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∗Group of Applied Optics and Image Processing

Dept. of Optics and Optometry, Universitat Politècnica de Catalunya
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Abstract—Eye fundus imaging is vital for modern ophthalmol-
ogy. Due to the acquisition process, fundus images often suffer
from blurring and uneven illumination. This hinders diagnosis
and the evolution assessment of a disease. We present a method
for fundus image deblurring by means of multichannel blind
deconvolution. It consists of a series of preprocessing steps to
adjust the images so they comply with the considered degradation
model, followed by the estimation of the point spread function,
and image deconvolution. Results show that our approach is
capable of significant resolution improvement in degraded retinal
images.

I. INTRODUCTION

Digital imaging of the eye fundus is widely used to diag-
nose and manage ophthalmologic disorders such as diabetic
retinopathy and age-related macular degeneration [1]. Fundus
images are captured using a conventional digital camera,
attached to a retinal camera body designed to image the eye
fundus in association with the optical system of the eye. Major
source of retinal image quality degradation are aberrations
of the eye, imperfections in the fundus camera optics, and
improper camera adjustment. The imaging procedure is usually
carried in two separate steps: Image acquisition and diagnostic
interpretation. Image quality is subjectively evaluated by the
person capturing the images and they can sometimes mistak-
enly accept a low quality image. A recent study by Abràmoff
et al. [2] using an automated system for detection of diabetic
retinopathy found that from 10000 exams 23% had insufficient
image quality.

In this paper we develop a practical strategy for retinal im-
age deblurring. The core of our proposal is based on an image
processing technique for restoration called blind deconvolution
(BD) [3]. The goal of BD is to recover the original scene from
a single or set of blurred images in the presence of a poorly
determined or unknown point spread function (PSF). The main
assumption is that blur can be described by a convolution of
a sharp image with the unknown PSF. There are basically
two groups of BD algorithms; one group that uses a single
input image (single-image blind deconvolution SBD) and the
other multiple images of the same object blurred in a different
way (multichannel blind deconvolution MBD). There are many
reliable SBD algorithms [4], however most of them require

that the blurred image be governed by relatively strong edges,
which is not case here. Therefore we have chosen MBD as a
suitable strategy for the restoration of blurred retinal images.

The paper is organized in the following way. Initially we
describe a general model for the image degradation which
encompasses blurring and uneven illumination, subsequently
we detail our approach which consists in an extensive pre-
processing stage followed by the PSF estimation and image
deconvolution. Finally we discuss a result of the image en-
hancement strategy and compare with a recent state-of-the-art
SBD method [5].

II. MATHEMATICAL MODEL OF IMAGE DEGRADATION

We assume two registered input images, z1 and z2, both
originating from an ideal sharp image u

z1 = u ∗ h1 + n1

z2 =
(
uk−1

)
∗ h2 + n2 , (1)

where ∗ is the standard convolution, hi are called convolution
kernels or point-spread functions (PSFs) and k is a function
accounting for relative local illumination change between
images z1 and z2. For pixels where no illumination changes
occur k ≈ 1. The noise ni is assumed Gaussian additive with
zero mean in both images. In our case, the PSFs comprise
all radiometric degradations described above except structural
changes in the eye. Despite the fact that we consider the PSFs
to vary in time between the two image acquisitions, we assume
them to be spatially invariant within each image.

III. ALGORITHM

In the input, the algorithm accepts two eye fundus images.
The images are processed in the following four steps:

1) Image registration
2) Compensation of uneven illumination
3) Segmentation of areas with structural changes
4) PSF estimation and Image deconvolution

The individual steps are detailed in the following subsections.
For illustration purposes we consider two color fundus images
acquired from a patient that suffered from age-related macular
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Fig. 1. Color eye fundus images affected by age-related macular degener-
ation. (a) Image z1 was captured seven months prior to (b) image z2. (c)
Registration of images z1 and z2 in checkerboard representation.

degeneration, which we denote hereafter by z1 and z2 and their
enhanced versions as u1 and u2. The images were captured
seven months apart from each other and are shown in Fig. 1.
They are color 24 bit-depth fundus images of size 1500×1230
digitized in TIFF format. This is a general example were both
images do not correspond exactly to the same object field, the
illumination distribution across both images is not exactly the
same, and there are some structural differences between them
given by the pathological development in the macula (centered
yellowish region).

A. Image registration

Image registration consists in the spatial alignment of two
or more images. Image registration techniques are usually

divided into two groups: intensity-based and feature-based
methods [6]. Intensity based methods have the drawback
of poor performance under varying illumination conditions.
Feature based methods are robust to such effects but rely on
accurate and repeatable extraction of the features. The retinal
vasculature is known to provide a stable set of features for
registration for the conditions of interest.

For registering the images we use the robust dual-bootstrap
iterative closest point algorithm [7]. The vessel branching
and crossover points are used as landmarks to register the
images.The registration algorithm starts from initial low-order
estimates that are accurate only in small image regions called
bootstrap regions. The transformation is then refined using
constraints in the region, and the bootstrap region is expanded
iteratively. The algorithm stops when the boot-strap region
expands to cover the overlap between the images, and uses
a 12-dimensional quadratic mapping that accounts for the
curvature of the retina. This registration algorithm is very
robust to local changes and low overlap between images as
demonstrated by its high success rate on test images with at
least one common landmark point and overlaps even as low
as 35% [7]. The pair of images after registration are shown
in Fig. 1(c) in checkerboard representation. For the following
subsection, we will consider only the overlapping area of both
registered fundus images as a region of interest (ROI).

B. Compensation of uneven illumination

Despite controlled conditions in retinal image acquisition,
there are many patient-dependent aspects that are difficult to
control and mainly affect the illumination component with
gradual non-uniform spatial variations [1]. Some of the con-
tributing factors are: (a) the curved surface of the retina. As
a consequence, all regions cannot be illuminated uniformly;
(b) Imaging requires either a naturally or an artificially dilated
pupil. However, the degree of dilation is highly variable across
patients; (c) Unexpected movements of the patients eye and
(d) presence of diseases. This effect hinders both quantitative
image analysis and the reliable operation of subsequent global
operators.

In our model, described by (1), the relative changes in
intensity between two fundus images of the same eye cannot
be accounted exclusively by convolution with different PSFs
and must be compensated. A number of general-purpose
techniques have been investigated to attenuate the variation of
illumination. However, most techniques, ranging from simple
histogram operations to more elaborate models, are oriented
towards single-image compensation [1]. Thus, no consistency
between a pair of images is guaranteed. This uneven illumi-
nation can be compensated by adjusting the intensity values
on one image to approximately match that of the other;
i.e. we simply compensate the relative changes of illumination
between the images so they meet the requirements from the
model. This can be carried out if the blurring is not too large
and the illumination changes smoothly, which is usually the
case for eye fundus images.
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Fig. 2. Intermediate outputs from the algorithm: (a) illumination compensation function k, (b) local quadratic difference ∆, (c) areas of structural change,
and (d) mask for avoiding areas with structural changes.

For the illumination compensation we use a sliding win-
dow procedure. This provides a simple and effective way to
estimate the smooth variation of illumination [8], [9]. To get
the compensation function k of our model (1), in the square
neighborhood of fixed width W j of each pixel j we minimize

kj = arg min
κ

∑
i∈W j

(
zi1 − κzi2

)2
, (2)

where z1 and z2 are the registered input images. By differ-
entiating (2) with respect to κ we obtain the expression for
kj :

kj =

∑
i∈W j zi1z

i
2∑

i∈W j zi2
2 . (3)

The interpretation of k from (2) is straightforward. If the
registered images z1 and z2 had neither illumination changes
nor structural changes, then k ≈ 1 throughout the common
object field. The reason why the computation by the sliding
window works is that illumination changes in fundus images
are smooth and can be considered locally constant, together
with the fact that convolution does not change the total
image energy. Since the sums in (3) can be computed in an
incremental way, the computation of k is very fast, with time
complexity proportional to the number of pixels.

The resulting k computed with a window 17 pixels wide
is shown in Fig. 2(a). The different shades of gray indicate
the average contrast and intensity difference between the two
images. From the image it can be seen that most areas have
similar intensity values except for the upper left part (dark
region), where image z2 is up to 30 percent darker. This is also
noticeable for the bottom-left quadrant (the pathological dam-
aged region) where the differences are not due to illumination
variation, but to morphological or structural changes, thus the
values have no meaning in terms of illumination compensation.

C. Segmentation of areas with structural changes

The pathological region is actually a structural change and
cannot be taken as illumination variation. To identify these

changes we computed the local quadratic difference from the
two images including illumination compensation as:

∆j =
∑
i∈W j

∣∣zi1 − kzi2∣∣2 . (4)

We highlight the fact that structural changes can be located
with this approach because the illumination varies smoothly,
whereas structural changes are often local and appear abruptly.
The interpretation of (4) is rather simple, the output is close to
zero where the illumination has been adequately compensated
and the opposite in areas where the images differ structurally.
The result, shown in Fig. 2(b), clearly reveals the existence
of regions that after illumination compensation still differ
significantly. If these regions appear clustered in the image,
one suspects they are probably caused by a source of variation
that is not related to illumination variation.These are most
likely related to pathological damage which is significant from
the clinical viewpoint. To better understand this result, in
Fig. 2(c) we show one of the retinal images in gray-scale
where the pixels related to structural changes are represented
in pseudo-color. This image constitutes an important output of
our algorithm. On the other hand, since these changes do not
fulfill our convolution model, they should be masked out in
order to correctly estimate the PSFs from both images. [10].

In our experiments, we applied Otsu’s thresholding
method [10] to automatically generate a mask from the differ-
ence image ∆ (Fig. 2(b)). In this way the regions that have
structurally changed are are not included in the minimization
routine. This is not critical because in practice there is enough
information in the remaining pixels to adequately estimate the
PSFs. The obtained mask is shown in Fig. 2(d).

D. PSF estimation and image deconvolution

For PSF estimation and image deconvolution we have
chosen one of the best working MBD methods [12]. Matlab
implementation of this method is available on the web of the
authors1. The algorithm can be viewed as a Bayesian maxi-

1http://zoi.utia.cas.cz/download



mum a posteriori estimation of the most probable sharp image
and blur kernels. For our purposes, we used a modification
of the original method that ignores regions affected by struc-
tural changes, which improves stability and precision of the
computation. This is similar to the solution proposed in [13]
within the super-resolution context. Without this modification,
represented by the mask m in (5), the algorithm does not work
reliably. The algorithm can be described as a minimization of
the functional:

arg min
u,h1,h2

1

2
||u ∗ h1 − z1||2 +

1

2
||m(u ∗ h2 − kz2)||2

+λu

∫
|∇u|+ λh||m(z1 ∗ h2 − kz2 ∗ h1)||2, (5)

h1, h2 ≥ 0 ,

with respect to the latent image u and blur kernels h1 and h2.
The first and second terms measure the difference between
the input blurred images and the searched image u blurred
by kernels h1 and h2. The size of this difference is measured
by L2 norm ||.|| and should be small for the correct solution.
Ideally, it should correspond to the noise variance in the given
image. Function k compensates for uneven illumination, as
described in Section III-B. The value of the masking function
m is one in the valid points (white in Fig. 2(d)) and zero in
the pixels where the eye fundus is significantly different; in
these pixels, we consider only the information from image z1.
The two remaining terms are regularization terms with positive
weighting constants λu and λh. The third term is nothing else
than the total variation of image u. It improves stability of the
minimization and from the statistical viewpoint incorporates
prior knowledge about the solution. The last term is a condition
linking the PSFs of both images, which also improves the
numerical stability of the minimization. For this procedure we
set λu = 1000 and λh = 10.

The functional is alternately minimized in the subspaces
corresponding to the image and the PSFs. The minimiza-
tion in the PSF subspace is equivalent to the solution of a
system of linear equations in the least squares sense with
the non-negativity constraint (in our implementation solved
by Matlab fmincon function). The deconvolution realized by
the minimization in the image subspace, is solved by half-
quadratic iterative scheme [14], replacing the total variation
by
∫ √
|∇u|2 + ε2 in order to achieve smoothness of the

functional for zero gradients.
The image deconvolution, that is the procedure to obtain the

enhanced versions of z1 and z2 consists in the following. The
minimization of (5) yields u1, h1, and h2. However, u2 (the
enhanced version of z2) is obtained by minimizing (5) once
more with fixed PSFs and masking z1 instead of z2. The en-
hanced RGB fundus image is obtained by estimating the PSF
from the green channel (being the one with highest contrast)
and subsequently deconvolving each channel independently.

IV. RESULTS

The ROIs for each image z1 and z2, which consist of patho-
logical area plus the unaltered surrounding area and blood

vessels, are shown in Fig. 3. Both images are slightly blurred
which hinders the possibility to properly resolve details. The
PSFs estimated from the minimization of (5) are shown in
figures 3(b) and 3(d). The difference in size of the PSFs
indicates that one image is more blurred than the other. In
Fig. 4(b) we show the enhanced version of z2 by our method.
There is a significant improvement in resolution evidenced
by the clear definition of the thinner blood vessels and the
small pathological structures in the center. To corroborate our
assumption that MBD methods are better suited for this type
of images, we tried to restore z2 with a recent SBD method
proposed in [5]. The result is shown in Fig. 4(a) and reveals
that this method does not follow the true nature of the blurring,
thus it is prone to produce a poor restoration. None of the
aforementioned fine structures are properly resolved in this
image. Finally, we show the color restored versions of z1 and
z2 in Fig. 5. The enhancement is much more noticeable in
color.
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Fig. 3. ROIs of retinal images (a) z1 and (c) z2, and their corresponding
estimated PSFs in (b) and (d), respectively. The enhanced version of z2 is
shown in Fig. 4(b).

V. CONCLUSIONS

In this paper we have presented a new approach for eye
fundus image deblurring based on MBD. We have verified,
that a pair of retinal images, belonging to the same eye,
contain enough common information to be restored with
the proposed method. The method consists of a series of
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Fig. 4. Enhanced version of z2 with (a) SBD method of [5] and (b) proposed
method. There is a significant resolution improvement in (b), compare with
the original in Fig. 3(c).

preprocessing steps to adjust the images so they comply with
the convolutional model, followed by the final stages of PSF
estimation and deconvolution. This approach leads to the
improvement in resolution of degraded retinal images, which
we have also compared with one of the most sophisticated
SBD algorithms [5]. While the initial findings are promising,
further tests are necessary.
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