution
time wasted on boundary tiles in the triangular matrix product is
significant and these tiles are not vectorized and unrolled.

Figure 10. a) Performance of cross addition of 2 vectors. b) Performance of rectangular matrix product. c) Performance of triangular matrix prod-
uct. d) Performance of SGEMM for the ATLAS and MKL hand-optimized libraries and our best code (SIMD+VR + cache tiling).

a) b) c) d)

Actas XXII Jornadas de Paralelismo (JP2011) , La Laguna, Tenerife, 7-9 septiembre 2011

JP2011-725

At last, we compare our optimized codes against hand-
optimized assembly-written numerical libraries. Figure 10d
shows the SGEMM performance obtained by ATLAS [25] and
MKL [11] and the performance obtained by our optimized rec-
tangular matrix product. To do a fairly comparison, we add cache
tiling to the SIMD+VR version of Figure 10d. Cache tiling is
effective for reducing the capacity cache miss rate and moderat-
ing TLB misses. Thus, for medium matrix sizes that do not fit at
the cache level it achieves the same performance level as for
smaller sizes.

We can see that MKL achieves the peak performance of a
core (2.26GHz * 4 Single Precision Floating Point elements per
instruction * 2 instructions per cycle = 18,08 GFLOPS). On the
other hand, ATLAS and SIMD+VR+Cache achieve a perfor-
mance of 14 GFLOPS approximately (77% of the peak perfor-
mance).

We can also observe in Figure 10d that for large matrix sizes
ATLAS achieves slightly better performance than our optimized
version. The reason is that ATLAS copies the matrices into small
contiguous blocks in memory in order to minimize TLB misses
and cache conflicts. In our optimized version we do not use data
copying. However, for small problem sizes, our optimized code
outperforms ATLAS.

Summarizing, results show that source-to-source optimized
codes can almost achieve the same performance as hand-
optimized assembly-written codes.

6. Conclusions
SIMD instructions are so far not really exploited by compilers for
media processors. Taking advantage of such instructions is only
possible if processor-specific assembly routines or compiler in-
trinsics are used, resulting in low portability of software.

The optimizations proposed in this paper are high-level
(source-to-source) transformations that help compilers to gener-
ate efficient SIMD code. We have seen that the SIMD+VR ver-
sion obtains speedups of around 4x over the Scalar version.

Working at the source level prevent us from controlling many
of the low level transformations typically performed by the com-
piler’s back-end (instruction scheduling, register allocation, etc.)
making it difficult (if not impossible) to generate the optimal
code. By integrating these transformations inside a production
compiler, we could achieve even more better performance.

Acknowledgments
This research has been supported by an Intel-UPC Research
Grant, the Spanish Ministry of Education (contract no. TIN2007-
60625), and the European Union (under the HiPEAC-2 Network
of Excelence, FP7/ICT 217068).

References
[1] D. Aberdeen, and J. Baxter. EMMERALD: a fast matrix-matrix mul-

tiply using Intel’s SSE instructions, J. Concurrency Comput.: Pract.
Exp., 13, 103-119, 2001.

[2] U. Banerjee. Dependence analysis for supercomputing. Norwell, Mass.
Kluwer Academic Publishers, 1988.

[3] A. Bik. The Software Vectorization Handbook. Applying Multimedia
Extensions for Maximum Performance". Intel Press. 2004.

[4] A. Bik, M. Girkar, P. M. Grey, and X. Tian. Automatic Intra-Register
Vectorization for the Intel Architecture. Int. J. Parallel Program. 30, 2,
65-98. April 2002.

[5] D. Callahan, S. Carr, and K. Kennedy. Improving register allocation
for subscripted variables. PLDI '90. pp. 53-65. June 1990.

[6] S. Carr. Memory-hierarchy management. Ph.D. Thesis, Rice Universi-
ty, February 1993.

[7] G. Cheong, M.S. Lam, An optimizer for multimedia instruction sets, in:
The Second SUIF Compiler Workshop, Stanford University, USA,
1997.

[8] Y.F. Fung, M.F. Ercan, T.K. Ho, and W.L. Cheung. A parallel solution
to linear systems. Microprocess. Microsyst., 26, 39-44, 2002.

[9] M. Hassaballah, S. Omran, and Y. B. Mahdy. A Review of SIMD
Multimedia Extensions and their Usage in Scientific and Engineering
Applications. The Computer Journal, Vol. 51 (6): 630-649. January
2008.

[10] Intel Corporation. Intel C/C++ Compiler User and Reference Guide.
Order Number 304968-023US.

[11] Intel Corporation. Intel Math Kernel Library Reference Manual. Order
Number 630813-038US.

[12] Intel Corporation (2010). Intel Advanced Vector Extensions Program-
ming Reference. Order Number 319433-009, December 2010.

[13] M. Jimenez, J. Llaberia, A. Fernandez. On the Performance of Hands
vs. Automatically Optimized Numerical Codes. HPCA-6 IEEE Com-
puter Society, January 2000, p. 183-194

[14] M. Jimenez, J. Llaberia, A. Fernandez. Register Tiling in Nonrectangu-
lar Iteration Spaces. "ACM transactions on programming languages
and systems", Juliol 2002, vol. 24, núm. 4, p. 409-453.

[15] A. Krall and S. Lelait. Compilation Techniques for Multimedia Proces-
sors. Int. J. of Parallel Programming. 28, 4, 347-361. August 2000.

[16] M. Lam, E. Rothberg, and M. Wolf. The Cache Performance and Op-
timization of Blocked Algorithms. ASPLOS'91, pp. 63-74, 1991.

[17] D. Maydan, J. Hennessy and M. Lam. Efficient and exact data depen-
dence analysis. PLDI’91, pp. 1-14, June 1991.

[18] A. Muezerie, R.J. Nakashima, G. Travieso, and J. Slaets. Matrix calcu-
lations with SIMD floating point instructions on x86 processors.
HPCA’01, pp. 50-55, September 2001.

[19] D. Nuzman, A. Zaks. Outer-loop vectorization: revisited for short
SIMD architectures. PACT '08, pp.2-11, 2008.

[20] A. Peleg, U. Weiser. MMX Technology Extension to the Intel Archi-
tecture, IEEE Micro, Vol. 16, No. 4, pp. 42-50, August 1996.

[21] I. Pryanishnikov , A. Krall , N. Horspool. Compiler optimizations for
processors with SIMD instructions. Software—Practice & Experience,
v.37 n.1, p.93-113, January 2007

[22] W. Pugh. "A practical algorithm for exact array dependence analysis".
Communications of the ACM, Vol. 35, No. 8, pp. 102-114, 1992.

[23] P. Ranganathan, S. Adve, and N. P. Jouppi. Performance of image and
video processing with general-purpose processors and media ISA ex-
tensions. ISCA '99, 124-135, 1999.

[24] N. Sreraman and R. Govindarajan. A vectorizing compiler for multi-
media extensions. J. of Parallel Programming, 28, 363-400. 2000.

[25] R. C. Whaley, A. Petitet, J. Dongarra. Automated Empirical Optimiza-
tion of Software and the ATLAS project, Parallel Computing, 27(1-
2):3-35, 2001.

[26] M. Wolf and M. Lam. A data locality optimizing algorithm. PLDI’91,
pp. 30-44, June 1991.

[27] M. Wolf, D. Maydan and D.K. Chen. "Combining loop transformations
considering caches and scheduling". MICRO-29, pp. 274-286, Decem-
ber 1996.

[28] M. Wolf. Improving locality and parallelism in nested loops. Ph.D.
Thesis, Stanford University, 1992.

[29] M. Wolfe. High performance compilers for parallel computing. Addi-
son-Wesley Publishing Company, 1996.

[30] C.-L. Yang, B. Sano, and A. R. Lebeck. Exploiting Parallelism in
Geometry Processing with General Purpose Processors and Floating-
Point SIMD Instructions, IEEE Transactions on Computers, 49(9),
934-946, September 2000.

Actas XXII Jornadas de Paralelismo (JP2011) , La Laguna, Tenerife, 7-9 septiembre 2011

JP2011-726

