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ABSTRACT   

The energy distribution between the distance and near images formed in a model eye by three different apodized 
diffractive multifocal intraocular lenses (IOLs) is experimentally determined in an optical bench. The model eye has an 
artificial cornea with positive spherical aberration (SA) similar to human cornea. The level of SA upon the IOL, which is 
pupil size dependent, is controlled using a Hartmann-Shack wave sensor. The energy of the distance and near images as 
a function of the pupil size is experimentally obtained from image analysis. All three IOLs have the same base refractive 
power (20D) but different designs (aspheric, spherical) and add powers (+4.0 D, +3.0 D). The results show that in all the 
cases, the energy efficiency of the distance image decreases for large pupils, in contrast with the theoretical and 
simulated results that only consider the diffractive profile of the lens. As for the near image, since the diffractive zone 
responsible for the formation of this image has the same apodization factor in the spherical and aspheric lenses and the 
apertures involved are small (and so the level of SA), the results turn out to be similar for all the three IOL designs. 
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1. INTRODUCTION  
The crystalline lens in the eye provides the ability of focusing objects at different distances in a process called 
accommodation. This lens grows throughout life and increases in size and rigidity, causing the loss of the 
accommodation capacity (presbyopia) around the 45-50 years and later the loss of transparency (cataracts). Cataract is 
the most common cause of visual impairment in the world [1]; the surgical treatment of cataract involves the extraction 
and replacement of the crystalline by an intraocular lens (IOL).  

Nowadays the implantation of diffractive multifocal intraocular lenses (DMIOLs) is a common procedure intended to 
avoid the spectacle dependence in near vision. The DMIOLs uses the base lens curvature and the zero (m=0) and first 
(m=1) diffraction orders to achieve two focal points (often referred as to optical powers) that corresponds to the far and 
near foci respectively [2], [3]. These designs allow the pseudophakic eye to correctly focus at different distances but 
have an inherent drawback: the focused retinal image formed by one of the powers of the DMIOLs is always overlaid by 
an out of focus image from the other lens power. This effect may lead to visually disturbing phenomena such as halos 
and/or glare perceptions [4] depending on the illumination conditions, the axial distance between the two images and 
their relative energy distribution. For these reasons, the contrast sensitivity in eyes implanted with DMIOLs may be 
worse than those implanted with monofocal IOLs [5]. To fully understand the nature of these effects it is interesting to 
characterize in a test bench [6] the optical performance of these IOLs. The Point Spread Function and Modulation 
Transfer Function are metrics widely used in other works to characterize the optical quality of different IOLs [7][8]. It is 
less common, however, to analyze the energy distribution between the distance and near images and its variation with the 
pupil diameter. The energy distribution is an optical quality feature that is especially important in the case of the 
apodized diffractive multifocal intraocular lenses (ADMIOLs) like the AcrySof® ResTOR® (Alcon, Fort Worth, Texas, 
USA), which are specifically designed with a twofold purpose: to reduce the glare and halo phenomena and, in addition 
to this, to have an increasing distance-dominant behavior for large pupil sizes. The latter implies to make the energy 
distribution between the distance and near images dependent on the eye pupil. Furthermore, some of these IOLs have 
aspheric surfaces, and there is a great interest to determine in a test bench [9][10] and in clinical studies [11][12][13] the 
advantages of this design versus the spherical one, particularly when some studies have shown little or no benefit of 
aspheric IOLs operating with small pupils [13][14]. 

In this work the energy balance between distance and near images of ADMIOLs of different design (aspheric, spherical) 
and add powers (+4.0 D, +3.0 D), is experimentally obtained as a function of the pupil size in a test bench. The                                                         * francisco.alba-bueno@upc.edu Tel 937398678 Fax 937398301 
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By setting h0=1.3 µm [16] in Equation (4) the value of αi at the first diffractive zone is α0=0.51, which is close to half 
wave. The apodization of the diffractive profile of the MDIOLs implies that the value of αi progressively decreases from 
the center to the periphery of the diffractive zone, which has important implications on how the light is distributed 
between the m=0 (distance power) and m=1 (near power) diffraction orders as a function of the pupil aperture or, 
equivalently, as a function of the number of diffractive rings that are illuminated. 
 
If αi were constant for all the rings, the diffraction throughput efficiency (TE) of the m=0 and m=1 orders would be given 
by [21]: 
 

TEm=0,1 = sinc2 (m −α i ) .     (5) 

However, since the value of αi varies with the radius, the TE for each αi (TEm=0,1
i ) has to be weighted by a factor that 

corresponds to the ith-diffractive ring area. Therefore, the energy that the diffractive part of the IOL would divert from 
an incident plane wave into the m=0 and m=1 diffraction orders is calculated by means of linear combinations of the 
weighted contributions of the rings: 

   Im=0
diffractive = cte ⋅ Ai ⋅TEm=0

i

i=1

n

∑  ,     (6) 

   Im=1
diffractive = cte ⋅ Ai ⋅TEm=1

i

i=1

n

∑   ,     (7) 

where cte is a proportionality constant and n is the number of diffractive rings of area Ai that are illuminated and thus are 
taking part on the diffraction process.  
 
With a reduced pupil aperture for which the IOL only operates with the first diffractive zone (i.e., αi=α0 ) there is nearly 
equal diffraction throughput efficiencies for the distance (TEm = 0

0 = 0.38 ) and near (TEm =1
0 = 0.43 ) powers. With larger 

pupils, more diffractive rings are illuminated but the progressive reduction of the phase shift of the waves <as they pass 
through the outer diffractive rings implies that TEm = 0

i > TEm =1
i , and according to Equations (6) and (7) the energy sent to 

the distance power (m=0) becomes reinforced at the expenses of the near power (m=1). 
In the case of the purely refractive region of the ADMIOL, the light goes exclusively to the distance power i.e. 
TEm = 0

refractive = 1 , and therefore the energy is simply: 
 
   Im= 0

refractive = cte ⋅ Arefractive ⋅TEm= 0
refractive   ,    (8) 

where Arefractive  is the area of the illuminated refractive region of the ADMIOL. 
Then, the amount of energy sent to either the distance and near powers strongly depend on the size of the pupil or, 
equivalently, on the size of the illuminated area of the IOL (referred from now on as to IOL-pupil) and can be calculated 
as: 
   Im= 0 = Im= 0

diffractive + Im= 0
refractive   ,     (9) 

   Im=1 = Im=1
diffractive    ,      (10) 

which can be expressed in terms of energy efficiency as: 

   
Im=0

I IOL
total    ,       (11) 

   
Im=1

I IOL
total   ,        (12) 

where I IOL
total  is the total energy transmitted through the whole IOL aperture. This energy is proportional to the area of the 

IOL aperture AIOL provided that any loss of energy (for instance caused by scattering in the diffractive steps) [22] is 
neglected:  
   I IOL

total = cte ⋅ AIOL   .      (13) 
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pupil diameters (IOL-pupils of ~3.6 mm for the spherical and ~4.2 mm for the aspheric). In these conditions, which 
correspond to reduced levels of SA upon the IOL, the maximum energy efficiency achieved is around of the 40% for the 
spherical and 60% for the aspheric. For larger pupils when the contribution of the refractive part of the IOLs to the 
distance image is gaining importance, there is a clear reduction of the energy efficiency for both IOLs, in contrast with 
the theoretically predicted distance dominant behavior of the Acrysof ReSTOR IOLs plotted in Fig. 2. Again, the results 
obtained with the aspheric ADMIOLs of +4.0D and +3.0 D turn out to be quite similar 
As for the distance image and large pupils, the significant differences that we have found between the experimental 
results and the theoretical ones put into question the theoretical distance dominant behavior of the ADMIOLs in the 
presence of SA. Our results show that most of the additional energy available for the distance image when the EP 
diameter increases, does not end up in the pinhole image but in the background. This adverse effect is even worse in the 
case of the spherical multifocal IOL that cannot compensate for properly the SA produced by the model eye. 

4. CONCLUSIONS 
The energy distribution of the distance and near images formed by either spherical or aspheric AMDIOLs or aspheric 
AMDIOLs of different add power in a model eye, has been characterized as a function of the pupil diameter. 
Measurements of monofocal spherical and aspheric IOLs put into evidence the influence of the level of SA in the relative 
energy of the images formed by the IOL. In the case of the ADMIOLs and for the distance image, the results show that 
with large pupils the level of SA upon the IOLs is too high to correctly focus the available energy on the image. This 
effect occurs even for the ADMIOLs with aspheric design (SN6AD3 and SN6AD1) and thus, in contrast with the 
theoretical predictions, there is a strong reduction of the relative energy of the images. In the case of the near image, 
similar results are obtained with all types of ADMIOLs, which is more likely due to the fact that they share the same 
design of the diffractive part, and the apertures involved in the near image formation are always small and so is the level 
of SA upon the IOL. 
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