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Abstract

The dynamics and stability of pipes conveying fluid y(x, 1
has been studied thoroughly in the last decades. In this L y

paper we study the stability in the Liapunov sense, of
a clamped-pinned pipe conveying fluid at a low speed. .
After describing the motion of the system by partial
differential equations we solve equations using finite

element method testing solutions by means of ANSYS, Figure 1. Pipeline
we analyze the characteristic equation and its eigenval-

ues in order to obtain the stability conditions.

asymptotic, nevertheless the study provides the neces-
sary stability condition for the original non-linear sys-
Key words tem
Stability, eigenvalues, pipe conveying fluid. The paper is structured as follows. Section 2 presents
a mathematical statement of the problem. Section 3
is devoted to analyze the stability of linear gyroscopic

1 Introduction N _ _ ~ system obtained in section 1. Section 4 presents a sim-
The dynamics and stability of pipes conveying fluid ation of the dynamic system using ANSYS.
has been studied thoroughly in the last decades see for

example [1; 2; 3].
Itis well known that the dynamical behaviour of pipes 2 Preliminaries
of a finite length depends strongly on the type of bound- The system under consideration is a straight, tight and
ary. We must distinguish between the type of supports of finite length pipeline, passing through it a fluid. The
(fixed, one end fixed, etc.) and their location (horizon- following assumptions are taken into account in the
tal, vertical). In this paper we refer to a one end fixed analysis of the system:
horizontal pipeline, respectively.
The dynamics of the system can be described by a par-
tial differential equation [4; 5]

i) Are ignored the effects of gravity, the coefficient
damping material, the shear strain and rotational
inertia

i) The pipeline is considered horizontal

Efg%{ + (mU? — T)%Jr ) iii) The pipe is inextensible

2me% + (my + mf)% —0 iv) The lateral movement af(z, t) is small, and with
* large length wave compared with the diameter of

o N the pipe, so that theory Euler-Bernoulli is applica-
Considering boundary conditions at ends of a clamped- ble for the description of vibration bending of the
pinned pipe we find approximate solution using pipe.

Galerkin’s methode obtaining as a result a linear gy- v |tignores the velocity distribution in the cross sec-
roscopic system possessing the properties of linear — tign of pipe.

Hamiltonian systems.

We compute the eigenvalues of this linear Hamilto-

nian system in order to study the stability. It is known The equation for a single span prestressed pipeline
that the stability of a linear Hamiltonian system is not where the fluid is transported is a function of the dis-



tancex and timet and is based on the beam theory: y(x,t)

o 52
Ela—;i + m,,a_;; = fone(@, 1) )

©Kpre

whereE] is the bending stiffness of the pip&n?),
m,, is the pipe mass per unit Iengtl%() and f;,; is an
inside force acting on the pipe. Figure 2. Boundary conditions

The internal fluid flow is approximated as a plug flow,
so all points of the fluid have the same velodityela-
tive to the pipe. This is a reasonable approximation for
a turbulent flow profile. Because of that we cant write y(@,t) = qi(t)

™ 2
rou sen—x + ga(t)sen—ux
the inside force as:

L L

Replacing the solution in the equation 5, we get:
d2y
fint = —myp—s (3)
dtQ x=Ut

EIq(t) (z—isen%m + go(t) 1627 sen%”x) +
wherem is the fluid mass per unit Iengtifﬁ() andU
is the fluid velocity (). (msU? = T) (—ql(t)z—isen%x — (t)‘%fsen%x) n

The internal fluid causes an hydrostatic pressure on,, .

the pipe wall 7U (@1 (t)F cos Ta + go(t) 7 cos Fx) +

(mp +my) (G1(t)senFx + ga(t)sen?tz) = 0 -
T=-AP 4
Mulltiplying by sen7¢ and sen‘ZLﬂg, respectively, we
where4; is the internal cross sectional area of the pipe obtain:
(m?) and P; is the hydrostatic pressure inside the pipe
(Pa).
Finally if we consic_igr that the totr—._ll acceleration. is L(mp+myp)gi(t) — EmyUda(t)+
equal to the composition of local, carioles and centrifu-

. ; o ) . 2 2
gal acceleration. The resulting equation is (1): (EIQ% _ (meQL T) ) a(t) =0
o'y 2 9%y I } g _ (8)
Elgs + (myU° —T) 55+ ) 5 (mp +my)Ga(t) — 3mpUdu(t)+

2 2
menggtJr(mermf)%:O \ .
(BIS — (msU? = T) 4 ) ax(t) = 0

The boundary conditions at ends of a clamped-pinned
pipe are given as:
The previous equation system can be written as matrix

form like:
y(0,t) =0, y(L,t) =0
2 2 M+ Bg+Cq=0
07y(0,t) _ 0. mr’ ULt g Y1)
ot 0x? oz
(6) Where gyroscopic lineal system is:
whereK,., is the stiffness of the rotational spring at the GGt Kr=0
right end. N
with

Applying Galerkin method and taking = 2 the ap-
proximate solution is: G=M1'?BM~Y?2 K =M12CMY2



Applied to our study is:

M71/2 —

S0, it remains:

with:
mt (mpU% —T)n?
Kv=Elors =51
8t 472

Introducing the vector:

<Z> - <x + :éx/Q)

and calculating the derivatives sfandy we foundz =
y — Gx/2, y = & + Gi/2 and considering that =
—G1 — Kz linearizing the system we get:

(5) = (" ) (})

The matrix A of this system is Hamiltonian because
QA is symmetrical, wher€) is antisymmetrical:

0 010
0 001
-1 000
0 -100

If we consider the following parameters:

——— (©)

the matrixG and K are written as:

G = 16m;f3 ((1) 01)

A—Lls 0
_ 2 2
K%( 0 8A—%5> (10)
Therefore, matrix4 is:
0alO0
—a0 01
A= b 00 a (11)
0 ¢c—a0
where:
a = 8myp3
b= —64m§62 — BA+ 3o (12)

c= —64m§62 — 168A + %65

The characteristic equation of the matrix is:
M (202 —b— )N+ (a®> +¢)(a®> +b) =0 (13)

that is a biquadratic equation, where we find the eigen-
values of the system:

N 4 —2a2 + b+ ¢+ v—8a2b — 8a2c — 2bc + b2 + ¢2
- 2
(14)

If we change the previous equation with the parame-
ters, we extract:

PR (256m§52 +178A — (1 + %) Bé) PRmE

165%A2 — (16 + %) B2AS + %6252 =0 (15

A1 £ BV

A==
2

(16)

with
A= —256m3B3% — 178A + (1+ &) 86
A2 = 65536m 3% + 8704m7 BA — (512 + 1928) m3 Bs+

22507 + (1+ 2 — 18) 6> + (30 — 22) A6

L2

(17



3 Stability Forb = —a? the Jordan form is
In this section we study the stability properties of lin-

ear dynamic systems representing the pipeline. Also, 00 0 0
we will present a detailed explanation of the effect of 00 0 0
the stabilization in terms of the bifurcation theory of 00+v3a2 —b 0
eigenvalues. 00 0 ~/3a2—b

Eigenvalues of the matrix (11) characterize the stabil-
ity of the Hamiltonian system. The system is stable if .

the eigenvalues lyes on the imaginary axe. To ensure stability we need the non-zero eigenvalues
Taking into account that the values in the system are lye in the imaginary axe we hada? — b < 0, Sob =
know only approximately, the matrid in the system  —a? is out of stability space.
can be considered as a family of matrices depending on Atthe points(a, —a?, ¢) we have two cases depending
parameters, b, c in a neighborhood of a fixed poipg, onc be equal or not te-a?
that permit us to study the stability border. Forc # —a? the Jordan form is
Stability conditions requires that the roots obtained in
(16), X2 = M are real and negative. Impos- 01 0 0
ing these conditi%ns we can determine the stability zone 00 0 0
. 00+3a2—-c¢ 0
in the parameter space. 5
We observe that the points= (a, b, ¢) such that 00 0 —v3a®-—c
5 Forc = —a? the Jordan form is
, 2a —2b—c:0}7 (18)
(a*+c)(a*+b)=0 00 0 0
00 0 0
the characteristic polynomial ist, 00+3a2—-c 0
If « # 0 the Jordan form ofl is 00 0 —V3a2 —¢
0100 Analogously, the case = a? is out of the stability
0010 space
0001 For the casé # —a? andc # —a? we have singular-
0000 ities of the typed? in the boundary of stability.

It remains to study the case that no eigenvalue is zero
The roots ofu®>+(2a% —b—c)u+(a®+c)(a®+b) = 0,

If a = 0 the Jordan form ofl is .
are real and negative when

8(1)(1)8 20> —b—c>0
0000 (a®>+¢)(a®>+b) >0 (20)
0000 (2a%2 —b—c)? > 4(a® + ¢)(a® + b)

In the casg2a® — b — ¢)? = 4(a® + c)(a® + b) the
At these points we have singularities of the tydey eigenvalues argé = +iv/2a2 — b — ¢ = +iw double.

0° on the stability boundary. It is easy to observe that raf} — (+iw)I) = 3 so
Also we obtain the eigenvalue 0 at the points such that the Jordan form is
(a,b,c)
iwl 0 O
(a®>+¢)(a®+b) =0 0Oiw 0 O
2ag(— b—c#0 (19) 00 —iw 1
00 0 —iw

At the points(a, b, —a?) we have two possibilities de-
pending orb if it is equal or not to—a?
Forb # —a? the Jordan formis

At the points(a, b, c) with 2a®> — b — ¢ > 0, (a® +
c)(a®>+b) > 0and(2a® —b—c)? = 4(a®+c)(a® +b)
we have singularities of the typeiw?.

The last case

01 0 0
00 0 0 202 —b—c>0
00+v3a?—b 0 (a®> +c)(a?+b) >0 (21)

00 0 —V3a2—-b (2a% —b—c)? > 4(a® + ¢)(a® + b)



determined the stability point$a,b,c) remaining
within the area bounded by the above singularities.
Removing the variable change we know that:

_ _ 8my
T Tlmptm)
b= —64m% EIx* (mypU4A;Py)n?
T L2(mg+mp)? - LE(mg+myp) L2(mg+myp)
_64"L$‘ 16EIr? 8(mf U2+A7,Pi)7r2

c= - LA (myg+myp) +

L2(mg+myp)? L3(my+myp)
Taking as a constant parametérs= 1000mm, I =
2,185 - 106, A; = 25007 due to the geometry of the

pipe andm; = 2,57 - 10~%-L2 assuming the fluid as

Applying the inequalities (22) we found that the solu-
tion is unstable.
The values of£ andm,, of the PE pipe are:

N
E=9,174—
mm
T
my=1,91-1070=-1
mm

Applying the inequalities (22) we found that the solu-

water. We also suppose that the study is applied to thetion is unstable.

inside wall of the pipe s& at these points are zero.

Therefore the values, by c are:

o= 27.10—8
(2,5m-10=64mp)
2,510 P; =3
(2,510~ 6 4mp)

2,185-10" 6 Ert

b —4.10716 72
(2,510~ 64 mp)

T (2,5m107 6 4mp)2

—4.10—16 72

_ 21075 p; =3
T (25710~ 64mp)?2

(2,510~ 64+ mp)

34,96-10 6 prt
(2,6m:10=6+mp)

c

That permit us to obtain the following relation de-
pending only onm,,, £ and P;:

__ 161077 +37.145 - 107372 E — 2.527P; > 0
2.5 - 10=67 + my ‘ ‘ ‘
15.27752 - 10~ 472 FE2? + P? — 17.48874 - 10~ 'nEP; > 0

16-10712 s 2
(m 87145107 B = 2.523) >
47*(76.3877 - 10 °n°E* — 87.4437 - 10 > EP;+

5-1072P?)
(22)

We make this study to show the stability of pipes with
different materials assuming in all of them that the fluid

The values of® andm,, of the Concrete pipe are:

N
E =221,203——
mm

T
my = 4,40 1070
mm

Applying the inequalities (22) we found that the solu-
tion is stable.

We observe that the case of PVC pipe is the furthest
away from stability zone.

4 Simulation

To demonstrate the stabilities found in the previous
chapter we calculate vibration characteristics of a pipe
conveying fluid using a Finite Element package called
ANSYS. To determinate the vibration characteristics
we used modal analysis, with this analysis you find
natural frequencies and mode shapes which are impor-
tant parameters in the design of a structure for dynamic
studies.

In the following pictures it is shown the performance
of the first and the second shapes and the natural fre-
quencies of them.

transported is water and causes a constant pressure on

its walls of 4 bar. The geometrical conditions of the
pipe are the inside diameter equal® mm and the
thickness of the pipe which i8 mm. The materials
chosen are PVC, Polyethylene and Concrete.

The values o andm,, of the PVC pipe are:

E = 30,581 —
mm

T
my = 2,76-1076 —~
mm
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Figure 3. First shape of PVC Figure 5. First shape of Concrete
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Figure 4. First shape of Polyethylene Figure 6. Second shape of PVC

As seen in picturg, 4 and5 the lowest natural fre-  As seen in picturé, 7 and8 the lowest natural fre-
quency is the concrete pipe (it is not write on the picture quency is the concrete pipe (0,0238 Hz) and the biggest
because is zero) and the biggest one is the Polyethylen@ne is the PVC pipe2d, 043 Hz) but the greater dis-
pipe (19, 435 Hz) but the greater displacementofixis ~ Placement ofz axis is the PE pipe. This combina-
is the PVC pipe. This combination result in instabil- tion result in instability of Polyethylene and PVC pipe

ity of Polyethylene and PVC pipe whereas in Concrete Whereas in Concrete pipe is stable.
pipe is stable.
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Figure 7. Second shape of Polyethylene
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Figure 8. Second shape of Concrete

5 Conclusion

In this paper we have compared the calculations and
the simulation of typical materials for a pipe used in
public works.

We have shown that the dynamics and stability of
pipes conveying fluid not only depends on the boundary
conditions but it is also strongly important the material
of the pipe and the pressure produced by the fluid.
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