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Abstract
The dynamics and stability of pipes conveying fluid

has been studied thoroughly in the last decades. In this
paper we study the stability in the Liapunov sense, of
a clamped-pinned pipe conveying fluid at a low speed.
After describing the motion of the system by partial
differential equations we solve equations using finite
element method testing solutions by means of ANSYS,
we analyze the characteristic equation and its eigenval-
ues in order to obtain the stability conditions.
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1 Introduction
The dynamics and stability of pipes conveying fluid

has been studied thoroughly in the last decades see for
example [1; 2; 3].
It is well known that the dynamical behaviour of pipes

of a finite length depends strongly on the type of bound-
ary. We must distinguish between the type of supports
(fixed, one end fixed, etc.) and their location (horizon-
tal, vertical). In this paper we refer to a one end fixed
horizontal pipeline, respectively.
The dynamics of the system can be described by a par-

tial differential equation [4; 5]

EI ∂4y
∂x4 + (mfU

2 − T ) ∂
2y

∂x2+

2mfU
∂2y
∂x∂t + (mp +mf )

∂2y
∂t2 = 0

(1)

Considering boundary conditions at ends of a clamped-
pinned pipe we find approximate solution using
Galerkin’s methode obtaining as a result a linear gy-
roscopic system possessing the properties of linear
Hamiltonian systems.
We compute the eigenvalues of this linear Hamilto-

nian system in order to study the stability. It is known
that the stability of a linear Hamiltonian system is not

Figure 1. Pipeline

asymptotic, nevertheless the study provides the neces-
sary stability condition for the original non-linear sys-
tem
The paper is structured as follows. Section 2 presents

a mathematical statement of the problem. Section 3
is devoted to analyze the stability of linear gyroscopic
system obtained in section 1. Section 4 presents a sim-
ulation of the dynamic system using ANSYS.

2 Preliminaries
The system under consideration is a straight, tight and

of finite length pipeline, passing through it a fluid. The
following assumptions are taken into account in the
analysis of the system:

i) Are ignored the effects of gravity, the coefficient
damping material, the shear strain and rotational
inertia

ii) The pipeline is considered horizontal
iii) The pipe is inextensible
iv) The lateral movement ofy(x, t) is small, and with

large length wave compared with the diameter of
the pipe, so that theory Euler-Bernoulli is applica-
ble for the description of vibration bending of the
pipe.

v) It ignores the velocity distribution in the cross sec-
tion of pipe.

The equation for a single span prestressed pipeline
where the fluid is transported is a function of the dis-



tancex and timet and is based on the beam theory:

EI
∂4y

∂x4
+mp

∂2y

∂x2
= fint(x, t) (2)

whereEI is the bending stiffness of the pipe (Nm2),
mp is the pipe mass per unit length (kg

m ) andfint is an
inside force acting on the pipe.

The internal fluid flow is approximated as a plug flow,
so all points of the fluid have the same velocityU rela-
tive to the pipe. This is a reasonable approximation for
a turbulent flow profile. Because of that we cant write
the inside force as:

fint = −mf
d2y

dt2

∣

∣

∣

∣

x=Ut

(3)

wheremf is the fluid mass per unit length (kg
m ) andU

is the fluid velocity (ms ).

The internal fluid causes an hydrostatic pressure on
the pipe wall.

T = −AiPi (4)

whereAi is the internal cross sectional area of the pipe
(m2) andPi is the hydrostatic pressure inside the pipe
(Pa).
Finally if we consider that the total acceleration is

equal to the composition of local, carioles and centrifu-
gal acceleration. The resulting equation is (1):

EI ∂4y
∂x4 + (mfU

2 − T ) ∂
2y

∂x2+

2mfU
∂2y
∂x∂t + (mp +mf )

∂2y
∂t2 = 0

(5)

The boundary conditions at ends of a clamped-pinned
pipe are given as:

y(0, t) = 0, y(L, t) = 0

∂2y(0, t)

∂t
= 0, EI

∂2y(L, t)

∂x2
= −Krs

∂y(L, t)

∂x
(6)

whereKrs is the stiffness of the rotational spring at the
right end.

Applying Galerkin method and takingn = 2 the ap-
proximate solution is:

Figure 2. Boundary conditions

y(x, t) = q1(t)sen
π

L
x+ q2(t)sen

2π

L
x

Replacing the solution in the equation 5, we get:

EIq1(t)
(

π4

L4 senπ
Lx+ q2(t)

16π4

L4 sen2π
L x

)

+

(mfU
2 − T )

(

−q1(t)
π2

L2 senπ
Lx− q2(t)

4π2

L2 sen2π
L x

)

+

2mfU
(

q̇1(t)
π
L cos π

Lx+ q̇2(t)
2π
L cos 2π

L x
)

+

(mp +mf)
(

q̈1(t)senπ
Lx+ q̈2(t)sen2π

L x
)

= 0
(7)

Multiplying by senπ
Lξ and sen2πL ξ, respectively, we

obtain:

L
2 (mp +mf )q̈1(t)− 8

3mfUq̇2(t)+

(

EI π4

2L3 − (mfU
2
−T )π2

2L

)

q1(t) = 0

L
2 (mp +mf )q̈2(t)− 8

3mfUq̇1(t)+

(

EI 8π4

L3 − (mfU
2 − T )4π

2

L2

)

q2(t) = 0

(8)

The previous equation system can be written as matrix
form like:

Mq̈ +Bq̇ + Cq = 0

Where gyroscopic lineal system is:

ẍ+Gẋ+Kx = 0

with

G = M−1/2BM−1/2, K = M−1/2CM−1/2.



Applied to our study is:

M−1/2 =
1

√

L
2 (mp +mf)

(

1 0
0 1

)

so, it remains:

G =
16mf

L(mf +mp)

(

0 −1
1 0

)

K =
2

L(mf +mp)

(

K1 0
0 K2

)

with:

K1 = EI
π4

2L3
− (mfU

2 − T )π2

2L

K2 = EI
8π4

L3
− (mfU

2 − T )
4π2

L2

Introducing the vector:

(

x
y

)

=

(

x
ẋ+Gx/2

)

and calculating the derivatives ofx andy we foundẋ =
y − Gx/2, ẏ = ẍ + Gẋ/2 and considering thaẗx =
−Gẋ−Kx linearizing the system we get:

(

ẋ
ẏ

)

=

(

−G/2 I2
G2/4−K −G/2

)(

x
y

)

The matrixA of this system is Hamiltonian because
QA is symmetrical, whereQ is antisymmetrical:

Q =









0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0









If we consider the following parameters:

Λ =
EIπ4

L3

δ = (mfU
2 − T )

π2

L

β =
1

L(mf +mp)
(9)

the matrixG andK are written as:

G = 16mfβ

(

0 −1
1 0

)

K = 2β

(

1
2Λ− 1

2δ 0
0 8Λ− 4

Lδ

)

(10)

Therefore, matrixA is:

A =









0 a 1 0
−a 0 0 1
b 0 0 a
0 c −a 0









(11)

where:

a = 8mfβ

b = −64m2
fβ

2 − βΛ + βδ

c = −64m2
fβ

2 − 16βΛ + 8
Lβδ

(12)

The characteristic equation of the matrix is:

λ4 + (2a2 − b− c)λ2 + (a2 + c)(a2 + b) = 0 (13)

that is a biquadratic equation, where we find the eigen-
values of the system:

λ = ±

√

−2a2 + b+ c±
√
−8a2b− 8a2c− 2bc+ b2 + c2

2

(14)

If we change the previous equation with the parame-
ters, we extract:

λ4 +

(

256m2
fβ

2 + 17βΛ−
(

1 +
8

L

)

βδ

)

λ2+

16β2Λ2 −
(

16 +
8

L

)

β2Λδ +
8

L
β2δ2 = 0 (15)

λ = ±

√

λ1 ± β
√
λ2

2
(16)

with

λ1 = −256m2
fβ

2 − 17βΛ +
(

1 + 8
L

)

βδ

λ2 = 65536m4
fβ

2 + 8704m2
fβΛ−

(

512 + 4096
L

)

m2
fβδ+

225Λ2 +
(

1 + 64
L2 − 16

L

)

δ2 +
(

30− 240
L

)

Λδ
(17)



3 Stability
In this section we study the stability properties of lin-

ear dynamic systems representing the pipeline. Also,
we will present a detailed explanation of the effect of
the stabilization in terms of the bifurcation theory of
eigenvalues.
Eigenvalues of the matrix (11) characterize the stabil-

ity of the Hamiltonian system. The system is stable if
the eigenvalues lyes on the imaginary axe.
Taking into account that the values in the system are

know only approximately, the matrixA in the system
can be considered as a family of matrices depending on
parametersa, b, c in a neighborhood of a fixed pointp0,
that permit us to study the stability border.
Stability conditions requires that the roots obtained in

(16),λ2 =
λ1 ± β

√
λ2

2
are real and negative. Impos-

ing these conditions we can determine the stability zone
in the parameter space.
We observe that the pointsp = (a, b, c) such that

2a2 − b− c = 0
(a2 + c)(a2 + b) = 0

}

, (18)

the characteristic polynomial isλ4,
If a 6= 0 the Jordan form ofA is









0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0









If a = 0 the Jordan form ofA is









0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0









At these points we have singularities of the type04 y
03 on the stability boundary.
Also we obtain the eigenvalue 0 at the points such that
(a, b, c)

(a2 + c)(a2 + b) = 0
2a2 − b− c 6= 0

}

(19)

At the points(a, b,−a2) we have two possibilities de-
pending onb if it is equal or not to−a2

For b 6= −a2 the Jordan form is









0 1 0 0
0 0 0 0

0 0
√
3a2 − b 0

0 0 0 −
√
3a2 − b









For b = −a2 the Jordan form is









0 0 0 0
0 0 0 0

0 0
√
3a2 − b 0

0 0 0 −
√
3a2 − b









.
To ensure stability we need the non-zero eigenvalues

lye in the imaginary axe we have3a2 − b < 0, sob =
−a2 is out of stability space.
At the points(a,−a2, c) we have two cases depending

on c be equal or not to−a2

For c 6= −a2 the Jordan form is









0 1 0 0
0 0 0 0

0 0
√
3a2 − c 0

0 0 0 −
√
3a2 − c









For c = −a2 the Jordan form is









0 0 0 0
0 0 0 0

0 0
√
3a2 − c 0

0 0 0 −
√
3a2 − c









Analogously, the casec = a2 is out of the stability
space
For the caseb 6= −a2 andc 6= −a2 we have singular-

ities of the type02 in the boundary of stability.
It remains to study the case that no eigenvalue is zero
The roots ofµ2+(2a2−b−c)µ+(a2+c)(a2+b) = 0,

are real and negative when

2a2 − b− c > 0
(a2 + c)(a2 + b) > 0
(2a2 − b− c)2 ≥ 4(a2 + c)(a2 + b)







(20)

In the case(2a2 − b − c)2 = 4(a2 + c)(a2 + b) the
eigenvalues areλ = ±i

√
2a2 − b− c = ±iω double.

It is easy to observe that rank(A − (±iω)I) = 3 so
the Jordan form is









iω 1 0 0
0 iω 0 0
0 0 −iω 1
0 0 0 −iω









At the points(a, b, c) with 2a2 − b − c > 0, (a2 +
c)(a2+ b) > 0 and(2a2− b− c)2 = 4(a2+ c)(a2+ b)
we have singularities of the type±iω2.
The last case

2a2 − b− c > 0
(a2 + c)(a2 + b) > 0
(2a2 − b− c)2 > 4(a2 + c)(a2 + b)







(21)



determined the stability points(a, b, c) remaining
within the area bounded by the above singularities.
Removing the variable change we know that:

a =
8mf

L(mf+mp)

b =
−64m2

f

L2(mf+mp)2
− EIπ4

L4(mf+mp)
+

(mfU2+AiPi)π
2

L2(mf+mp)

c =
−64m2

f

L2(mf+mp)2
− 16EIπ4

L4(mf+mp)
+

8(mfU2+AiPi)π
2

L3(mf+mp)

Taking as a constant parametersL = 1000mm, I =
2, 185 · 106, Ai = 2500π due to the geometry of the
pipe andmf = 2, 5π · 10−6 Tn

mm assuming the fluid as
water. We also suppose that the study is applied to the
inside wall of the pipe soU at these points are zero.

Therefore the valuesa, b y c are:

a = 2π·10−8

(2,5π·10−6+mp)

b = −4·10−16π2

(2,5π·10−6+mp)2
−

2,185·10−6Eπ4

(2,5π·10−6+mp)
+

2,5·10−3Piπ
3

(2,5π·10−6+mp)

c = −4·10−16π2

(2,5π·10−6+mp)2
−

34,96·10−6Eπ4

(2,5π·10−6+mp)
+

2·10−5Piπ
3

(2,5π·10−6+mp)

That permit us to obtain the following relation de-
pending only onmp, E andPi:

16 · 10−13

2.5 · 10−6π +mp

+ 37.145 · 10−3π2E − 2.52πPi > 0

15.27752 · 10−4π2E2 + P 2
i − 17.48874 · 10−1πEPi > 0

(

16 · 10−13

2.5 · 10−6π +mp

+ 37.145 · 10−3πE − 2.52Pi

)2

>

4π2(76.3877 · 10−6π2E2 − 87.4437 · 10−3πEPi+

5 · 10−2P 2
i )

(22)

We make this study to show the stability of pipes with
different materials assuming in all of them that the fluid
transported is water and causes a constant pressure on
its walls of 4 bar. The geometrical conditions of the
pipe are the inside diameter equal to50 mm and the
thickness of the pipe which is6 mm. The materials
chosen are PVC, Polyethylene and Concrete.
The values ofE andmp of the PVC pipe are:

E = 30, 581
N

mm2

mp = 2, 76 · 10−6 Tn

mm

Applying the inequalities (22) we found that the solu-
tion is unstable.
The values ofE andmp of the PE pipe are:

E = 9, 174
N

mm2

mp = 1, 91 · 10−6 Tn

mm

Applying the inequalities (22) we found that the solu-
tion is unstable.
The values ofE andmp of the Concrete pipe are:

E = 221, 203
N

mm2

mp = 4, 40 · 10−6 Tn

mm

Applying the inequalities (22) we found that the solu-
tion is stable.
We observe that the case of PVC pipe is the furthest

away from stability zone.

4 Simulation
To demonstrate the stabilities found in the previous

chapter we calculate vibration characteristics of a pipe
conveying fluid using a Finite Element package called
ANSYS. To determinate the vibration characteristics
we used modal analysis, with this analysis you find
natural frequencies and mode shapes which are impor-
tant parameters in the design of a structure for dynamic
studies.
In the following pictures it is shown the performance

of the first and the second shapes and the natural fre-
quencies of them.



Figure 3. First shape of PVC

Figure 4. First shape of Polyethylene

As seen in picture3, 4 and5 the lowest natural fre-
quency is the concrete pipe (it is not write on the picture
because is zero) and the biggest one is the Polyethylene
pipe (19, 435Hz) but the greater displacement ofx axis
is the PVC pipe. This combination result in instabil-
ity of Polyethylene and PVC pipe whereas in Concrete
pipe is stable.

Figure 5. First shape of Concrete

Figure 6. Second shape of PVC

As seen in picture6, 7 and8 the lowest natural fre-
quency is the concrete pipe (0,0238 Hz) and the biggest
one is the PVC pipe (24, 043 Hz) but the greater dis-
placement ofx axis is the PE pipe. This combina-
tion result in instability of Polyethylene and PVC pipe
whereas in Concrete pipe is stable.



Figure 7. Second shape of Polyethylene

Figure 8. Second shape of Concrete

5 Conclusion
In this paper we have compared the calculations and

the simulation of typical materials for a pipe used in
public works.
We have shown that the dynamics and stability of

pipes conveying fluid not only depends on the boundary
conditions but it is also strongly important the material
of the pipe and the pressure produced by the fluid.
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