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Abstract 
In the last years, there has been much effort in commercial com-
pilers to generate efficient SIMD instructions-based code se-
quences from conventional sequential programs. However, the 
small numbers of compilers that can automatically use these 
instructions achieve in most cases unsatisfactory results. There-
fore, the code often has to be written manually in assembly lan-
guage or using compiler built-in functions to achieve high 
performance. In this work, we present source-to-source transfor-
mations that help commercial vectorizing compilers to generate 
efficient SIMD code. Experimental results show that excellent 
performance can be achieved. In particular, for the problem of 
matrix product (SGEMM) we almost achieve as high perfor-
mance as hand-optimized numerical libraries. Our source-to-
source transformations are based on the scalar replacement and 
unroll and jam transformations presented by Callahan et all. In 
particular, we extend the use of scalar replacement to vectorial 
replacement and combine this transformation with unroll and jam 
and outer loop vectorization to fully exploit the vector register 
level and thus to help the compiler to generate efficient SIMD 
code. We will show experimentally the effectiveness of our pro-
posal.  

Categories and Subject Descriptors  

D.3.4 [Processors]: compilers, optimization: C.1.2 [Multiple 
Data Stream Architectures (Multiprocessors)]: Single-
instruction-stream, multiple-data-stream processors (SIMD) 

General Terms  

Algorithms, Performance. 

Keywords  

SIMD; vectorization; source-to-source transformations; register 
tiling; 

1. Introduction 
The ISA of all today´s microprocessors has been extended with 
multimedia instructions [9]. Multimedia extensions follow the 
SIMD paradigm by exploiting wide data paths and functional 
units that simultaneously operate on narrow data paths of packed 
data elements (relatively short vectors that reside in memory or 
registers). The number of packed data elements (VL) supported 
by the SIMD instructions has been increased with each micro-
processor generation, going from 64 bits data registers in the 
Pentium II with the MMX technology to the 256 bits data regis-
ters in Sandy Bridge with the AVX1 technology. Moreover, 
SIMD extensions have also evolved in number of instructions 

and data types. MMX technology has 57 SIMD instructions and 
handles only integer data types while AVX1 technology has hun-
dreds of instructions and handles both integer and floating-point 
(single and double) data types[12][20]. 

SIMD instructions are useful in multimedia and signal 
processing applications [23][30], but also in scientific and nu-
merical applications [1][8][18]. They offer higher performance, a 
good performance/power ratio, and better resource utilization. 
However, compilers still do not have good support for SIMD 
instructions due to the difficulty of automatically vectorizing 
conventional sequential programs. The few commercial compi-
lers that can automatically use these instructions achieve in most 
cases unsatisfactory results. 

To overcome the lack of adequate compiler support for SIMD 
extensions, often the code has to be written manually in assembly 
language or using compiler built-in functions [12]. However, 
these methods, although very effective, are tedious, error prone 
and result in highly machine-specific code, so that porting an 
application to a new target processor requires significant pro-
gramming effort. 

Manufacturers have tried to minimize the complexity of writ-
ing SIMD optimized codes by providing numerical libraries (such 
as MKL [11]) that attain high performance under their particular 
microprocessor. However, not all applications can take advantage 
of these libraries and there are many situations in which none of 
the routines provided can specifically solve the task at hand. 

We believe that restructuring a code to better exploit SIMD 
capabilities should be the job of a compiler. Compilers, not pro-
grammers, should handle the machine-specific details required to 
obtain high performance on each particular architecture. Algo-
rithm should be expressed in a natural machine-independent 
form and the compiler should apply the appropriate transforma-
tion to optimize the resulting code. 

In this paper, we present high level (source-to-source) trans-
formations that help actual commercial vectorizing compilers to 
generate efficient SIMD code on scientific numerical applica-
tions. The proposed transformations are simple enough to be 
suitable for automatic implementation by compilers. 

Our proposal is based on an effective use of the vector regis-
ters. As already known, the existence of a gap between memory 
and CPU performance made effective use of the register file im-
perative for excellent performance. It is well-known that the 
allocation of array values that exhibit reuse to registers can sig-
nificantly improve the memory performance of programs. How-
ever, in many production compilers array references are left as 
references to main memory rather than references to registers 
because the data flow analysis used by the compiler is not power-
ful enough to recognize most opportunities for reuse in sub-
scripted variables. 
Callahan et all in [5] presented a source-to-source transforma-
tion, called scalar replacement, that exposed the reuse available 
in array references in an innermost loop. They also showed expe-
rimentally how another loop transformation called unroll and 
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jam, could expose more opportunities for scalar replacement by 
moving reuse across an outer loop into the innermost loop. 

In this work, we will apply the idea of scalar replacement and 
unroll and jam to vectorized loop nests and show experimentally 
their effectiveness. We refer as vectorial replacement to the sca-
lar replacement transformation applied to SIMD vectorized loop 
nests. 

Summarizing, the contribution of this paper are the following: 
• An approach that combines 3 source-to-source trans-

formations (outer-loop vectorization, unroll and jam of 
vectorized loops and vectorial replacement) that help 
compilers to generate efficient SIMD code in scientific 
numerical applications. 

• Experimental evaluation exhibiting the impact of these 
transformations using simple kernels of loop nests on a 
Nehalem platform. 

The rest of this paper is organized as follows: Section 2 ex-
plains previous work related to source-to-source loop transforma-
tions. Section 3 describes our approach to help the compiler to 
vectorize outer loops and to apply unroll and jam and vectorial 
replacement. Section 4 gives an extended example using matrix 
product kernel. In Section 5 we show performance results of our 
approach compared to scalar version, inner-loop vectorized ver-
sions and vendor supplied numerical libraries. Finally, Section 6 
concludes. 
 

2. Related Work 
Little published work exists which directly deals with high level 
code transformation techniques for processors with SIMD capa-
bilities. Several researchers [3][7][15][19][21][24] have worked 
on vectorizing compilers, but not on high level (source-to-source) 
code transformations to help compilers to generate efficient 
SIMD codes. These researchers focus on automatically identify 
vectorizable section of code and generate appropriate SIMD in-
structions. Their proposals are low level optimizations to be im-
plemented inside compilers. Our work instead proposes high 
level transformations for generating efficient SIMD code while 
waiting for commercial compilers to implement novel approaches 
from previous researchers. 

Moreover, most of these auto-vectorization approaches focus 
on innermost loops [7][15][24] or block vectorization [4]. Only 
Nuzman et all in [19] deals with outer loop vectorization and 
show its effectiveness. Their proposal consists on implementing 
in-place outer loop vectorization inside the GCC compiler. In 
contrast, we perform outer loop vectorization as a high level 
(source-to-source) transformation. 

Aditionally, Callahan et all in [5] presented a source-to-source 
transformation, called scalar replacement, that exposes the reuse 
available in array references in an innermost loop. They also 
showed experimentally how another loop transformation, called 
unroll and jam, could expose more opportunities for scalar re-
placement by moving reuse across an outer loop into the inner-
most loop. In our work, we extend the use of scalar replacement 
and unroll and jam to SIMD vectorized loop nests and show ex-
perimentally their effectiveness. We do not know any previous 
work that extends these techniques for SIMD codes. 

Finally, there exist several hand-coded numerical libraries op-
timized for SIMD processors [11][25] that achieve very high 
performance for some particular class of microporcessors and for 
some particular functions. However, as already mentioned, not 
all applications can take advantage of these libraries and there 

are many situations in which none of the routines provided can 
specifically solve the task at hand. Our techniques, instead, can 
be applied to more general codes. 
 

3. Source-to-Source Code Transformations 
Our approach to combine source-to-source transformations pro-
posed in this work are based on three observations. First, we 
observe that commercial compilers only perform inner loop vec-
torization. However, in most codes it is necessary to vectorize 
outer loops to achieve high performance. 

Second, we observe that compilers are not able to unroll and 
jam loops with non unit stride. As we will see later, optimizing 
transformations like register tiling [6][13][14] requires inner 
loops to be fully unrolled. Therefore, when combining register 
tiling with vectorization it sometimes becomes necessary to fully 
unroll strip-mined (non-unit stride) loops and jam together the 
inner (vector) loops.  

Third, we observe that compilers are not able to allocate adja-
cent array values to vector registers and exploit the reuse availa-
ble in array references in an innermost loop. However, it is well-
known that the allocation of array values that exhibit reuse to 
registers can significantly improve the memory performance of 
programs [6][13][14].  

In the next subsections we show how we solve these three 
compilers limitations by applying source-to-source transforma-
tions. For the rest of this section and for simplicity, we assume 
that loop nests are fully permutable and perfectly nested, and 
loop bounds are constants.  For handle more general loop bounds 
that are max or min functions of surrounding loop iteration vari-
ables, we would need to use the theory of unimodular transfor-
mations when performing loop permutation [16] and Index Set 
Splitting [29] for making sure that a particular loop perform a 
constant number of iterations. 

We also assume that previous analysis to decide which loops 
should and could be vectorized has already been performed. This 
paper only focuses on the code generation phase of source-to-
source transformations. Dependence and decision analysis to 
know if transformations are legal and to decide which loop is the 
best candidate to vectorize are out of the scope of this paper 
[2][17][22][23][26][27]. 

3.1 Outer Loop Vectorization 
Let consider the following loop nest: 

  for ( i1=L1; i1<U1; i1++) 
   for ( i2=L2; i2<U2; i2++) 
         …. 
      for ( in=Ln; in<Un; in++){ 
                  F(i1,…,in) 
             } 

and assume that loop ij should be vectorized. 
Outer-loop vectorization can be implemented by combining 

two well-known transformations: strip-mining and loop permuta-
tion. Strip-mining is used to partition one dimension of the itera-
tion space into strips and loop permutation is a unimodular 
transformation [29] used to establish a new order of the loops in 
a nest.    

Strip-mining decomposes a single loop into two nested loops; 
the outer loop steps between strips of consecutive iterations, and 
the inner loop (element loop) traverses the iterations within a 
strip. The loop bounds after strip-mining a loop are directly ob-
tained by applying the following formula (assuming U is multiple 
of S):  
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where i is the outer loop, vi is the element loop and S is the 
strip size. 

To perform outer-loop vectorization, we apply strip-mining to 
the desired vector loop ij with step size equal to the vector 
length (VL) and then permute the resulting element loop of VL 
iterations to become innermost.  Thus, we expose the vector 
statement as an inner loop and commercial compilers are able to 
vectorize it. After vectorizing loop ij, we obtain the following 
code: 

As an example, Figure 1 shows the original code of a cross 
addition of two vectors and how this code is vectorized by the icc 
compiler. We can see that icc performs inner loop vectorization 
(vectorize loop j) and also unrolls loop j by a factor of 8 (two 
vectors). Finally, icc performs a reduction to store the result in 
vector A. Figure 2 shows the SIMD optimized code (after apply-
ing outer-loop vectorization) and how this code is vectorized by 
the compiler. We can observe that the compiler remove loop vi  
and convert it to a set of vector instructions and thus outer loop i 
has been vectorized. Later in Section 5, we will see the differ-
ence in performance between these two codes. 

3.2 Unroll and Jam 

Unroll and Jam is a transformation that can be used to shorten 
the distances between references to the same array location and 
therefore it enhances register reuse. It consists in unrolling an 
outer loop and then fusing the inner loops back together. As we 
will see later in Section 4 unroll and jam is a necessary transfor-
mation when combining register tiling with vectorization. As 
already mentioned, we observed that  commercial  compilers  are 
not able to unroll strip-mined loops (loops with non-unit stride). 

 
Original Source code ASM 

void cross_add(float *A, float *B,  
                            int dimi, int dimj){ 
  long int i, j; 
  for (i=0; i<dimi; i++) 
    for (j=0; j<dimj; j++) 
      A[i]=A[i]+B[j]; 
 } 

.LOOP_I: 
movss  (%rdi,%r8,4), %xmm0    #ld A[i]                
xorps  %xmm1, %xmm1       
.LOOP_J: 
addps (%rsi,%rax,4), %xmm0    #A[i]+B[j:j+3] 
addps 16(%rsi,%rax,4),%xmm1 #A[i]+B[j+4:j+7] 
addq   $8, %rax 
cmpq   %r11, %rax 
jb  ..LOOP_J 
addps  %xmm1, %xmm0                     
haddps    %xmm0, %xmm0  
haddps    %xmm0, %xmm0  
movss  %xmm0, (%rdi,%r8,4)    #st A[i] 
incq   %r8   
cmpq   %rcx, %r8 
jb  ..LOOP_I 

Figure 1.  Cross addition of two vectors. The left column shows 
the source code and the right the assembly code. 

 

          Optimized code ASM 
void cross_add(float *A, float *B,  
                         int dimi, int dimj){ 
long int i, j, vi; 
for (i=0; i<dimi; i+=VL) 
  for (j=0; j<dimj; j++) 
    #pragma vector always 
    for(vi=i;vi<i+VL;vi++) 
      A[vi]=A[vi]+B[j]; 
} 

..LOOP_I:    
xorl %r9d, %r9d   
movq %rcx, %r10  
shlq $4, %r10 
movups (%r10,%rdi), %xmm0    #ld A[i:i+3]  
..LOOP_J:   
movss (%rsi,%r9,4), %xmm1     #ld B[j] 
shufps $0, %xmm1, %xmm1  
addps %xmm1, %xmm0            #A[i:i+3]+B[j] 
incq %r9 
cmpq %rax, %r9 
jb..LOOP_J 
movups %xmm0, (%r10,%rdi)    #st A[i] 
incq %rcx 
cmpq %rdx, %rcx 
jb  ..LOOP_I 

Figure 2. Cross addition after applying outer-loop vectorization.  
The left column shows the source code*, the right the assembly. 
 

However, to generate efficient SIMD code we need the compiler 
to perform this transformation. To this end, we help the compi-
ler by directly unrolling the strip-mined loop in the source code 
and jaming together the inner loops as follows: 
Consider the following loop nest where outer loop vectorization 
has been applied to loop ij: 
    ….         
    for ( ij=Lj; ij<Uj; ij=ij+VL) 
              …. 
       for (vij=ij; vij<ij+VL;vij++) 

        F(vij)     /* vector statement */ 
After unrolling loop ij with an unroll factor of UF, we obtain the 
following code: 
        ….         
   for ( ij=Lj; ij<=Uj; ij=ij+VL*UF) 
       {    … 
      for (vij=ij; vij<ij+VL;vij++) 

         F(vij) 
      for (vij=ij+VL;vij<ij+2*VL;vij++) 
            F(vij) 

   …. 
              for(vij=ij+(UF-1)*VL; vij<ij+UF*VL;vij++) 
            F(vij)             /* vector statements */ 
 
and after fusion becomes: 
           ….         
     for ( ij=Lj; ij<Uj; ij=ij+VL*UF) 
            …. 
       for (vij=ij; vij<ij+VL;vij++){ 
              F(vij) 
              F(vij+VL) 
              F(vij+2*VL) 
              …. 
                                   F(vij+(UF-1)*VL)  

     }            /* vector statements */ 
Now, reuse between several vector statements are exposed in the 
loop body. 

Using again the example of cross addition from Section 3.1, 
we observed in Figure 2 that icc does not unroll loop i after ap-
plying outer loop vectorization. Vector B is loaded dimi/VL 
times during the execution of the program. In each iteration of 
loop j, B[j] is loaded on register %xmm1.  

However, if we apply unroll and jam to loop i by a factor UF, 
we can enhance data reuse of reference B[j] by  keeping this 
value in a register during the execution of the unrolled loop body. 
Thus, vector B will only be loaded dimi/(UF*VL) times dur-
ing the execution of the program. In Figure 3 we show the code 
of Figure 2 after applying unroll and jam by a factor of 2 to loop 
i. Element B[j] is loaded on register %xmm1 only once during 
the execution of the unrolled loop body, thus enhancing reuse of 
B by a factor of 2.  

*We  use pragmas in the codes to force vectorization (see section 5). 

} 

Step 1: Strip-mining ij 
 

for ( i1=L1; i1<U1; i1++) 
 for ( i2=L2; i2<U2; i2++) 
    …. 
   for ( ij=Lj; ij<Uj; ij=ij+VL) 
    for (vij=ij; vij<ij+VL;vij++) 
          …. 
     for ( in=Ln; in<Un; in++) 
                       F(i1,…,vij,…,in)  

            

Step 2: Loop permutation to make 
vij innermost 

 
for ( i1=L1; i1<U1; i1++) 
 for ( i2=L2; i2<U2; i2++) 
  …. 
   for ( ij=Lj; ij<Uj; ij=ij+VL) 
        …. 
     for ( in=Ln; in<Un; in++) 
      for (vij=ij; vij<ij+VL;vij++) 

          F(i1,…,vij,…,in)  

for ( i=L; i<U; i++) 
 
 
for ( i=L; i<U; i=i+S) 

     for (vi=i; vi<i+S; i++) 

Strip-mining loop i 
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Source code ASM 
void cross_add(float *A, float *B,  
                         int dimi, int dimj){ 
long int i, j, vi; 
for (i=0; i<dimi; i+=2*VL) 
  for (j=0; j<dimj; j++) 
    #pragma vector always 
      for(vi = i; vi <i+VL; vi++){ 
        A[vi]=A[vi]+B[j]; 
        A[vi+VL]=A[vi+VL]+B[j]; 
      } 
} 

..LOOP_I: 
xorl %r10d, %r10d 
..B7.4: 
movq %rax, %r9 
shlq $5, %r9  
..LOOP_J: 
movups (%r9,%rdi), %xmm0      #ld A[i:i+3] 
movups16(%r9,%rdi),%xmm2    #ld A[i+4:i+7] 
movss(%rsi,%r10,4), %xmm1    #ld B[j] 
shufps $0, %xmm1, %xmm1 
addps  %xmm1, %xmm0           #A[i:i+3]+B[j] 
movups %xmm0, (%r9,%rdi)      #st A[i:i+3] 
addps  %xmm1, %xmm2           #A[i+4:i+7]+B[j] 
movups%xmm2,16(%r9,%rdi)    #st A[i+4:i+7]  
incq %r10 
cmpq %rcx, %r10 
jb..LOOP_J  
incq %rax 
cmpq %rdx, %rax 
jb..LOOP_I 

Figure 3.  Cross addition after  performing  outer-loop  vectoriza- 
tion and unroll and jam to loop i. The left column shows the 
source code and the right the assembly code. 

 

Although data reuse has been exposed by applying unroll and 
jam to loop i in the source code, the icc compiler is not able to 
eliminate redundant loads and stores in the new unrolled loop 
body.  In Figure 3, we can see that reference A[vi] and A[vi+VL] 
are loaded on/stored from registers %xmm0 and %xmm2, re-
spectively, in each iteration of loop j. However these two refer-
ences are invariant with respect to loop j. Note that this problem 
does not happen if we do not perform unroll and jam to loop i. 
In Figure 2, reference A[vi]  is loaded on/stored from register 
%xmm0  only once during the execution of loop j. To overcome 
this problem, we also need to perform vectorial replacement to 
the source code.  

3.3 Vectorial Replacement 
Vectorial replacement (VR) can be used to eliminate redundant 
vector loads and stores in the loop body. Most  compilers  fail to  
recognize even simplest opportunities for reuse of subscripted 
variables between iterations of the innermost loop. This happens 
in spite of the fact that standard optimization techniques are able 
to determine that the addresses of the subscripted variables are 
invariant in the inner loop. The principal reason for the problem 
is that the data-flow analysis used by standard compilers is not 
powerful enough to recognize most opportunities for reuse of 
array variables. Scalar replacement, proposed by [5][6], is a 
source-to-source transformation that uses dependence informa-
tion to find reuse of array values and expose it by replacing the 
references with scalar temporal variables. 

We apply the idea of scalar replacement to vectors to help the 
compiler to eliminate redundant vector loads and stores in the 
innermost loop. For that, we identify individual array references 
with array variables and expose vector register reuse in the 
source code. In particular, for each invariant vectorized reference, 
we create a new temporary array variable of dimension VL. Then 
we replace each invariant vectorized reference by the new tempo-
rary array and expose data reuse in the source code by initializing 
and storing the temporary arrays out of the innermost  loop.  Vec-
torial replacement can be implemented using both temporary 
arrays variables or pointer variables. 

Continuing with the cross addition example, after applying 
vectorial replacement to the code of Figure 3 we obtain the code 
of Figure 4. Notice that after applying vectorial replacement to 
the source code, the icc  compiler  is  able  to  remove  redundant 

Source code ASM 
void cross_add(float *A, float *B,  
                         int dimi, int dimj){ 
 long int i, j, vi; 
 float A1[VL], A2[VL]; 
 for (i=0; i<dimi; i+=2*VL){ 
    for(vi = 0; vi < VL; vi++){ 
       A1[vi]=A[i+vi]; 
       A2[vi]=A[i+VL+vi]; 
    } 
    for (j=0; j<dimj; j++) 
      #pragma vector always 
      #pragma ivdep 
      for(vi = 0; vi < VL; vi++){ 
        A1[vi]=A1[vi]+B[j]; 
        A2[vi]=A2[vi]+B[j]; 
      } 
   #pragma vector always 
    for(vi = 0; vi < VL; vi++){ 
      A[i+vi]=A1[vi]; 
      A[i+VL+vi]=A2[vi]; 
}}} 

..LOOP_I: 
movups (%rax,%rdi),%xmm1         #ld A[i:i+3] 
movups 16(%rax,%rdi),%xmm0     #ld A[i+4:i+7] 
xorl %r9d, %r9d  
testq %r8, %r8 
jle ..B7.7 
..LOOP_J:  
movss (%rsi,%r9,4), %xmm2        #ld B[j] 
shufps $0, %xmm2, %xmm2 
addps %xmm2, %xmm1                #A[i:i+3]+B[j] 
addps %xmm2, %xmm0                #A[i+4:i+7]+B[j] 
incq %r9 
cmpq %r8, %r9  
jb ..LOOP_J  
..B7.7: 
movups %xmm1, (%rax,%rdi)       #st A[i:i+3] 
movups %xmm0,16(%rax,%rdi)    #st A[i+4:i+7] 
addq $32, %rax   
incq %rcx   
cmpq %rdx, %rcx      
jb ..LOOP_I    

Figure 4. Cross addition after performing outer-loop vectoriza- 
tion, unroll and jam and vectorial replacement using temporary 
vectors variables. The left column shows the source code and the 
right the assembly code. 

 

loads and stores from the loop body. In Figure 4, reference 
A[i+vi] and A[i+VL+vi] are loaded and stored only once during 
the execution of the j-loop.  

Finally, in Figure 5 we show the same example as Figure 4 
but using temporary pointers variables instead of arrays for the 
implementation of vectorial replacement. 

4. Matrix product example 
This section shows how efficient SIMD code can be obtained by 
applying all the transformations explained in section 3 to the 
register tiled matrix product (SGEMM).  

First of all, we compiled the original  matrix  product,  shown 
in Figure 6, using icc with all compiler optimizations (including 
vectorization) turned on. It can be seen that  icc  always permutes 
 

Source code ASM 
void cross_add(float *A, float *B,  
                         int dimi, int dimj){ 
long int i, j, vi; 
float *A1, *A2;  
A1 = A; 
A2 = A1+VL; 
for (i=0; i<dimi; i+=2*VL){ 
  for (j=0; j<dimi; j++) 
    #pragma vector always 
      #pragma ivdep 
      for(vi = 0; vi < VL; vi++){ 
        A1[vi]=A1[vi]+B[j]; 
        A2[vi]=A2[vi]+B[j]; 
      } 
    A1+=2*VL; 
    A2+=2*VL; 
  } 
} 

..LOOP_I: 
xorl %r8d, %r8d 
movq %rcx, %r9 
shlq $5, %r9 
movups16(%r9,%rdi),%xmm1    #ldA[i+4:i+7] 
movups (%r9,%rdi), %xmm0      #ldA[i:i+3] 
..LOOP_J: 
movss  (%rsi,%r8,4), %xmm2    #ld B[j] 
shufps $0, %xmm2, %xmm2 
addps  %xmm2, %xmm0           #A[i:i+3]+B[j] 
addps  %xmm2, %xmm1           #A[i+4:i+7]+B[j] 
incq %r8 
cmpq %rax, %r8 
jb..LOOP_J 
movups%xmm1,16(%r9,%rdi)    #st A[i+4:i+7] 
movups %xmm0, (%r9,%rdi)      #st A[i:i+3] 
incq %rcx 
cmpq %rdx, %rcx 
jb..LOOP_I 

Figure 5. Cross addition after performing outer-loop vectoriza-
tion, unroll&jam and VR using temporary pointers. The left co-
lumn shows the source code and the right the assembly code. 
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Source code ASM 
void multiply(float* A, float* B, 
                        float* C, int dimi,  
                        int dimk, int dimj){ 
  long int i, j, k; 
  for (i = 0; i < dimi; i++) 
    for (j = 0; j < dimj; j++) 
      for (k = 0; k < dimk; k++) 
        C[i*dimj+j]+=A[i*dimk+k]* 
                                B[k*dimj+j]; 
} 
 

..LOOP_I: 

... 

..LOOOP_K:  
movq %rbx, %rcx   
movq %r14, %rcx  
movss (%r12,%rbp,4), %xmm0     
shufps    $0, %xmm0, %xmm0  
..LOOP_J:   
movups (%rdx,%rcx,4), %xmm1    
movups 16(%rdx,%rcx,4),%xmm2    
mulps %xmm0, %xmm1              
mulps %xmm0, %xmm2            
addps (%rsi,%rcx,4), %xmm1            
addps 16(%rsi,%rcx,4),%xmm2     
movaps %xmm1, (%rsi,%rcx,4) 
movaps %xmm2, 16(%rsi,%rcx,4)   
addq $8, %rcx  
cmpq %r10, %rcx 
jb ..LOOP_J  
addq %r9, %r15 
incq %rbp 
cmpq %r8, %rbp 
jb ..LOOP_K 
... 
jb ..LOOP_I 

Figure 6. Matrix product. The left column shows the source  
code and the right the assembly code. 
 

the loop nest (no matters which is the original loop order) mak-
ing loop j the innermost loop. Since icc only performs inner loop 
vectorization, this loop order allows icc to vectorize loop j. 
Moreover, loop j is unrolled by a factor of 8 (2 vectors). Finally, 
icc also exploits the reuse of the invariant reference of matrix A 
in the inner loop j by loading it only once in a vector register 
during the execution of loop j.  

Our objective in this section is to generate an efficient code 
that fully exploits the register level of the memory hierarchy and 
the SIMD capabilities of the target machine. To this end, we first 
apply register tiling [6][14][26] to the source code as shown in 
Figure 7a. BI and BJ are the tile sizes in dimension i and j, re-
spectively, and their values depend on the available SIMD  regis-
ters and their sizes on the target architecture. For simplicity and 
without loss of generalization, we assume dimi and dimj to be 
multiple of BI and BJ, respectively.   

It is well-known that loop tiling [16] is loop transformation 
that a compiler can use to automatically create block algorithms. 
The advantage of block algorithms is that, while computing with-
in a block, there is a high degree of data locality, allowing better 
register, cache or memory hierarchy performance. Loop tiling for 
any memory level can be implemented by combining two well-
known transformations: strip-mining and loop interchange. How-
ever, the implementation of tiling for the register level requires 
an extra phase not needed for other memory levels. Since regis-
ters are only addressable using the register number, it is neces-
sary to fully unroll the loops that traverse the iterations inside the 
register tiles. Therefore, in our example of Figure 7a, it is neces-
sary to fully unroll loops i and j to exploit the register level. At 
last, scalar replacement [5][6] can be used to eliminate redundant 
loads and stores in the new unrolled loop body. 

When combining register tiling with vectorization we need 
first vectorize the desired loop (loop j, in our example) before 
fully unroll the register tile. Thus, the outer loop j is vectorized 
as explained in subsection 3.1. We apply strip-mining to loop j 
with a step size of VL and then permute the resulting element 

loop of VL iterations to become the innermost (the vector state-
ment).  The resulting code is shown in Figure 7b assuming BJ is 
multiple of VL for simplicity. 

As already mentioned, now it is necessary to fully unroll the 
loops that traverse the iterations inside the register tile (loop i 
and j in Figure 7b). To fully unroll the strip-mined loop j  we  
perform unroll and jam as explained in Section 3.2. The resulting 
code is shown in Figure 8a, assuming BI = 2 and BJ=2*VL. 

At this point icc vectorizes dimension j keeping loop k as in-
nermost loop. However, icc does not remove redundant vector 
loads and stores from the new unrolled loop body. As we can see 
in Figure 8c, the elements of C are loaded and stored in each 
iteration of loop k unnecessarily. Therefore we need to apply 
vectorial replacement to reference C as explained in section 3.3.  
Figure 8b shows the resulting source code using pointers as tem-
porary variables to identify the adjacent array references. We can 
see in Figure 8d how icc is now able to remove redundant memo-
ry instructions.  

Summarizing, by combining register tiling with the source-to-
source transformations proposed in Section 3, we help icc compi-
ler to generate efficient code that fully exploit the register level 
and the SIMD capabilities of the target machine. 

5. Performance Results 
First details of our evaluation environment are presented includ-
ing a description of the architecture, compiler and kernels used. 
Then, kernel performance is described and analyzed.  

5.1 Evaluation environment 
All kernels in this study have been executed in the same machine 
and compiled by the same version of the icc with the same flags 
and options.  

Target architecture 
The machine used for this work is the Intel Xeon E5520 which 
implements the Intel Nehalem architecture with 4 cores. Since 
we are evaluating single core executions, we only use one of the 
four available cores. The SIMD capabilities of these cores in-
clude from MMX and SSE to SSE4 instructions being SSE3 the 
most important for our purposes. The memory hierarchy charac-
teristics offered by this machine are listed in Table 1. 

This machine also provides CPU throttling and automatic pre-
fetcher capabilities which have been disabled to prevent interac-
tions with the performance measures. In the same way, we 
always execute an infinite loop on the 3 cores where our kernels 
are not running. 

long int ii, jj, i, j, k;                                    a) 
for (ii = 0; ii < dimi; ii+=BI) 
 for (jj = 0; jj < dimj; jj+=BJ) 
  for (k = 0; k < dimk; k++) 
   for(j = jj; j < jj+BJ; j++) 
    for(i = ii; i < ii+BI; i++) 
     C[i*dimj+j]+=A[i*dimk+k]*B[k*dimj+j]; 

 

long int ii, jj, i, j, k, vj;                              b) 
for (ii = 0; ii < dimi; ii+=BI) 
 for (jj = 0; jj < dimj; jj+=BJ) 
  for (k = 0; k < dimk; k++) 
   for(j = jj; j < jj+BJ; j+=VL) 
    for(i = ii; i < ii+BI; i++) 
     for(vj=j; vj<j+VL;vj++) 
      C[i*dimj+vj]+=A[i*dimk+k]*B[k*dimj+vj];      

Figure 7. a) Register tiled matrix product. b) Register tiled matrix prod-
uct after applying outer loop vectorization to loop j.  

Actas XXII Jornadas de Paralelismo (JP2011) , La Laguna, Tenerife, 7-9 septiembre 2011

JP2011-723



 
 

Icc compiler 
Our kernels and code were compiled using Intel C compiler [10] 
version 11.1 for intel64 architectures. This version includes sev-
eral vectorization capabilities as well as memory hierarchy opti-
mizations. To enable them, all the kernels have been compiled 
with the flags –O3, -restrict, -fno-alias and –msse3. With the 
same objective the keyword “restrict” has been added in all the 
function’s headers. Finally, to help the compiler with the vectori-
zation, the pragmas “ivdep” and “vector always” have been used.  

Kernels 

Three kernels have been evaluated to show the effectiveness of 
our transformations. Table 2 contains a short description and the 
characteristics of each of them. The third column indicates the 
iteration space (IS) shape of the loops being transformed. If the 
IS is not rectangular, then the loop nest contains bound compo-
nents that are affine functions of the surrounding loops iteration 
variables. As pointed out in Section 3, for those kernels having 
non-rectangular iteration space, we use the theory of unimodular 
transformations to perform loop permutation [16] and Index Set 
Splitting [29] to make sure that a particular loop performs a con-
stant number of iterations. 

5.2 Performance Results 
In this section we will present the performance results obtained 
by our source-to-source transformations. To this end, we evaluate 
four different versions of each kernel: one is the original version 
(ORI) with no previously restructuring transformation, a second  
one generated after optimizing the ORI version for scalar execu-
tion (Scalar), a third one generated after applying outer-loop 
vectorization and unroll and jam to the original source code 
(SIMD) and the fourth one generated after applying all three 
transformations (outer loop vectorization, unroll and jam and 
vectorial replacement) to the original code (SIMD+VR).  After 
generating the different versions for each program, we use the icc 
compiler as mentioned previously to generate the final execu-
tables.  

Figure 10a shows the performance obtained on the Nehalem 
architecture for the cross addition kernel. In the ORI version, icc 
was able to perform inner loop vectorization of loop j and unroll 
it by a factor of 8 (2 vectors). Icc also performs scalar replace-
ment on reference A. In the other three versions (Scalar, SIMD 
and SIMD+VR) loop i has been unrolled by a factor of 24 (6 
vectors) and kept as the outermost loop. Moreover, in the Scalar 
and SIMD+VR version scalar and vectorial replacement has been 
respectively applied. 

 
 

Source code                                           ASM 
long int ii, jj, k, vj;                                                                                    a) 
for (ii = 0; ii < dimi; ii+=2) 
  for (jj = 0; jj < dimj; jj+=2*VL) 
    for (k = 0; k < dimk; k++) 
      #pragma ivdep 
      for(vj=jj; vj<jj+VL;vj++) { 
       C[ii*dimj+vj]+=A[ii*dimk+k]*B[k*dimj+vj]; 
       C[ii*dimj+vj+VL]+=A[ii*dimk+k]*B[k*dimj+vj+VL]; 
       C[(ii+1)*dimj+vj]+=A[(ii+1)*dimk+k]*B[k*dimj+vj]; 
       C[(ii+1)*dimj+vj+VL]+=A[(ii+1)*dimk+k]*B[k*dimj+vj+VL]; 
      }  

 
 

long int ii, jj, k, vj;                                                                                    b) 
float *C1, *C2, *C3, *C4; 
const float *B1, *B2, *A1, *A2; 
for (ii = 0; ii < dimi; ii+=2){ 
  A1 = &A[ii*dimk]; 
  A2 = &A[(ii+1)*dimk]; 
  for (jj = 0; jj < dimj; jj+=2*VL) { 
    C1 = &C[ii*dimj+jj]; 
    C2 = &C[(ii+1)*dimj+jj]; 
    C3 = &C[ii*dimj+jj+4]; 
    C4 = &C[(ii+1)*dimj+jj+4]; 
    for (k = 0; k < dimk; k++) { 
      B1 = &B[k*dimj+jj]; 
      B2 = &B[k*dimj+jj+VL]; 
      #pragma ivdep 
      for(vj = 0; vj<VL; vj++){ 
        C1[vj] += A1[k]*B1[vj]; 
        C3[vj] += A1[k]*B2[vj]; 
        C2[vj] += A2[k]*B1[vj]; 
        C4[vj] += A2[k]*B2[vj]; 
      }  
    } 
  } 
 
 

..LOOP_I:                                                      c) 

... 

..LOOP_J  
xorl           %r8d, %r8d  
xorl           %ebp, %ebp  
movq        %rbx, %rcx 
shlq          $5, %rcx  
lea             (%r11,%rcx), %rax  
..LOOP_K:  
movups   (%rax,%rbp,4), %xmm4                             
movups   (%r12,%rcx), %xmm1 
movups   16(%rax,%rbp,4), %xmm6                         
movups   16(%r12,%rcx), %xmm3 
movss      (%rdx,%r8,4), %xmm2                             
movss      (%r13,%r8,4), %xmm7                             
shufps     $0, %xmm2, %xmm2  
movaps   %xmm2, %xmm0 
mulps      %xmm6, %xmm2                                    
mulps      %xmm4, %xmm0                                      
shufps     $0, %xmm7, %xmm7   
mulps      %xmm7, %xmm4                                   
mulps      %xmm6, %xmm7                               
addps      %xmm0, %xmm1                                      
movups   %xmm1, (%r12,%rcx) 
addps      %xmm2, %xmm3                                      
movups   %xmm3, 16(%r12,%rcx) 
movups   (%rcx,%rsi), %xmm5 
movups   16(%rcx,%rsi), %xmm8 
addq        %r10, %rbp  
addps      %xmm4, %xmm5                                      
movups   %xmm5, (%rcx,%rsi) 
addps      %xmm7, %xmm8                                   
movups   %xmm8, 16(%rcx,%rsi) 
incq         %r8 
cmpq       %r14, %r8  
jb             ..LOOP_K 
incq         %rbx  
cmpq       %r9, %rbx 
jb             ..LOOP_J 
... 
jb             ..LOOP_I 

..LOOP_I:                                                            d) 

... 

..LOOP_J: 
xorl           %ebp, %ebp  
xorl           %ecx, %ecx  
movq        %r12, %rsi   
shlq          $5, %rsi  
movups    (%r8,%rsi), %xmm3     
movups    16(%r8,%rsi), %xmm2  
movups    (%rdx,%rsi), %xmm1   
movups    16(%rsi,%rdx), %xmm0  
lea             (%r11,%rsi), %rax 
..LOOP_K:  
movups    (%rcx,%rax), %xmm6                              
movups    16(%rcx,%rax), %xmm7                         
movss       (%r13,%rbp,4), %xmm5                          
movss       (%rbx,%rbp,4), %xmm8                          
shufps      $0, %xmm5, %xmm5  
movaps    %xmm5, %xmm4   
mulps       %xmm7, %xmm5                                      
mulps       %xmm6, %xmm4                                      
shufps      $0, %xmm8, %xmm8 
mulps       %xmm8, %xmm6                                      
mulps       %xmm7, % 
addps       %xmm4, %xmm3                                      
addps       %xmm5, %xmm2                                      
addps       %xmm6, %xmm1                                      
addps       %xmm8, %xmm0  
lea             (%rcx,%r10,4), %rcx 
incq          %rbp    
cmpq        %r14, %rbp 
jb              ..LOOP_K  
movups    %xmm0, 16(%rsi,%rdx)      
movups    %xmm1, (%rdx,%rsi) 
movups    %xmm2, 16(%r8,%rsi) 
movups    %xmm3, (%r8,%rsi)  
incq          %r12   
cmpq        %r9, %r12    
jb              ..LOOP_J 
... 
jb             ..LOOP_I 

Figure 8. a) Source code of the register tiled matrix product after applying outer loop vectorization and unroll and jam to loop j. b) Source code 
of the register tiled matrix product after applying outer loop vectorization, unroll and jam and vectorial replacement. c) Assembly code of a.     
d) Assembly code of b.  
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Device Size Associativity/# 
L1 I-Cache 32 KB 4-way 
L1 D-Cache 32 KB 8-way 

L2 Cache 256 KB 8-way 
L3 shared Cache 8 MB 16-way 

TLB1 32 entries 4-way 
TLB2 512 entries 4-way 

General Purpose 
Registers (GPRs) 

64-bit-wide 16 registers 

XMM registers 128-bit-wide 16 registers 

Table 1. Memory hierarchy of the Intel Xeon E5520. 
 

Description Loop depth IS 
Cross addition of 2 vectors (Figure 1) 2 Rectangular 
Rectangular matrix product (Figure 6) 3 Rectangular 
Triangular matrix product (Figure 9) 3 Triangular 

Table 2. Characteristics of the evaluated kernels. 
 
 

void multiply(const float *restrict A,const float *restrict B,float *restrict C,int dimi, 
                        int dimk,int dimj){ 
  long int i,j,k; 
  for(k = 0; k < dimk; k++) 
    for(i = k; i < dimi; i++) 
      for(j = k; j < dimj; j++) 
        C[i*dimj+j] += A[i*dimk+k] * B[k*dimj+j]; 
} 

Figure 9. Triangular matrix product. 
 

We can observe that vector executions (ORI, SIMD and 
SIMD+VR) obtain always better performance than scalar execu-
tions (Scalar). On the other hand, SIMD version is still far away 
to the ORI version because SIMD does not apply vectorial re-
placement, performing therefore excessive redundant memory 
operations inside the innermost loop. Finally, it can be seen that 
SIMD+VR outperforms ORI version because better register reuse 
is done.  

Figure 10b shows the performance obtained for the rectangu-
lar matrix product. In the ORI version (code of Figure 6) of this 
kernel, icc was able to vectorize loop j (inner loop vectorization) 
and unroll it by a factor of 8 (2 vectors). Again, icc was also able 
to perform scalar replacement to reference A of the loop body.  In 
the other three versions (Scalar, SIMD and SIMD+VR) register 
tiling has been applied with tile sizes 6 and 8 for dimension i and 
j, respectively. Moreover, in the Scalar and SIMD+VR version 
scalar and vectorial replacement has been respectively applied. 

In this case, ORI version again performs better than the Scalar 
version since it is vectorized. However, the SIMD version per-

forms slightly better than the ORI version because SIMD exploits 
better the register level due to the register tiling transformation. 
Although SIMD version does not perform vectorial replacement, 
it exploits reuses of accesses to A and B inside the register tile.  

 Finally version SIMD+VR again obtains highest performance 
since it highly reduces the memory operations (it avoids loads 
and stores of C in the innermost loop). Moreover, we can also 
see in Figure 10b that the performance of SIMD+VR starts to 
decrease at problem size of 216. For medium problem sizes, 
tiling only at the register level can substantially increase TLB 
misses and cache misses are not moderated.  This problem can 
be solved by performing tiling also for higher levels of the mem-
ory hierarchy. 

Figure 10c shows the performance obtained for the triangular 
matrix product. In the  ORI version  of  this  kernel, icc  was  not  
able to vectorize because it does not support non-rectangular loop 
structure, but it applies  scalar replacement to reference A  in the 
innermost loop j. In the other three versions (Scalar, SIMD and   
SIMD+VR) we apply tiling at the register level with tile sizes 6  
and  8  for  dimensions i and  j  respectively and use Index Set 
Splitting [29] to distinguish loop nests that traverse (non-
rectangular) boundary tiles from loop nests that traverse (rectan-
gular) non-boundary tiles. These later loop nests can be vecto-
rized and fully unrolled. 

 In this kernel, both ORI and Scalar versions are executed in 
scalar. The slight difference in performance between them is due 
to the loop order. The loop order in ORI version is ikj and there-
fore reference to A exhibit reuse between different iterations of 
the innermost loop. In the ORI version,  the loop body contains 
three memory operations (1 load from B and C and 1 store from 
C). However, the loop order in Scalar version is ijk and thus 
reference to C exhibit reuse between different iterations of the 
innermost loop. In this version, the loop body only contains two 
memory operations (1 load from A and B). 

 Again, we can also see in Figure 10c that SIMD version ob-
tain better performance than ORI and Scalar versions thanks to 
the vector execution, but SIMD+VR outperforms them. In all 
three kernels, the SIMD version shows speedup of around 2x 
over the Scalar version and the SIMD+VR version obtains an 
additional 2x speedup over the SIMD version. 

Finally, we want to point out the difference in performance 
for small problem sizes between the triangular and the rectangu-
lar matrix product kernels. We can observe that SIMD+VR ob-
tains very high performance for small problem sizes (from 24 to 
196) in the rectangular matrix product while the same version 
obtains very low performance in the triangular matrix product. 
The reason is that for very small problem sizes, the execution 
time wasted on boundary tiles in the triangular matrix product is 
significant and these tiles are not vectorized and unrolled. 

 
Figure 10. a) Performance of cross addition of 2 vectors. b) Performance of rectangular matrix product. c) Performance of triangular matrix prod-
uct. d) Performance of SGEMM for the ATLAS and MKL hand-optimized libraries and our best code (SIMD+VR + cache tiling). 

a) b) c) d) 
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At last, we compare our optimized codes against hand-
optimized assembly-written numerical libraries. Figure 10d 
shows the SGEMM performance obtained by ATLAS [25] and 
MKL [11] and the performance obtained by our optimized rec-
tangular matrix product. To do a fairly comparison, we add cache 
tiling to the SIMD+VR version of Figure 10d. Cache tiling is 
effective for reducing the capacity cache miss rate and moderat-
ing TLB misses. Thus, for medium matrix sizes that do not fit at 
the cache level it achieves the same performance level as for 
smaller sizes.   

We can see that MKL achieves the peak performance of a 
core (2.26GHz * 4 Single Precision Floating Point elements per 
instruction * 2 instructions per cycle = 18,08 GFLOPS). On the 
other hand, ATLAS and SIMD+VR+Cache achieve a perfor-
mance of 14 GFLOPS approximately (77% of the peak perfor-
mance). 

We can also observe in Figure 10d that for large matrix sizes 
ATLAS achieves slightly better performance than our optimized 
version. The reason is that ATLAS copies the matrices into small 
contiguous blocks in memory in order to minimize TLB misses 
and cache conflicts. In our optimized version we do not use data 
copying. However, for small problem sizes, our optimized code 
outperforms ATLAS. 

Summarizing, results show that source-to-source optimized 
codes can almost achieve the same performance as hand-
optimized assembly-written codes. 

6. Conclusions 
SIMD instructions are so far not really exploited by compilers for 
media processors. Taking advantage of such instructions is only 
possible if processor-specific assembly routines or compiler in-
trinsics are used, resulting in low portability of software. 

The optimizations proposed in this paper are high-level 
(source-to-source) transformations that help compilers to gener-
ate efficient SIMD code. We have seen that the SIMD+VR ver-
sion obtains speedups of around 4x over the Scalar version.  

Working at the source level prevent us from controlling many 
of the low level transformations typically performed by the com-
piler’s back-end (instruction scheduling, register allocation, etc.) 
making it difficult (if not impossible) to generate the optimal 
code. By integrating these transformations inside a production 
compiler, we could achieve even more better performance. 
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