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Abstract

Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set S.
Let g1, . . . , gn and g1∗, . . . , gn∗ be elements of H such that gr∗ is conjugate to gr for each
r = 1, . . . , n. There is a uniform conjugator if and only if W (g1∗, . . . , gn∗) is conjugate to
W (g1, . . . , gn) for every word W in n variables and length up to a computable constant
depending only on δ, ♯S and

∑

n

r=1
|gr|.

As a corollary we deduce, that there exists a computable constant C = C(δ, ♯S) such that
for any endomorphism ϕ of H if ϕ(h) is conjugate to h for every element h ∈ H of length
up to C, then ϕ is an inner automorphism.

Another corollary is the following: if H is a torsion-free conjugacy separable hyperbolic
group, then the group Out(H) is residually finite.

1 Introduction

Let G be a group and B be a subset of G. An endomorphism ϕ of a group G is called pointwise
inner on B if for every g ∈ B, the element ϕ(g) is conjugate to g. We call ϕ pointwise inner if
it is pointwise inner on G. The group of all pointwise inner automorphisms of G is denoted by
Autpi(G). Clearly, Inn(G) � Autpi(G) � Aut(G).

There are groups with pointwise inner, but not inner automorphisms. For example, some finite
groups [13], any free nilpotent group of class c > 3 (see [4]), some nilpotent Lie groups [5],
and direct products of such groups with arbitrary groups. The fact that some nilpotent Lie
groups have such phenomena was used to construct isospectral but not isometric Riemannian
manifolds [5].
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However, for free groups [7], for non-trivial free products [12], and for fundamental groups of
closed surfaces of negative Euler characteristic [1] all pointwise inner automorphisms are indeed
inner. (In the last paper this property was used to show that surface groups have a weak Magnus
property.) The following corollary states that endomorphisms of torsion-free hyperbolic groups,
which are pointwise inner on a ball of a uniformly bounded radius are inner automorphisms.

Corollary 1.1 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set
S.Then there exists a computable constant C = C(δ, ♯S) such that for any endomorphism ϕ of
H if ϕ(h) is conjugate to h for every element h in the ball of radius C, then ϕ is an inner
automorphism.

We deduce it from the following theorem.

Theorem 1.2 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating
set S. Let g1, . . . , gn and g1∗, . . . , gn∗ be elements of H such that gr∗ is conjugate to gr for
each r = 1, . . . , n. There is a uniform conjugator if and only if W (g1∗, . . . , gn∗) is conjugate to
W (g1, . . . , gn) for every word W in n variables and length up to a computable constant depending
only on δ, ♯S and

∑n
r=1 |gr|.

Note that Corollary 1.1 was formulated in [2]. Independently, D. Osin and A. Minasyan [11]
proved a variant of Theorem 1.2 for relatively hyperbolic groups (but without the statement on
a computable constant).

V. Metaftsis and M. Sykiotis [8, 9] proved that for any (relatively) hyperbolic group H the group
Inn(H) has finite index in Autpi(H). Their proof is not constructive: it uses ultrafilters and
ideas of F. Paulin on limits of group actions.

Our Corollary 1.1 and Theorem 1.1 in [11] both imply that if H is a torsion-free hyperbolic
group, then the groups Inn(H) and Autpi(H) coinside. In [6], E.K. Grossman proved, that if G
is a finitely generated conjugacy separable group, then the group Aut(G)/Autpi(G) is residually
finite. From this one can immediately deduce the following corollary.

Corollary 1.3 If H is a torsion-free conjugacy separable hyperbolic group, then the group
Out(H) is residually finite.

2 Notations and definitions.

Quasi-geodesics in hyperbolic spaces

Let X be a geodesic metric space. If A,B are points or subsets of X , the distance between them
will be denoted by d(A,B), or by |A,B| or simply by |AB|. A geodesic segment between points
A,B will be denoted by [AB]. By a geodesic n-gon A1A2 . . . An, where n > 3, we mean the
union of chosen geodesics [A1A2], [A2A3], . . . , [An−1An], [AnA1].

Let δ be a nonnegative real number. A geodesic triangle A1A2A3 in X is called δ-thin if for any
its vertex Ai and any two points X ∈ [Ai, Aj ], Y ∈ [Ai, Ak] with

|AiX| = |AiY | 6
1

2
(|AiAj | + |AiAk| − |AjAk|)
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we have |XY | 6 δ.

It is easy to prove that each side of a δ-thin triangle is contained in the δ-neighborhoods of the
union of two other its sides.

The geodesic space X is called δ-hyperbolic if every geodesic triangle in X is δ-thin.

Let H be a group with a finite generating set S. The length of an element g ∈ H with respect
to S is denoted by |g|.

Let Γ(H,S) be the geometric realization of the right Cayley graph of H with respect to S. We
will consider Γ(H,S) as a metric space with the metric, induced by the word metric on H. The
ball of radius r about 1 in Γ(H,S) is denoted by B(r). The cardinality of any subset M ⊆ H is
denoted by ♯M . For brevity, the cardinality of the set B(r) ∩ H is denoted by ♯B(r).

The group H is called δ-hyperbolic with respect to S if the corresponding metric space Γ(H,S)
is δ-hyperbolic. A group is called hyperbolic if there exist a finite generating set S and a real
number δ > 0 such that this group is δ-hyperbolic with respect to S. It is known that if a group
is hyperbolic with respect to some finite generating set, then it is hyperbolic with respect to any
finite generating set.

Proposition 2.1 If A1A2 . . . An is a geodesic n-gon in a δ-hyperbolic geodesic space, then each
of it sides is contained in the ((n − 2)δ)-neighborhood of the union of all other its sides.

Proposition 2.2 (see Remark 1.21 in Chapter III.H of [3]) If X is a δ-hyperbolic geodesic
space, then for any four points A,B,C,D ∈ X the following inequality holds

|AC| + |BD| 6 max{|BC| + |AD|, |AB| + |CD|} + 2δ.

Definition 2.3 Let (X , d) be a metric space and I be an interval of the real line (bounded or
unbounded) or else the intersection of Z with such an interval. A map p : I → X is called
(λ, ǫ)-quasi-geodesic (where λ > 1 and ǫ > 0) if

1

λ
|t − s| − ǫ 6 d(p(t), p(s)) 6 λ|t − s| + ǫ

for all s, t ∈ I.

Definition 2.4 Let (X , d) be a metric space and fix k > 0. A path p : [a, b] → X is said to be a
k-local geodesic if d(p(t), p(s)) = |t − s| for all s, t ∈ [a, b] with |t − s| 6 k.

Lemma 2.5 (see Theorem 1.12 in Chapter III.Γ of [3]) Let H be a δ-hyperbolic group with
respect to a finite generating set S. If u, v ∈ H are conjugate, then the length of the shortest
conjugator is bounded from above by a computable function of max{|u|, |v|}, δ and ♯S.

The following proposition (without the statement on computability of λ, ǫ) is Corollary 3.10 of
Chapter III.Γ in [3]. Since we need the computability and the statement is not obvious, we give
a sketch of the proof.

Proposition 2.6 Let H be a δ-hyperbolic group with respect to a finite generating set S, and
let g ∈ H has infinite order. Then the map Z → H given by n 7→ gn is a (λ, ǫ)-quasi-geodesic,
where λ, ǫ are computable functions of δ, ♯S, |g| only.
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Proof. First we note two easy facts.

1) Let k be a natural number. If the map Z → H given by n 7→ gkn is (λ1, ǫ1)-quasi-geodesic,
then the map Z → H given by n 7→ gn is (λ, ǫ)-quasi-geodesic with λ = kλ1 and ǫ = k|g|+ǫ1 +1.
Thus, at any moment we can replace g by an appropriate gk.

2) Let g0 = Short(g) be the shortest word among those, which are conjugate to g in H. Then
there exists h ∈ H, such that g = h−1g0h and |h| 6 f(δ, ♯S, |g|), where f is a computable
function by Lemma 2.5. If the map Z → H given by n 7→ gn

0 is (λ1, ǫ1)-quasi-geodesic, then the
map Z → H given by n 7→ gn is (λ, ǫ)-quasi-geodesic with λ = λ1 and ǫ = ǫ1 + 2|h|.

Since different powers of g are not conjugate, there is a natural k 6 ♯B(8δ + 1), such that
|Short(gk)| > 8δ. Replacing g by Short(gk), we may assume that |g| > 8δ and g is the shortest
word among those which are conjugate to g in H.

Then the bi-infinite path pg, that begins at 1 and is labelled by powers of g is a k-local-geodesic
with k > 8δ. By [3, Theorem 1.13, Ch. III.H], pg is (2δ, 3)-quasi-geodesic. 2

Corollary 2.7 In notations of Proposition 2.6, for any natural n holds

1

λ
n − ǫ 6 |gn| 6 λn + ǫ.

The following proposition (without the statement on computability of R) is Theorem 1.7 in
Chapter III.H of [3]. The computability of R can be extracted from the proof.

Proposition 2.8 For all δ > 0, λ > 1, ǫ > 0 there exists a computable constant R(δ, λ, ǫ) with
the following property:

If X is a δ-hyperbolic geodesic space, p is a (λ, ǫ)-quasi-geodesic in X and c is a geodesic segment
joining the endpoints of p, then the Hausdorff distance between c and the image of p is less
than R.

Corollary 2.9 Let H be a δ-hyperbolic group with respect to a finite generating set S, and let
g ∈ H has infinite order.Then for any integers i < j every geodesic segment [gi, gj ] lies in the µ-
neighborhood of the set {gi, gi+1, . . . , gj} and this set lies in the µ-neighborhood of this segment,
where µ = µ(δ, ♯S, |g|) is a computable constant.

Corollary 2.10 Let H be a δ-hyperbolic group with respect to a finite generating set S, and let
g ∈ H has infinite order. For any natural numbers s, t holds:

|gs+t| > |gs| + |gt| − 2µ,

where µ = µ(δ, ♯S, |g|) is the constant from Corollary 2.9.

Proof. Set A = 1, B = gs and C = gs+t. Choose geodesics [AB], [BC] and [AC]. By
Corollary 2.9 the point B lies in the µ-neighborhood of [AC], that is there exists D ∈ [AC] such
that |BD| 6 µ. Then |AC| > (|AB| − |BD|) + (|CB| − |BD|) > |AB| + |BC| − 2µ. 2

The following proposition (without the statement on computability of n) is Proposition 3.20 of
Ch. III.H [3]. The computability of n can be extracted from the proof.
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Proposition 2.11 Let H be a δ-hyperbolic group with respect to a finite generating set S. Then
for every finite set of elements h1, . . . , hr ∈ H there exists an integer n > 0 such that hn

1 , . . . , hn
r

generate a free group of rank at most r. The integer n is a computable function of δ, ♯S and
∑r

i |hi|.

Notations. Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set S.

1) For elements u, v ∈ H and a real number c > 0 we will write uv = u ·
c
v if 1

2(|u|+ |v|−|uv|) < c.

The last is equivalent to |uv| > |u|+ |v| − 2c. If H is a free group, this means that the maximal
terminal segment of u and the maximal initial segment of v which can be cancelled in the product
uv are both of length smaller than c.

We will write uvw = u ·
c
v ·

c
w if uv = u ·

c
v and vw = v ·

c
w. By Lemma 9.1, if |v| > 2c + δ, then

|u ·
c
v ·

c
w| > |u| + |v| + |w| − (4c + 2δ).

2) Let G = {g1, . . . , gn} be a finite subset of H. The symbol u ≈G v means that |u−1v| is
bounded from above by a computable function, depending on δ, ♯S and |g1|, . . . , |gn| only. The
function will be clear from the context. Similarly, we write |u| ≈|g| |v| if ||u| − |v|| is bounded
from above by a computable function, depending on the same arguments.

3) It is known that for any nontrivial element g ∈ H its centralizer CH(g) is infinite cyclic.
Thus, the extraction of roots in H is unique. If the root of g ∈ H of degree q exists, we denote

it by g
1

q .

Agreement. For brevity, we will not write δ and ♯S in the arguments of computable functions.

3 The norm and the axis of an element

Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set S.

Let g be a nontrivial element of H. The number ||g|| = min
x

{d(x, gx)}, where x goes through

all points of the Cayley graph Γ(H,S) is called the norm of g. The axis Ag of g is the set of all
points x in the Cayley graph Γ(H,S) such that d(x, gx) = ||g||. It is easy to show that ||g|| is a
positive natural number, Ag ∩H is nonempty and Ag is g-invariant (it is even CH(g)-invariant).
Moreover, for any x ∈ Ag any geodesic segment [x, gx] also lies in Ag. Obviously, ||g|| 6 |g|,
||hgh−1|| = ||g|| for any h ∈ H, and Ahgh−1 = hAg.

Lemma 9.5 asserts that there exists a computable natural number r = r(δ, ♯S, |g|) such that

∞
⋃

k=1

Agk ⊆ 〈g〉B(r).

From this, it is easy to deduce the following two corollaries.

Corollary 3.1 For any nontrivial element g ∈ H and any integer k 6= 0 there exists an element
x ∈ Agk ∩ H of length at most r(|g|).
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Corollary 3.2 For any nontrivial element g ∈ H and any integer k 6= 0 the inequality ||gk|| >

|gk| − 2r(|g|) holds.

Proof. We take the element x from Corollary 3.1. Then ||gk|| = d(x, gkx) = |x−1gkx| >

|gk| − 2|x| > |gk| − 2r(|g|). 2

Corollary 3.3 Let g be a nontrivial element of H. For any natural number C there exists a
computable integer k0 = k0(δ, ♯S, |g|, C), such that for any k > k0 we have ||gk|| > C.

Proof. The proof follows from Corollaries 3.2 and 2.7. 2

Proposition 3.4 There exist computable functions f1 : N → N and f2 : N → N such that for
every nontrivial element g ∈ H and for every natural numbers s, t we have

||gs+t|| − f1(|g|) 6 ||gs|| + ||gt|| 6 ||gs+t|| + f2(|g|).

Proof. The first inequality follows from the inequalities

||gs+t|| 6 |gs+t| 6 |gs| + |gt| 6 ||gs|| + ||gt|| + 4r(|g|),

where we use Corollary 3.2. The second inequality follows from the inequalities

||gs|| + ||gt|| 6 |gs| + |gs| 6 |gs+t| + 2µ(|g|) 6 ||gs+t|| + 2r(|g|) + 2µ(|g|),

where we use Corollary 3.2 and Corollary 2.10. 2

Proposition 3.5 For any nontrivial element g ∈ H and any point P ∈ Γ(H,S) holds

d(P, gP ) 6 ||g|| + 2d(P,Ag).

Recall, that to that moment we have introduced computable functions λ, ǫ, µ, r, f1, f2.

4 First technical lemma

Suppose that the product of conjugates of two powers of a given element equals the product of
these powers. In this situation, the following technical lemma shows how the involved conjugators
look like.

Lemma 4.1 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set S.
Thereexists a computable function ~ : N → R+ with the following property: for any three elements
b, x, y ∈ H and any two positive integers s, t, which satisfy min{||bs||, ||bt||, ||bs+t||} > 13δ and

(x · bs · x−1)(y · bt · y−1) = bs+t, (1)

there exist integers n1, n2, n3, n4 and elements vx, vy ∈ H of length at most ~(|b|) such that

x = bn1vxbn2 and y = bn3vyb
n4 .
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Proof. Let b, x, y and s, t be as in the statement. Consider the axes Axbsx−1 = xAbs and
Aybty−1 = yAbt . By Proposition 10.4 applied to the elements xbsx−1 and ybty−1 (note that
||xbsx−1|| = ||bs||, ||ybty−1|| = ||bt|| and ||(xbsx−1)(ybty−1)|| = ||bs+t|| are all bigger than 13δ by
hypothesis), the distance between xAbs and yAbt is at most

max{13δ,
1

2
(||bs+t|| − ||bs|| − ||bt||) + 16δ}.

And, by Proposition 3.4, this value does not exceed 1
2f1(|b|) + 16δ, an upper bound which does

not depend on s and t.

Now, take a point Q ∈ yAbt such that d(Q, xAbs) 6
1
2f1(|b|) + 16δ, and set P = (ybty−1)−1Q;

in particular, P ∈ yAbt . Then we get

d(P, bs+tP) = d(P, (xbsx−1)(ybty−1)P) = d(P, (xbsx−1)Q)

6 d(P,Q) + d(Q, (xbsx−1)Q)

6 d(P,Q) + 2d(Q,Axbsx−1) + ||bs||

6 ||bt|| + ||bs|| + f1(|b|) + 32δ

6 ||bs+t|| + f1(|b|) + f2(|b|) + 32δ,

where the last inequality uses Proposition 3.4. Next, apply Lemma 10.2 to conclude that P =
bn3u for some n3 ∈ Z and u ∈ H with |u| 6

1
2f1(|b|)+

1
2f2(|b|)+r(|b|)+19δ. And since P ∈ yAbt ,

we deduce from Lemma 9.5 that y−1P = b−n4u′, for some n4 ∈ Z and u′ ∈ H with |u′| 6 r(|b|).
Hence,

y = bn3vyb
n4 ,

where vy = uu′−1 has length bounded by

|vy| = |uu′−1| 6 |u| + |u′| 6
1

2
f1(|b|) +

1

2
f2(|b|) + 2r(|b|) + 19δ.

Finally, inverting and replacing b to b−1 in equation (1), we obtain again the same equation with
x and y interchanged. So, the same argument shows that

x = bn1vxb
n2 ,

for some n1, n2 ∈ Z and some vx ∈ H with the same upper bound for its length.

Hence, the function ~(n) = 1
2f1(n) + 1

2f2(n) + 2r(n) + 19δ satisfies the statement of the lemma.
2

Corollary 4.2 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating
set X. There exists a computable function ~ : N → R+ with the following property.

If x1b
n1x2b

n2x3b
n3 = 1 is an equality in H, where x1x2x3 = 1, n1 + n2 + n3 = 0, all ni are non-

zero, and ||bni || > 13δ for all i, then each of the xi can be represented in the form bm1ubm2vbm3 ,
where both u, v have length at most ~(|b|).

Proof. Inverting the equality and cyclically permuting, we may assume that n1 > 0 and n2 > 0.
Then we can apply Lemma 4.1. 2
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5 A special case of the main Theorem

Here we prove Theorem 8.2 in case, where n = 2 and g1, g2 generate a cyclic group. The proof
contains ingredients, which will be used in general case.

Proposition 5.1 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating
set S. Then for any g ∈ H there is a constant C = C(|g|) with the following property:

Let a, b be some powers of g with min{||a||, ||b||, ||ab−1 ||} > 13δ, and let b∗ be a conjugate of b.
If abs

∗ is conjugate to abs for every s = −C, . . . , C, then b∗ = b.

Proof. We will determine C > 1 dynamically in a finite number of steps. Let a = gn, b = gm,
and b∗ = x−1bx for some x ∈ H.

We may assume that n,m > 0. Indeed, if n < 0, we may first replace g by g−1 and n by −n,
and m by −m, thus getting n > 0. If then m < 0, we may replace b by b−1 = g−m and b∗ by
b−1
∗ , thus getting m > 0.

Suppose that ab−1
∗ is conjugate to ab−1, that is gn · x−1g−mx = h−1gn−mh for some h ∈ H. We

rewrite the last equation in two forms:

xh−1gm−nhx−1 · xgnx−1 = gm, (2)

h−1gn−mh · x−1gmx = gn. (3)

We have n 6= m (otherwise a = b, that contradicts to the assumption ||ab−1|| > 13δ). If m > n,
then from (2) and Lemma 4.1 we get that

x = gpvgq

for some p, q ∈ Z and v ∈ H with v ≈g 1. If m < n, then from (3) and Lemma 4.1 we get
the same expression for x. Since x is defined (from the left) up to the centralizer of g, we may
assume that x = vgq. We have still b∗ = x−1bx. Replacing b∗ by gqb∗g

−q (that does not change
the hypothesis and the conclusion of the proposition), we may assume that x = v, and so x ≈g 1.

Now we write abs
∗ as a conjugate of abs = gn+sm. By Corollary 9.3, there exists zs ∈ H such

that

gn · x−1gsmx = abs
∗ = z−1

s ·
c
gn+sm ·

c
zs, (4)

where the constant c depends on |g|, δ, ♯S only. Comparing lengths and using Lemma 9.1 for
sufficiently large s (to guarantee |gn+sm| > 2c + δ; for that apply Corollary 2.7), we have

|gn| + |gsm| + 2|x| > |gn+sm| + 2|zs| − (4c + 2δ).

Recall that n,m > 0. For positive s we have also |gn+sm| ≈|g| |g
n| + |gsm| by Corollary 2.10.

Recalling that |x| ≈|g| 0, we get that |zs| ≈|g| 0. It follows, that if s goes over a sufficiently
large set {⌊C/2⌋, . . . , C}, there must be repetitions: there exist C/2 < s1 < s2 < C such that
zs1

= zs2
(denote it by z). We have

abs1

∗ = z−1gn+s1mz (5)
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and
abs2

∗ = z−1gn+s2mz.

From this we deduce
bs1−s2

∗ = z−1gm(s1−s2)z.

This implies b∗ = z−1gmz and then (5) implies a = z−1gnz. Since a = gn, the element z
commutes with g, and so b∗ = b. 2

6 Second technical lemma

The following lemma is a preliminary step in proving of Theorem 7.2. Equations (6) and (7)
in its formulation have the following common form: the product of certain conjugates of two
elements equals the product of these two elements.

Lemma 6.1 Let H be a torsion-free δ-hyperbolic group with respect to a finite generationg set
S, and let b, b∗, w ∈ H. There exists a computable natural number M = M(|b|, |w|) such that
the following holds:

If b∗ is conjugate to b (say b∗ = h−1bh), and wbk
∗ is conjugate to wbk for every k = 1, . . . ,M ,

then there exists an element d ∈ H and integers m, s, t, such that s + t > 0 and the following
equations hold

(d · bs · d−1)(dw · bt · w−1d−1) = bs+t, (6)

(d−1h · w · h−1d)(d−1 · bm · d) = wbm. (7)

Proof. We may assume that b 6= 1. By Corollary 9.3, there exists an element h ∈ H such that
for any integer k we have bk

∗ = h−1 ·
c
bk ·

c
h, where c = 3δ + µ(|b|) + 1. Since this expression

remains valid while enlarging the constant, we shall consider it with c = 3δ + µ(|b|) + |w|+ 1 in
order to match with other calculations below. Thus,

wbk
∗ = w(h−1 ·

c
bk ·

c
h). (8)

Suppose that wbk
∗ is conjugate to wbk for every k = 1, . . . ,M (the correct M will be chosen

later). Then, by Lemma 9.2, for each of these k’s there exist an element ek ∈ H and an integer
lk, such that 0 6 lk 6 k and

wbk
∗ = e−1

k ·
c
(bk−lkwblk) ·

c
ek. (9)

Below we write ≈ instead of ≈w,b. By Corollary 2.7 and by Lemma 9.6, there exists a natural
number K = K(|b|, |w|) such that |bk| and |bk−lkwblk | are bigger than 2c + δ for all k > K. We
consider k > K. Then from (8) and (9), with the help of Lemma 9.1, we deduce

|wbk
∗ | ≈ 2|h| + |bk|

and
|wbk

∗ | ≈ 2|ek| + |bk−lkwblk | ≈ 2|ek| + |bk|,

where the last approximation is due to Lemma 9.6. Therefore |ek| ≈ |h|.

Now we prove that ek ≈ h. For that we realize the right hand side of (8) in the Cayley graph
Γ(H,S) as the path starting at 1 and consisting of 4 consecutive geodesics with labels equal in
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H to the elements w, h−1, bk, h. Analogously we realize the right hand side of (9) as the path
starting at 1 and consisting of 3 consecutive geodesics with labels equal in H to the elements
e−1
k , bk−lkwblk , ek.

Both paths are (λ, ǫ)-quasigeodesics, connecting 1 and wbk
∗ , where λ, ǫ depend on c only. By

Proposition 2.8, these quasigeodesics are at bounded distance from each other. Since their last
segments have labels equal to h and ek in H, and since |ek| ≈ |h|, we deduce that ek ≈ h.

Thus ek lies in the ball with center h and radius depending only on |b| and |w|. Let M be the
number of elements in this ball plus (K + 1).

Then there exist natural numbers K 6 k1 < k2 6 M such that ek1
= ek2

. Denote this element
by e and, rewriting equation (9) for these two special values of k,

wbk1

∗ = e−1(bk1−lk1wblk1 )e (10)

and
wbk2

∗ = e−1(bk2−lk2wblk2 )e,

we get
bk2−k1

∗ = e−1(b−lk1w−1bk2−k1+lk1
−lk2wblk2 )e.

Set s = k2 − k1 + lk1
− lk2

and t = lk2
− lk1

(so s + t > 0). Recalling that bk2−k1

∗ = h−1bk2−k1h,
we can rewrite the previous equation as

he−1b−lk1w−1bswbtblk1eh−1 = bs+t.

Setting d = he−1b−lk1w−1, we deduce (dbsd−1)·(dwbtw−1d−1) = bs+t, which is equation (6). And
using equation (10), the definition of d and bk1

∗ = h−1bk1h, we obtain (d−1hwh−1d) · (d−1bk1d) =
wbk1 , which is equation (7) with m = k1. 2

Now, using (6) and (7) we obtain more information on relations between w, b and h.

Proposition 6.2 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating
set S and let b, w, d be elements of H that satisfy equation (6), where s + t > 0. Suppose
additionally that ||bk|| > 13δ for all k > 0, and that st 6= 0. Then, there exist integers p, q, r and
elements u, v ∈ H of length at most ~(|b|), such that

w = bpubrvbq.

Proof. The proof follows from Corollary 4.2

Proposition 6.3 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating
set S and let b, w, d, h be elements of H that satisfy equations (6) and (7), where s + t > 0.
Suppose additionally that ||bk|| > 13δ for all k > 0, and that st = 0. Then h = bpwq for some
rational numbers p, q.

Proof. Let us distinguish the following two cases:

Case 1: s = 0. In this case, equation (6) says that dw commutes with b. So, dw = bp for some
rational p. Plugging this into equation (7) we obtain hwh−1 = bp+md−1b−m = bp+mwb−p−m.
Hence, b−p−mh commutes with w and the result follows.
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Case 2: t = 0. In this case, equation (6) says that d commutes with b. So, d = bp for some
rational p. Plugging this into equation (7) we obtain b−phwh−1bp = w. Hence, b−ph commutes
with w and the result follows. 2

7 Main theorem for two words

Now, we want to obtain some extra information by applying Lemma 6.1 to sufficiently many
different elements w. To achieve this goal, given a pair of elements a, b ∈ H we consider the
finite set

W = {(aib)2j | 1 6 i 6 N, 1 6 j 6 N2} ⊆ 〈a, b〉 6 H,

where
N = N(|b|) = 1 + (♯B (~(|b|)))2

and the function ~ is defined in Lemma 4.1. Let us systematically apply Lemma 6.1 to every
w ∈ W.

Lemma 7.1 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set
S. Let a, b ∈ H be elements, which generate a free subgroup of rank 2 and let ||bk|| > 13δ for
all k > 0. Suppose that for every w ∈ W, there exists a conjugate b∗ of b such that the elements
w, b, b∗ satisfy the hypothesis of Lemma 6.1 (i.e. wbk

∗ is conjugate to wbk, for every integer
k = 1, . . . ,M(|b|, |w|)). Then, for at least one such w ∈ W, the conclusion of Lemma 6.1 holds
with st = 0.

Proof. Suppose the opposite and let us find a contradiction. We write W =
⊔N

i=1Wi, where
Wi = {(aib)2j | 1 6 j 6 N2}. First we fix i ∈ {1, . . . , N}. By Proposition 6.2, for every w ∈ Wi,
there exist integers p, q, r, and elements u, v ∈ H of length at most ~(|b|) such that

bpwbq = ubrv. (11)

Of course, these integers and elements depend on w. Since ♯Wi > (♯B(~(|b|)))2 and the lengths
of u and v are at most ~(|b|), there exists a pair of elements w1, w2 ∈ Wi with the same u and v:

bp1w1b
q1 = ubr1v,

bp2w2b
q2 = ubr2v.

Combining these equations, we get

bp2w2b
q2−q1w−1

1 b−p1 = ubr2−r1u−1. (12)

Moreover, since ♯Wi > (♯B(~(|b|)))4, there exists else one (disjoint) pair of elements w3, w4 ∈ Wi

with the same u, v as above. And we similarly get

bp4w4b
q4−q3w−1

3 b−p3 = ubr4−r3u−1. (13)

Hence, the left sides of equations (12) and (13) commute. Write w1 = (aib)σ, w2 = (aib)τ ,
w3 = (aib)σ

′

, w4 = (aib)τ
′

. Simplifying notation, we can write the left sides of (12), (13) as

x = bα(aib)τbβ(aib)−σbγ

11



and
x′ = bα′

(aib)τ
′

bβ′

(aib)−σ′

bγ′

We have understood that x and x′ commute. Since w1, w2, w3, w4 are different elements of Wi,
the exponents σ, τ , σ′, τ ′ are positive and differ by at least 2. Note, that no specific information
about the other integers α, β, γ, α′, β′, γ′ is known. The key point here is that this commutativity
relation happens inside the free group 〈a, b〉.

Consider now the monomorphism 〈a, b〉 → 〈a, b〉 given by a 7→ aib, b 7→ b. Since x and x′ both lie
in its image, and commute, their preimages, namely y = bαaτbβa−σbγ and y′ = bα′

aτ ′

bβ′

a−σ′

bγ′

,
must also commute.

Suppose ββ′ 6= 0. Then, y is not a proper power in 〈a, b〉 (in fact, its cyclic reduction is either
aτbβa−σbα+γ with α + γ 6= 0, or aτ−σbβ, which are clearly not proper powers). Similarly, y′

is not a proper power either. Then the commutativity of y and y′ forces y = y′±1, which is
obviously not the case. Hence, ββ′ = 0. Without loss of generality, we can assume β = 0.

Let us go back to equation (12) which, particularized to this special case, reads

bα(aib)τ b0(aib)−σbγ = ubδu−1, (14)

that is
bα(aib)ρbγ = ubδu−1, (15)

where ρ = τ − σ and so |ρ| > 2. Recall, that the length of u is at most ~(|b|).

Finally, it is time to move i = 1, . . . , N . Since N > ♯B(~(|b|)), there must exist two indices i1
and i2, with 1 6 i1 < i2 6 N and such that ui1 = ui2 (call this element just u). Equation (15)
in these two special cases says that

bα(ai1b)ρbγ = ubδu−1

and
bα′

(ai2b)ρ
′

bγ′

= ubδ′u−1.

Hence, z = bα(ai1b)ρbγ and z′ = bα′

(ai2b)ρ
′

bγ′

again commute, where |ρ|, |ρ′| > 2 and 1 6

i1 < i2. This implies that some positive power of z equals some positive power of z′. But it
is straightforward to see that (after all possible reductions) the first a-syllable of any positive
power of z is ai1 (here we use |ρ| > 2); similarly the first a-syllable of any positive power of z′

is ai2 . Since i1 6= i2, this is a contradiction which completes the proof. 2

Now we prove the main Theorem 8.2 in case n = 2.

Theorem 7.2 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set
S, and consider four elements a, b, a∗, b∗ ∈ H such that a∗ is conjugate to a, and b∗ is conjugate
to b. There exists a computable constant C (only depending on |a|, |b|, δ and ♯S), such that if
(ai

∗b
l
∗)

jbk
∗ is also conjugate to (aibl)jbk for every i, j, k, l = −C, . . . , C then there exists a uniform

conjugator g ∈ H with a∗ = g−1ag and b∗ = g−1bg (i.e. (a∗, b∗) is conjugate to (a, b)).

Proof. The conclusion is obvious if a or b is trivial. So, let us assume a 6= 1 and b 6= 1. Note,
that 〈a〉 = 〈b〉 and even a = b is allowed.

All along the proof, C will be an unspecified constant, and we shall prove the result imposing
several times that C is big enough. At the end, collecting together all these requirements, we
shall propose a valid value for C.
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Since H is torsion-free, every nontrivial element has infinite cyclic centralizer. Let a1, b1 be
generators of CH(a) and CH(b). We may assume that a = ap

1 and b = bq
1 for positive p and

q. By Corollary 3.3, there exists a computable natural number r0 such that for every r > r0,
||ar

1|| > 13δ and ||br
1|| > 13δ. So, after replacing a, b, a∗, b∗ by ar0 , br0 , ar0

∗ , br0

∗ , we can assume
that ||ar|| > 13δ and ||br|| > 13δ for every r 6= 0. Moreover, if a, b generate a cyclic group, then
after the above replacement we have a = b or ||ab−1|| > 13δ.

For every word w on a and b, let us denote by w∗ the corresponding word on a∗ and b∗.
Now, observe that we can uniformly conjugate a∗ and b∗ by any element of H (and abuse
notation denoting the result a∗ and b∗ again), and both the hypothesis and conclusion of the
theorem does not change. In particular, for any chosen word of the form w = (aibl)jbk (with
i, j, k, l ∈ {−C, . . . , C}), we can assume that w∗ = w (of course, with an underlying a∗ and b∗
now depending on w); when doing this, we say that we center the notation on w. Centering
does not change a, b, it changs only a∗, b∗, therefore each time the constants depend only on a, b.

Let us distinguish two cases.

Case 1: 〈a, b〉 is a cyclic group. Centering the notation on a, we may assume that a∗ = a. If
a = b, then we use that ab−1

∗ is conjugate to ab−1 = 1 and deduce immediately that b∗ = b. Now
we assume that a 6= b, and so ||ab−1|| > 13δ. A part of our hypothesis says that a∗b

s
∗ = abs

∗ is
conjugate to abs for every s = −C, . . . , C. Hence, for C as in Proposition 5.1, we have b∗ = b.
This concludes the proof in this case.

Case 2: 〈a, b〉 is not cyclic. By Proposition 2.11, there exists a suffciently big natural number p
such that 〈ap, bp〉 is a free subgroup of H of rank 2. And note that proving the statement reduces
to proving the same for the elements ap, bp, ap

∗, b
p
∗. So, after replacing a, b, a∗, b∗ by ap, bp, ap

∗, b
p
∗,

we can assume that F2 ≃ 〈a, b〉 6 H.

With these gained assumptions, let us show that we can take

C = max{2N2, max
w∈W

M(|b|, |w|)},

where the number N and the set W are defined at the beginning of section 7, and the function
M is defined in Lemma 6.1. In fact, assume that (ai

∗b
l
∗)

jbk
∗ is conjugate to (aibl)jbk for every

i, j, k, l = −C, . . . , C, and let us look for the required uniform conjugator.

Consider the set W. Recall that for w = (aib)2j we have denoted w∗ = (ai
∗b∗)

2j . In this
language, (part of) our hypothesis says that w∗b

k
∗ is conjugate to wbk for every w ∈ W, and

every k = 1, . . . ,M(|b|, |w|).

Fix w ∈ W. Centering the notation on this w, we have that wbk
∗ (= w∗b

k
∗) is conjugate to wbk

for every k = 1, . . . ,M(|b|, |w|). In particular, w satisfies the hypothesis of Lemma 6.1 (with
the corresponding value of b∗). And this happens for every w ∈ W. Thus, Lemma 7.1 ensures
us that the conclusion of Lemma 6.1 holds with st = 0 for at least one w0 = (ai0b)2j0 ∈ W,
1 6 i0 6 N, 1 6 j0 6 N2 (note that Lemma 7.1 can be applied because we previously gained
the assumptions ||bm|| > 13δ for every m 6= 0, and F2 ≃ 〈a, b〉 6 H). For the rest of the proof,
let us center the notation on this particular w0.

Using Proposition 6.3 we conclude that every conjugator from b to b∗ (say b∗ = h−1bh) is of the
form h = bpwq

0 for some rational numbers p, q. Hence, w−q
0 bwq

0 = b∗ for some rational q. Then,

((w−q
0 awq

0)
i0b∗)

2j0 = w−q
0 (ai0b)2j0wq

0 = w−q
0 w0w

q
0 = w0 = w0∗ = (ai0

∗ b∗)
2j0 .

Extracting roots twice (here we use again the absence of torsion in H), we conclude that
w−q

0 awq
0 = a∗. Thus, wq

0 is a uniform right conjugator from (a, b) to (a∗, b∗) This concludes
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the proof. 2

8 Main theorem for several words

It is known, that in a torsion-free hyperbolic group the centralizer of any nontrivial element is
cyclic. An element g ∈ H is called root-free, if it generates its centralizer, that is 〈g〉 = CH(g).

Lemma 8.1 (see Lemma 4.3 in [10]) Let H be a torsion-free hyperbolic group, and let a, b two
elements, such that b /∈ CH(a). Then there is a computable integer k0 = k0(|a|, |b|) > 0, such
that for every k > k0 the element abk is root-free.

Theorem 8.2 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating
set S, and let g1, . . . , gn and g1∗, . . . , gn∗ be elements of H such that gr∗ is conjugate to gr for
each r = 1, . . . , n. There is a uniform conjugator if and only if W (g1∗, . . . , gn∗) is conjugate to
W (g1, . . . , gn) for every word W in n variables and length up to a computable constant depending
only on δ, ♯S and

∑n
r=1 |gr|.

Proof. Denote G = {g1, . . . , gn}. We may assume that all gi are nontrivial. Because of Theo-
rem 7.2 we may assume that n > 2. If the elements g1, . . . , gn generate a cyclic group, we can
apply Theorem 7.2 to every pair gi, gj and get the required conclusion.

Consider the case, where some two elements of G, say g1, g2, generate a noncyclic group. Using
Proposition 2.11, we replace them by their big powers to ensure that g1, g2 generate a free group
of rank 2. By Theorem 7.2, we may assume that g1∗ = g1 and g2∗ = g2. We will prove that
gr∗ = gr for every gr ∈ G.

By Lemma 8.1, there exists k such that the element g1g
k
2 is root-free. Replacing g1 by g1g

k
2 , we

may assume that g1 is root-free.

Consider an element gr ∈ G \ {g1, g2}. Applying Theorem 7.2 to the pair (g1, gr), we obtain
gr∗ = x−1grx for some x ∈ CH(g1) = 〈g1〉. Analogously, gr∗ = y−1gry for some y ∈ CH(g2) =
〈g2〉. Then x = gl

1 and y = gm
2 for some integers l,m. If l or m is zero, we get gr∗ = gr.

Thus consider the case, where both l and m are nonzero. We have xy−1 ∈ CH(gr), that is
gk
r = gl

1g
−m
2 for some nonzero integers l,m and some rational k.

Again by Lemma 8.1, there exists s > 2, such that the elements f1 = g1g
s
2 and f2 = g2(g1g

s
2)

s

are root-free. Arguing with these elements as above with g1, g2, we deduce that either gr∗ = gr,
or gt

r = fp
1 f−q

2 for some nonzero integers p, q and some rational t. Assuming the last, we deduce
that the elements fp

1 f−q
2 and gl

1g
−m
2 commute in the free group 〈g1, g2〉, that is impossible. Thus

gr∗ = gr for each r = 1, . . . , n. 2

9 Some other technical lemmas

Lemma 9.1 If uvw = u ·
c
v ·

c
w and |v| > 2c + δ for some c > 0, then

|u ·
c
v ·

c
w| > |u| + |v| + |w| − (4c + 2δ).
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Proof. Connect the points A = 1, B = u, C = uv, D = uvw by geodesic segments and consider
the geodesic rectangle ABCD. By assumption |BC| > 2c + δ. From u ·

c
v and v ·

c
w we deduce

|AC| > |AB| + |BC| − 2c > |AB| + δ

and
|BD| > |BC| + |CD| − 2c > |CD| + δ.

respectively. From this and the rectangle inequality

|AC| + |BD| 6 max{|BC| + |AD|, |AB| + |CD|} + 2δ,

we deduce

(|AB| + |BC| − 2c) + (|BC| + |CD| − 2c) < |AC| + |BD| 6 |BC| + |AD| + 2δ,

that implies
|AB| + |BC| + |CD| − (4c + 2δ) < |AD|.

2

Lemma 9.2 Let H be a δ-hyperbolic group with respect to a finite generating set S and let
w, b, g ∈ H with b 6= 1, and g being conjugated to wbk for some natural k. Then there exist
an element x ∈ H and an integer 0 6 l 6 k, such that g = x−1 ·

c
bk−lwbl ·

c
x, where c =

3δ + µ(|b|) + |w| + 1.

Proof. Let x be the shortest element for which there exists an l, 0 6 l 6 k, such that g =
x−1bk−lwblx. We will prove that x and l satisfy the conclusion of the lemma. Suppose the
opposite. Denote A = 1, B = x−1, C = x−1bk−l, D = x−1bk−lw, E = x−1bk−lwbl and
F = x−1bk−lwblx, and connect these points by geodesic segments.

Without loss of generality we may assume that x−1bk−lwbl cannot be written as x−1 ·
c
bk−lwbl.

Then, considering the geodesic triangle ABE, we conclude that 1
2 (|AB|+ |BE| − |AE|) > c. By

δ-hyperbolicity of H, there exist points X1 ∈ [AB] and X2 ∈ [BE] such that |BX1| = |BX2| = c
and |X1X2| 6 δ. By Proposition 2.1, applied to the rectangle BCDE, there exists a point
X3 ∈ [BC] ∪ [CD] ∪ [DE] such that |X2X3| 6 2δ.

Case 1. Suppose that X3 ∈ [BC]. Since C = Bbk−l, Corollary 2.9 implies that there exists an
element X4 = Bbs, where 0 6 s 6 k − l, such that |X3X4| 6 µ(|b|).

s s

s s

s s
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r

r

r
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Case 2. Suppose that X3 ∈ [CD]. Then for X4 = C = Bbk−l we have |X3X4| 6 |w|.

Case 3. Suppose that X3 ∈ [DE]. Since E = Dbl, Corollary 2.9 implies that there exist an
element X4 = Dbs, where 0 6 s 6 l, such that |X3X4| 6 µ(|b|).

In any case, |X1X4| < c. Since |X1B| = c, we have |AX4| 6 |AX1|+ |X1X4| < |AX1|+ |X1B| =
|AB| = |x|. Since A = 1, we have |X4| < |x|. Now continue to the analyze the cases above.

In Cases 1 and 2 we have X4 = x−1bs, where 0 6 s 6 k − l. Then g = X4b
k−l−swbl+sX−1

4 . A
contradiction with minimality of |x|.

In Case 3 we have X4 = x−1bk−lwbs, where 0 6 s 6 l. Then g = X4b
k−swbsX−1

4 . Again a
contradiction with minimality of |x|. 2

Corollary 9.3 Let H be a δ-hyperbolic group with respect to a finite generating set S and let
z, b ∈ H. Then there exists an element x ∈ H, such that for any integer k holds z−1bkz =
x−1 ·

c
bk ·

c
x, where c = 3δ + µ(|b|) + 1.

The following technical lemma asserts, that if A1A2 . . . An is a broken line consisting of geodesic
segments of large length and such that the union of each two consecutive segments is “almost
geodesic”, then this line itself is “almost geodesic”.

Lemma 9.4 Let A1, A2, . . . , An be points in a δ-hyperbolic geodesic space, n > 3. Suppose that
the following two conditions are satisfied:

(i) |Ai−1Ai+1| > |Ai−1Ai| + |AiAi+1| − 2δ for each 2 6 i 6 n − 1,

(ii) |Aj−1Aj| > (2n − 3)δ for each 3 6 j 6 n − 1 .

Then

|A1An| >

n−1
∑

i=1

|AiAi+1| − (4n − 10)δ. (16)

Proof. We will prove this lemma by induction on n. For n = 3 it is valid. So, assume it is valid
for n and prove it for n + 1. From formula (16) we deduce

|A1An| > |A1An−1| + |An−1An| − (4n − 10)δ

and from condition (i) we have

|An−1An+1| > |AnAn+1| + |An−1An| − 2δ. (17)

Summating and applying condition (ii) for |An−1An|, we get

|A1An| + |An−1An+1| > |A1An−1| + |AnAn+1| + 2δ.

Therefore, from the rectangle inequality

|A1An| + |An−1An+1| 6 max{|A1An−1| + |AnAn+1|, |A1An+1| + |An−1An|} + 2δ
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we have that

|A1An| + |An−1An+1| 6 |A1An+1| + |An−1An| + 2δ. (18)

On the other hand, from the induction hypothesis (16) and inequality (17), we have

|A1An| + |An−1An+1| >

(

∑n−1
i=1 |AiAi+1| − (4n − 10)δ

)

+ |AnAn+1| + |An−1An| − 2δ

=
∑n

i=1 |AiAi+1| + |An−1An| − (4n − 8)δ.

From this and inequality (18) we deduce that

|A1An+1| >

n
∑

i=1

|AiAi+1| − (4n − 6)δ,

and the proof is completed. 2

Lemma 9.5 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set S.
For any nontrivial g ∈ H, there exists a computable natural number r = r(|g|) such that

∞
⋃

k=1

Agk ⊆ 〈g〉B(r).

Proof. First we prove that
⋃∞

k=1 Agk lies at bounded (in terms of |g|) distance from CH(g) and
then that CH(g) lies at bounded distance from 〈g〉.

Take x ∈ Agk ∩ H. Then |x−1gkx| is minimal among the lengths of all conjugates to gk. In

particular, |x−1gkx| 6 |gk|. By Corollary 9.3, there exists z ∈ H, such that x−1gkx = z−1 ·
c
gk ·

c
z

for some constant c = c(|g|) > 0. Thus, we have |z−1 ·
c
gk ·

c
z| 6 |gk|. Consider two cases.

Case 1. Suppose that |gk| > 2c + δ. By Lemma 9.1, |z−1 ·
c
gk ·

c
z| > 2|z| + |gk| − (4c + 2δ).

Therefore |z| < 2c + δ. Moreover, x ∈ CH(g)z.

Case 2. Suppose that |gk| 6 2c + δ. From |x−1gkx| 6 |gk| and Lemma 2.5, we conclude that
there exists y ∈ H such that x−1gkx = y−1gky and the length of y is bounded by a constant,
depending on 2c + δ. Moreover, x ∈ CH(g)y.

It remains to prove that CH(g) lies at bounded distance from 〈g〉. By Corollary 3.10 in Chap-
ter III.Γ of [3], the group 〈g〉 has finite index in CH(g). As explained in the proof of that
corollary, different positive powers of g are not conjugate to each other. Therefore, there exists
a natural number n 6 |B(4δ)| + 1, such that gn is not conjugate into the ball B(4δ). In the
proof, it is claimed that each element of CH(g) lies at distance at most 2|gn| + 4δ of 〈gn〉 and
hence of 〈g〉. This completes the proof. 2

Lemma 9.6 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set S.
There exists a computable function f : N

2 → N such that for any two elements u, v ∈ H and for
any nonnegative integers l, k the following holds

|ukvul| > |uk+l| − f(|u|, |v|).
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Proof. We may assume that u is nontrivial. Let µ = µ(|u|) be such a constant that for any
two integers s 6 t the quasi-geodesic {ui | s 6 i 6 t} is contained in the µ-neighborhood of
any geodesic with endpoints us and ut (see Corollary 2.9). Set N = ♯B(2µ + 2δ + |v|) and
d = 2(µ + 1)(N + 1).

We denote A = 1, B = uk, C = ukv, and D = ukvul. Choose geodesics [AB], [AC] and [CD].
Let P be the point on [CD] such that |CP | = 1

2 (|CA| + |CD| − |AD|). We will consider two
cases.

Case 1. Suppose that |CP | < d. Then

|ukvul| = |AD| = |AC| + |CD| − 2|CP | >
(

|uk| − |v|
)

+ |ul| − 2d > |uk+l| − |v| − 2d.

Case 2. Suppose that |CP | > d. We will prove that in this case u and v commute and so
|ukvul| > |uk+l| − |v|.

s

s s

s

s

s

s

s

A

B C

D

uk ul

v

� U

-

P
X

Figure 2

Let X be an arbitrary point on [CP ]. Then X is at distance at most δ from the side [AC] of
the geodesic triangle ACD. But this side is in the (δ + |v|)-neighborhood of the side [AB] of the
geodesic triangle ABC, and the last one is in the µ-neighborhood of the set {1, u, . . . , uk} by
Corollary 2.9. Thus X is at distance at most 2δ +µ+ |v| from a point Y = up, where 0 6 p 6 k.

By the same corollary, X is in the µ-neighborhood of {C,Cu, . . . , Cul}, that is X is at distance
at most µ from a point Z = Cuq = ukvuq, where 0 6 q 6 l. Thus |u−p · ukvuq| = |Y,Z| 6

2δ + 2µ + |v|.

Now, let X1, . . . ,XN+1 be points on [CD], such that |CXi| = 2i(µ + 1). Note that all Xi lie on
[CP ]. As above, Xi is at distance at most µ from a point Zi = Cuqi . Note, that qi 6= qj for
i 6= j, otherwise Zi = Zj and |XiXj | 6 |XiZi| + |ZjXj | 6 2µ, a contradiction. Similarly, we
have |u−pi · ukvuqi | 6 2δ + 2µ + |v| for some pi. Thus all elements u−pi · ukvuqi lie in the ball
B(r), where r = 2δ + 2µ + |v|. Since the number of these elements is N + 1 and N = ♯B(r),
there are two coinciding elements of this form with different i, j:

uk−pivuqi = uk−pjvuqj .

We get that vuqj−qiv−1 = upj−pi . Since qi 6= qj, this implies that u, v commute. The proof is
completed. 2

10 Estimation of distance between axes

In this section, we assume that H is a δ-hyperbolic group with respect to a finite generating
set S.
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Lemma 10.1 Let g be a nontrivial element of H. Let A be any point of Γ(H,S) and B be a
point on Ag, nearest to A. Then for any geodesic segment [BC] ⊂ Ag holds

|AC| > |AB| + |BC| − 2δ.

Proof. Connect A,B,C by geodesic segments [AB], [BC] and [AC]. Let X ∈ [BA] and Y ∈ [BC]
be such points, that |BX| = |BY | = 1

2(|BA| + |BC| − |AC|). Then |XY | 6 δ. Since the point
Y also lies on Ag, we have that |AB| 6 |AY |. Therefore |XB| 6 |XY | 6 δ. Hence

|AC| = |AB| + |BC| − 2|BX| > |AB| + |BC| − 2δ.

2

Lemma 10.2 Let g 6= 1 be an element of H and k be an integer number such that ||gk|| > 5δ.
Let A be an element of H and N be the real number such that |A, gkA| = ||gk|| + N . Then
A = gtv for some t ∈ Z and v ∈ H such that |v| 6

1
2N + 3δ + r(|g|).

Proof. Let B be a point on Agk nearest to A. Denote C = gkB, D = gkA. By Lemma 10.1, we
have

|AC| > |AB| + |BC| − 2δ

and
|DB| > |CD| + |BC| − 2δ.

Moreover, |BC| = ||gk|| > 5δ. Therefore, by Lemma 9.4, we get

|AD| > |AB| + |BC|+ |CD| − 6δ
= 2|AB| + |BC| − 6δ
= 2|AB| + ||gk|| − 6δ.

Hence, from the hypothesis we have |AB| 6
1
2N + 3δ. By Lemma 9.5 we are done. 2

Lemma 10.3 Let g be a nontrivial element of H with ||g|| > 5δ. Then the middle point of any
geodesic segment [X, gX], where X is a point of Γ(H,S), lies in the 5δ-neighborhood of the axis
Ag.

Proof. The point Y is the nearest to X on Ag. Denote X1 = gX, Y1 = gY . By Lemma 10.1,
we have

|XY1| > |XY | + |Y Y1| − 2δ

and
|X1Y | > |X1Y1| + |Y1Y | − 2δ.

Moreover, |Y Y1| = ||g|| > 5δ. Therefore, by Lemma 9.4 we get

2|XY | + |Y Y1| 6 |XX1| + 6δ. (19)

Let M be the middle point of the segment [XX1] and N be the middle point of the segment
[Y Y1]. Clearly N ∈ Ag. We will estimate the distance |NM |. Consider the geodesic rectangle
XMX1N . By the rectangle inequality we have
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|NM | + |XX1| 6 max{|XM | + |NX1|, |MX1| + |NX|} + 2δ

= max{1
2 |XX1| + |NX1|,

1
2 |XX1| + |NX|} + 2δ.

Note that |NX| 6 |XY | + |Y N | = |XY | + 1
2 |Y Y1|. Therefore from (19) we have |NX| 6

1
2 |XX1| + 3δ. Analogously |NX1| 6

1
2 |XX1| + 3δ. From this we deduce that |NM | 6 5δ. 2

Proposition 10.4 Let g and h be any elements of H such that ||g|| > 13δ, ||h|| > 13δ and
||gh|| > 5δ. Then the distance between the axes Ag and Ah is at most

max{13δ,
1

2
(||gh|| − ||g|| − ||h||) + 16δ}.

Proof. Let d be the distance between Ah and Ag. If d 6 13δ, we are done. So, assume that
d > 13δ. Let X and Y be points of Ah and Ag such that |XY | = d. It is obvious, that

|X, ghX| 6 |XY | + |Y, gY | + |gY, gX| + |gX, ghX| = d + ||g|| + d + ||h||.

By Lemmas 10.1 and 9.4, we have

|X, (gh)2X| > |XY | + |Y, gY | + |gY, gX| + |gX, ghX|

+|ghX, ghY | + |ghY, ghgY | + |ghgY, ghgX| + |ghgX, ghghX| − 22δ

= 2(d + ||g|| + d + ||h||) − 22δ.

Denote A = X, B = ghX and C = (gh)2X. Let M be the middle point of the geodesic segment
[AB]. Then M1 = ghM is the middle point of the geodesic segment (gh)[AB] connecting B and
C, and we have

|M,ghM | = |MM1| > |AC| − |AM | − |CM1| = |AC| − 1
2 |AB| − 1

2 |BC|

= |AC| − |AB| > d + ||g|| + d + ||h|| − 22δ.

By Lemma 10.3, M , as the middle point of the geodesic segment [X, ghX], lies at distance at most
5δ from the axis Agh. Therefore |M,ghM | 6 10δ + ||gh||. Hence d 6

1
2 (||gh||− ||g||− ||h||)+16δ.

2
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