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Abstract—Log-based Hardware Transactional Memory
(HTM) systems offer an elegant solution to handle specula-
tive data that overflow transactional L1 caches. By keeping
the pre-transactional values on a software-resident log,
speculative values can be safely moved across the memory
hierarchy, without requiring expensive searches on L1
misses or commits. Unfortunately, software logging incurs
significant overheads that may affect the performance of
applications with large transactions.

In this paper, we present selective logging, a novel
mechanism that adds to the software-resident log only the
speculatively modified lines that overflow the transactional
L1 cache. In particular, we present how two distinct
HTM systems can combine selective logging with built-
in transactional caches to improve on their performance.
Our evaluation shows that selective logging reduces the
latency of transactional stores, speeds up the abort recov-
ery of long transactions and increases the utilization of
transactional caches. What is more, our studies show that
selective logging provides more flexibility, as it supports
different conflict management strategies.

Keywords-Selective logging, log-based HTM systems,
FASTM-SL, SPECTM

I. INTRODUCTION

Data version management (VM) is one of the key

aspects of Hardware Transactional Memory (HTM)

systems that employ speculation to execute transac-

tions [12]. This mechanism defines how and where the

values generated within a transaction are kept, as well as

what actions must be satisfied at commit and abort time.

Thus, the VM strategy followed when implementing

an HTM system directly impacts the performance of

transactional applications and the complexity of the

hardware design [4].

A high-performance HTM system must accelerate

transactions of any size or duration. To this end, un-

bounded HTM systems incorporate hardware support to

maintain overflowing data on the side. Log-based HTM

systems—those that store transactional modifications

in-place in memory while they keep pre-transactional

values on a software-resident log [20]—are widely

accepted as one of the best VM alternatives to handle

the transactional state because they strike a delicate

balance between complexity, hardware cost and perfor-

mance [2], [3], [13], [27].

Conventional logging mechanisms face three main

challenges that may slow down transactional execu-

tion. First, writing pre-transactional values to the log

always before a transactional store enlarges the latency

of transactional stores—speculative values cannot be

written in memory until the old data is logged. Second,

the software log is maintained in cacheable memory,

which reduces the buffering capacity of the transac-

tional caches—in other words, the logging mechanism

increases the possibilities of evicting transactional data.

Third, in log-based HTM systems all transactionally

written lines are placed in the log, even if the speculative

data fits in the L1 cache. Thus, if an overflowing

transaction aborts, it has to restore the whole log using

a slow software routine, ignoring the built-in hardware

support of the transactional caches [1], [3], [16], [22].

What is more important, log-based data versioning

enforces eager conflict management (i.e., conflicts have

to be resolved at the moment that they are produced),

to guarantee that only a single copy of a transactionally

modified line is alive in the system. Nonetheless, pre-

vious studies showed that more aggressive policies like

lazy conflict management (i.e., memory inconsistencies

are resolved when transactions reach their end) obtain

better performance results [24], [17]. Unfortunately,

these policies are incompatible with conventional log-

ging mechanisms.

In order to address the above issues, this paper

proposes selective logging, a novel VM technique that

only logs the pre-transactional values of those mem-

ory blocks that the hardware cannot recover—e.g., a

non-committed speculative write that overflows transac-

tional buffers. Similar to other log-based HTM systems,

evicted speculative data is stored in-place in the shared

levels of the memory hierarchy; therefore our proposal

does not produce delays on cache misses or commits.

The idea behind selective logging is rather simple but

effective. By adding a few additional hardware steps on

resource overflows (uncommon event), we are able to (i)

accelerate most of the memory updates within a trans-

action, (ii) reduce the size of the software log, which

accelerates the abort recovery process (fewer lines must

be restored by software) and (iii) provide flexible con-
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flict management for non-overflowing memory blocks.

Our evaluation shows that selective logging obtains an

average speed-up of 36% compared to modern log-

based HTM systems when executing workloads that

commonly overflow transactional buffers.

The main contributions of this work are twofold.

First, we quantify the limitations of conventional log-

ging in well-known HTM systems. Second, we integrate

selective logging into two distinct HTM systems. In

particular, our approach is the first to offer deferred

resolution of conflicts in a log-based HTM framework.

The remainder of the paper is organized as follows. In

Section II, we summarize related work on unbounded

HTM, with special focus on the VM mechanism for

overflowing data. In Section III, we describe how the

selective logging mechanism works and discuss the

hardware implementation. In Section IV, we present

FASTM-SL, a case for an eager HTM with selective

logging, while in Section V we detail SPECTM, a case

for a lazy HTM that supports early memory updates

when speculative data exceeds transactional buffers. In

Section VI we evaluate our proposals and in Section VII

we conclude the article.

II. BACKGROUND IN VM MECHANISMS

Early HTM assumed finite hardware support (private

transactional caches [11] or local store buffers [21])

to hold transactional modifications, which disallowed

the execution of transactions that exceeded the buffer-

ing support. A simple way to permit such transac-

tions is falling back to a Software Transactional Mem-

ory (STM [23]) system when buffers are overflowed,

which is commonly known as Hybrid TM (HyTM)

system [10], [14], [15]. Unfortunately, STMs still incur

significant overheads [6] that considerably downgrade

the performance of applications with many large trans-

actions.

To speed up the execution of any kind of transaction,

several HTM systems extend finite transactional buffers

with additional hardware support—we refer to these

approaches as unbounded HTM systems. These HTM

proposals fall into one of two distinct design strategies

while implementing VM for overflowing data: they are

either deferred update (also known as lazy VM) or log-

based (also known as early update or eager VM) HTM

systems.

Deferred update HTM systems [22] keep overflowed

data hidden from in-flight transactions using specialized

structures, such as firmware-accessed memory struc-

tures (LTM [1] or VTM [22]), shadow memory pages

(PTM [7] or XTM [8]) or additional hardware tables

(FlexTM [25] or EazyHTM [26]). When the transac-

tional buffers are overflowed, the system inserts new

data in these specialized structures, where it is kept

until the transaction commits (new data is transferred

to global memory) or aborts (new data is invalidated).

Also, if the transaction does not find the data in the

transactional buffers, deferred update HTM systems

must traverse the specialized structures to check if the

accessed data has been modified during the in-flight

transaction. Hence, these HTM systems are subjected

to long delays when they execute transactions that

commonly exceed on-chip data versioning support.

On the other hand, log-based HTM systems [20]

keep new state in-place in memory, holding the pre-

transactional data in a software-accessed log that con-

tains the old values of transactionally modified lines and

their associated addresses [2], [3], [27]. In the case of

abort, the system must trigger an exception and recover

pre-transactional values using a user-level (slow) soft-

ware routine. Nonetheless, commits are immediate—

data is already placed in memory. Thus, log-based

HTM systems do not suffer from resource overflow like

deferred update HTM systems, as speculative data can

be safely moved across the memory hierarchy.

III. THE SELECTIVE LOGGING MECHANISM

For our selective logging implementation, we assume

a Chip Multiprocessor (CMP) with single-threaded

cores and two levels of caches: a private, transactional

L1 cache that tracks transactionally modified data using

new coherence states [1], [3], [16], [22] and a dis-

tributed, shared L2 cache that keeps pre-transactional

values of non-replaced data. Coherency is implemented

using a directory placed close to the L2 cache.

In HTM systems with selective logging, transactional

stores do not carry additional actions—i.e., it is not

necessary to write in the log the old state before

updating the memory. However, when a transactional

line is evicted from the L1 cache, the processor stops

conventional execution (the memory instruction that

generates the cache miss remains incomplete) and starts

executing a microcode routine that loads the old value

of the line from the L2 cache into a special register,

and stores the old data and the corresponding memory

address in the first free entry of the software log. After

that, the processor re-schedules the memory instruction

that produced the cache replacement and continues

executing the transaction.

Like other log-based HTM systems, commits do not

require additional actions, given that the transactional

state can harmlessly flow though the memory hierarchy.

Nonetheless, when an overflowing transaction aborts

it has to perform a two-phase procedure. First, the

hardware invalidates all the transactional lines in the

L1 cache, clearing the transactional state from caches.

Then, the processor throws an exception and traps to

the user (or system) software layer, which undoes the

modifications introduced by the transaction.
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A. Pushing Memory Addresses in the Log

By deferring log updates to L1 eviction time, selective

logging requires a subtle modification to the way the

log is stored in memory. More specifically, traditional

log-based HTM systems use logical addresses to track

the location of pre-transactional data. Logical addresses

are readily available at the transactional store issue time

(i.e., the time the log info is collected). The benefit of

using logical addresses in the log is that the software

recovery routine can be done in user-space.

In selective logging, on the other hand, the system

collects the log info at the time a L1 cache line is

evicted. At this point, logical addresses are not available

(most memory systems use physical addresses), but

using physical addresses in the log poses a security risk

though.

In order to address the above issues, we propose to

move the transaction abort recovery handler in the Op-

erating System (OS). In this case, when an overflowing

transaction aborts, the hardware raises an exception that

calls the OS abort recovery routine. The OS recovers the

log, using physical addresses, and returns control to the

application. Note that logical-to-physical translation is

not needed when the OS is undoing the log—the TLB

is automatically bypassed.

Moreover, the actual log memory must be only visible

to the OS, otherwise user applications can reverse-

engineer the logical-to-physical memory mapping. This

requires that transactional applications execute a log

creation system call at init time. The memory of the

log is thus kept in OS memory, and is hidden from the

application.

In the next sections, we show how selective logging

can be efficiently implemented in two different HTM

environments. For those case studies, we assume that

the log contains physical addresses, and thus it has to

be recovered in privileged mode.

IV. A CASE FOR SPECULATIVE LOGGING IN EAGER

HTM SYSTEMS

In this section, first we describe FASTM, that we use

as our starting point for an eager HTM system [16],

and then we couple FASTM with selective logging to

further improve its performance.

A. The Base FASTM System

FASTM is a log-based HTM system that combines

early memory updates for overflowing data with de-

ferred memory updates for transactions that fit in the

L1 cache. In FASTM, transactional updates are stored

in the L1 cache in a special state (called T), until

the transaction commits, aborts, or until the cache

line is evicted. The system must guarantee that before

transitioning a line to the T state, the pre-transactional

value of the line is written back to the L2 cache (by

Figure 1. L1 Cache replacement actions in FASTM-SL

forcing a write-back). This guarantees that the memory

hierarchy always holds the correct pre-transactional data

for transactionally modified lines that are not evicted

from the L1 cache.

When a transaction aborts, it checks if any T lines

have been evicted. If not, all transactionally written lines

in the L1 cache are instantly invalidated, enabling a

very fast abort recovery. For overflowing transactions,

FASTM walks the log using a software routine, similar

to LogTM [20]. Similar to LogTM-SE [27], FASTM in-

troduces Read and Write Signatures to maintain a

superset of the memory locations accessed within a

transaction.

In this section, we describe how we extend the

FASTM infrastructure with selective logging—we call

this system FASTM-SL. FASTM-SL differs from

FASTM in the way it updates the software log and how

it recovers the pre-transactional state when aborting an

overflowing transaction. While FASTM logs the values

of all transactional stores (at least the first time they

write a line inside a transaction), FASTM-SL only logs

the values of transactional evicted data. Thus, if an

overflowing transaction aborts, FASTM has to restore

the entire pre-transactional state by software. Instead,

FASTM-SL can take advantage from the innate in-cache

support for clearing non-evicted cache lines.

B. L1 Cache Evictions

When a transactionally written line is evicted from

the L1 cache, FASTM-SL has to construct a new log

entry. We use the example of Figure 1 to describe how

the selective logging machinery handles the eviction of

a T-state line (step 1). First, the eviction process is put

on hold, and the core sends a request to the L2 cache

for the previous version of the line (step 2).

3
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The requested data, together with the physical address

of the line are temporarily stored in a special register.

At this point, the data in the special register is written

to the first free entry of the log using regular (i.e.,

non-transactional) memory operations (step 3), and the

physical address of the line is added to the Write

Signature (step 4). Finally, the transactional line is

evicted to the L2 cache.

C. Hardware/Software Abort Recovery

When an overflowed transaction aborts, FASTM-

SL has to restore the values modified during its exe-

cution. For non-evicted data it is enough to invalidate

T-state lines (by flash-clearing the state bits), as pre-

transactional values are still valid in the L2 cache.

However, transactional replaced data has to be restored

by software because the L2 cache does not hold the old

state anymore. Hence, the system triggers an exception,

which jumps to an Operating System routine that walks

the log in reverse order to undo the changes introduced

by the aborted transaction.

Note that, in contrast to FASTM, FASTM-SL only has

to restore those lines that have been evicted from the L1

cache during the in-flight transaction—those lines that

fit in the L1 cache are invalidated by the underlying

hardware and, eventually, the core will obtain the valid

data from the L2 cache using conventional coherence

requests when the transaction restarts. As a result, the

size of the log (and thus the time spent in software abort

recovery) is reduced considerably.

V. A CASE FOR SPECULATIVE LOGGING IN LAZY

HTM SYSTEMS

To the best of our knowledge, all HTM systems that

postpone the resolution of conflicts (e.g., lazy conflict

management) implement deferred update VM to store

the overflowing speculative state [11], [8], [26]. Instead,

our approach (we call it SPECTM) takes an opposite

direction when dealing with speculative data that ex-

ceed the size of the L1 cache: our system implements

early update VM on overflowing data, moving pre-

transactional data to the software log and placing new

data on the shared levels of the memory hierarchy.

A. The Base SPECTM System

SPECTM assumes a simplification of the UTCP co-

herence protocol implemented in [17], which allows

multiple versions of the same memory line in distinct

L1 caches. Like FASTM, non-conflicting transactional

updates are held in the T state. However, conflicting

lines are kept in two separate states: R for reads and W

for writes. Pre-transactional values of non-evicted cache

lines are always kept in the L2 cache.

Similar to FlexTM [25] or EazyHTM [26], cores

use a conflict list (CL) to track those transactions with

Figure 2. Partial consistency transitions on the UTCP protocol

whom they have a conflict with. Before committing,

transactions must request the abort of those transactions

that are present in the CL. If the CL is empty, the commit

process starts immediately. After that, the transactional

state becomes globally visible—T and W lines transit to

Modified, and R lines transit to Invalid.

Using early updates on overflowing data presents

non-trivial challenges for SPECTM. First, HTM systems

with lazy conflict management allow multiple versions

of a line in distinct L1 caches. However, before replac-

ing a cache line, the system must guarantee that the

evicting core is the unique owner of that line, because

that core is responsible of restoring its old state if the

transaction aborts. Thus, an overflowing line must only

have a single copy in the system.

Second, our approach moves overflowing data to the

shared memory space, overwriting the old state kept in

the L2 cache. As the old value of the line can no longer

be obtained, the system must prevent remote transac-

tions to access transactionally evicted lines, preserving

those lines isolated from the world until the transaction

commits or aborts.

To achieve the above goals, SPECTM adds two novel

mechanisms: Partial Consistency and Overflow Isola-

tion. The next sections describe how these mechanisms

operate as well as how they are implemented.

B. Partial Consistency

Before writing back the value of the transactionally

modified cache line, the system must ensure that there

are no live copies of the line in other private L1 caches.

This is a straightforward step for consistent T-state

lines, as they are exclusively owned by a single core.

However, conflicting written lines—those lines that have

been moved to the W state and thus potentially have mul-

tiple readers/writers in non-committed transactions—

require additional actions to eliminate non-compatible

values.

In order to invalidate all the transactional sharers

of the cache line, the evicting core sends an Abort

notification to all the cores that are present in its CL,

4
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following exactly the same procedure as at commit time.

When the remote cores receive that message, they abort,

even if they have not touched the evicted cache line

within their transactions. If an aborting transaction has

already overflowed the L1 cache—i.e., the software log

is not empty—then the core must recover the old state

using the procedure described in Section IV-C.

After the abort process ends successfully, the evicting

core is safe to write back the speculative value in the

L2 cache. However, before that, the core (i) transits all

the W-state lines to T, (ii) clears the CL list and (iii)

inserts the memory address of the evicted cache line in

the Write Signature.

Partial Consistency guarantees that the replaced cache

line has a unique owner in the system, as potential

conflicters have aborted. What is more, it also guar-

antees that, at that point, every line being written

inside the transaction only belongs to the overflowing

transaction. Nonetheless, that transaction is not entirely

isolated from the rest, as conflicting read lines—those

kept in the R state—may still be found in the write

set of other in-flight transactions. Figure 2 shows how

Partial Consistency modifies the transitions of the UTCP

Coherence Protocol.

C. Overflow Isolation

In SPECTM, overflowing data must be preserved in

isolation—no in-flight transaction can access that data

until the transaction commits or aborts. To guarantee

that invariant, when a core receives a coherence re-

quest from a remote transaction, it checks its Write

Signature. If the address is present in the filter, then

the core replies with an Abort message, and the remote

transaction aborts immediately.

Note that overflowing transactions may produce cas-

cades of aborts (either when there are continuous evic-

tions of transactional data or when overflowing trans-

actions access speculative data that has been moved

out of the L1 cache). As these transactions have to

be recovered by software, we decided to perform a

randomized exponential backoff before restarting the

transaction. This strategy reduces contention to ensure

forward progress in the application.

For exemplifying how overflowing data is kept in

isolation, we assume a transaction Ti that has written

lines A and B, and a transaction Tj that has accessed

line B. Eventually, Ti replaces line A from the L1 cache,

causing the abort of transaction Tj. At that moment,

all transactionally written lines by transaction Ti are

consistent, including blocks A and B. After that, we

assume that another transaction Tk attempts to write the

evicted line A. However, the system denies the access

to preserve the isolation of the overflowed cache block,

aborting transaction Tk.

Core 1.2 GHz in-order, single issue, single-threaded

L1 cache 32 KB 4-way, 64-byte line,
write-back, 2-cycle latency

L2 cache 16 MB 8-way, banked NUCA,
write-back, 15-cycle latency

Memory 4 GB, 4 banks, 150-cycle latency

Directory Bit vector of sharers/owners, 6-cycle latency

Interconnect 16-node Mesh, 64-byte links, 2-cycle wire
latency, 1-cycle router latency

Coherency Unified Transactional Coherence Protocol

Signatures 2 Kb Parallel Cuckoo Bloom filters

Table I
BASE SYSTEM PARAMETERS

VI. EVALUATION

For our evaluation of selective logging, we assume

a Chip Multiprocessor (CMP) with 16 cores and two

levels of caches, where the first level (L1) is private

and the second level (L2) is shared among all the

cores. Coherency is implemented using a blocking,

distributed directory placed in the L2 cache. The system

has a 16-node mesh interconnect that uses 64-byte links

with adaptive routing. Each node has a core, a piece

of a shared L2 cache and part of the directory. The

system has four memory controllers to access 4 GB of

main memory. Each core tracks transactional memory

accesses in two 2 Kbit Read and Write Signatures.

Detailed system parameters are shown in Table I.

A complete HTM system has been simulated using

the Simics [18] infrastructure from Virtutech and the

GEMS [19] toolset from Wisconsin’s Multifacet group.

For our performance analysis, we have chosen a set

of applications from the STAMP benchmark suite [5]

and three in-house benchmarks that perform atomic

operations in huge data structures. We have selected

those applications because they typically execute large

transactions that overflow the L1 cache, and thus they

are more sensitive to the VM strategy implemented in

the base HTM system.

Table II provides detailed information about the ap-

plications we utilize. The first three columns show the

benchmark suite, the name of the application, and its

input parameters. The fourth column (Commit) shows

the number of committed transactions on the applica-

tion, and the next two columns show the average size

of the read set (Rd Set) and the write set (Wr Set).

These numbers were collected running FASTM with 16

threads.

A. Base HTM Systems

For our performance analysis we have chosen to com-

pare the HTM systems with selective logging (FASTM-

SL as an eager HTM system, SPECTM as a lazy

HTM system) with two other systems that use conven-

tional logging (FASTM [16] as an eager HTM system,

DYNTM [17] as a lazy HTM system).

5
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FASTM FASTM-SL

Suite Bench Input parameters Commit Rd Set Wr Set OV Aborts SW Ab OV Aborts SW Ab

µbench

Btree 50/50 ins/look, 32 op/tx 2048 155.9 88.1 627 0.18 6.5% 34 0.18 2.2%

Lists 16 lists, 2K updates 8192 30.4 30.2 802 0.53 7.7% 9 0.42 0%

Hash 25/50/25 ins/look/del 4096 114.5 104.7 1814 0.67 12.6% 830 0.63 4.6%

STAMP

Bayes 32 vars, 1024 records 520 82.6 41.4 71 3.4 16% 37 2.3 10%

Labyrinth 32*32*3 maze, 2K routes 4128 111.8 101.6 2318 0.22 57.9% 379 0.8 1%

Vacation 64K c, 80% q, 16 items 16384 143.1 22.4 2361 0.10 11% 2080 0.16 9%

Yada 20 angle, 633.2 mesh 2966 32.2 14.3 511 2.01 2% 24 2.0 0.6%

Table II
INPUT PARAMETERS AND CHARACTERIZATION OF TRANSACTIONAL APPLICATIONS

For FASTM and FASTM-SL we implemented the

Stall conflict resolution policy [27], which stops the

conflicting requester until the violation disappears. To

eliminate deadlocks among stalled transactions, the sys-

tem uses a timestamp to abort the younger transaction

that participates in a cycle. After recovery, a randomized

exponential backoff is performed to avoid livelocks.

For DYNTM, we remove the predictor from the core

to provide a fair comparison with SPECTM, a fixed

lazy HTM system that cannot dynamically adapt its

execution. Hence, this DYNTM implementation executes

all the transactions that fit in the L1 in lazy mode. If a

transactionally written line leaves the L1, the system

aborts the transaction and restarts it in eager mode,

which is similar to FASTM .

We also compare our proposal with two (eager and

lazy) idealized VM implementations that serve as upper-

bounds. These implementations never log values in

software; instead they keep transactionally evicted lines

in an infinite victim cache. This cache has the same

latency as the L1 for reads and writes. The transac-

tional victim cache moves committed values to the L1

instantaneously, and it has a zero-cost abort recovery—

transactional entries are just discarded.

B. FASTM-SL Performance Analysis

Figure 3 presents the time distribution of FASTM (la-

beled F), FASTM-SL (labeled S) and Ideal Eager (la-

beled E) HTM systems in their 16-threaded executions.

The execution time has been normalized to the 16-

threaded FASTM execution and is broken down to: non-

transactional and barrier cycles (labeled Non-Tx and

Barrier), the time spent in committed (labeled Good

Tx) and aborted (labeled Aborted Tx) transactions, the

time consumed in abort recovery (labeled Aborting),

the time that transactions remain stalled waiting for a

conflict to be resolved (labeled Stalled), and the time

that processors execute the exponential backoff after

aborting (labeled Backoff). The number on top of each

Figure 3. Normalized execution time of eager HTM systems

bar shows the speed-up achieved over a single-threaded

FASTM execution.

As it can be seen in Figure 3, FASTM-SL obtains a

36% speed-up over FASTM (27% reduction of execu-

tion time), obtaining similar performance to the Ideal

Eager approach. The benefit is especially noticeable in

Labyrinth or Vacation, which achieve almost 2X speed-

up. The reasons for this behavior are the following.

Small log size. Selective logging drastically reduces

the number of cache lines that have to be maintained

in software. Figure 4 shows the average size (in KB)

of the software log per transaction in FASTM and in

FASTM-SL. Selective logging drastically lowers the size

of the log by a factor of 15X (in Hash almost a 100X).

This fact has two implications. First, there are less

transactions that overflow the L1 (Table II, labeled OV).

Second, as there is more space in the L1 for caching

transactional data, the hit rate of the L1 increases higher.

Efficient transactional stores. In FASTM-SL, trans-

actional stores do not need to access the software log

each time they are retired—only when they leave the

L1, which is an uncommon event. As a result, the time

spent in transactions that commit (Good Tx in Figure 3)

is reduced by 14% on average.

6
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Figure 4. Software log size in FASTM and FASTM-SL

Fast abort recovery. In case of abort, the software

has to restore just a few lines. Moreover, the number of

software aborts is also reduced in FASTM-SL because

less transactions overflow the L1 (Table II, labeled

SW Ab). Accordingly, Figure 3 shows that FASTM-

SL virtually eliminates the abort recovery overhead.

As pointed out in previous studies [16], speeding up

aborts cuts down the time that transactions are exposed

to conflicts, which turns out to lower the abort rate

(Table II, labeled Aborts) and the time spent in Stall

and Backoff cycles.

Notice that this evaluation only shows the results

of applications with coarse-grained transactions. Appli-

cations with small (non-overflowing) transactions from

STAMP (e.g., Kmeans or Ssca2) or from the SPLASH2

benchmark suite only report speed-ups between 1% to

3%, but never perform worse in FASTM-SL.

C. SPECTM Performance Analysis

Figure 5 presents the time distribution of DYNTM (la-

beled D), SPECTM (labeled S) and Ideal Lazy (labeled

L) HTM systems in their 16-threaded executions. The

execution time has been normalized to the 16-threaded

FASTM-SL execution and is broken down using the

same criterion from Figure 3, plus the time spent in

committing transactions (labeled Commit).

As it is shown in Figure 5, SPECTM outperforms

FASTM-SL in 5 of the 7 applications, all except Lists

and Yada. (FASTM-SL is the baseline in Figure 5,

where its execution time is normalized to 1). This is

because lazy HTM systems permit more concurrency

than eager HTM systems when transactions collide,

eliminate some read-write violations and do not require

backoff. For instance, Bayes, Btree and Labyrinth re-

duce FASTM-SL execution time up to a 30%. Note that

Labyrinth achieves 17X speed-up over single-threaded

FASTM execution when it uses 16 threads because (i)

the application scales pretty well in lazy mode and

(ii) SPECTM does not log values on every transactional

store, whereas FASTM has to do it.

SPECTM obtains close performance to the Ideal Lazy

HTM system. Nonetheless, DYNTM cannot achieve

such benefits given that it has to fallback to eager mode

Figure 5. Normalized execution time of lazy HTM systems

on overflows, the same way that some HyTMs [9], [14]

switch to STM execution to handle large transactions.

This results to a significant amount of discarded work

and prevents the use of lazy conflict management on

large transactions. Instead, SPECTM continues execution

through overflows and guarantees deferred conflict reso-

lution for the majority of lines—those that fit in the L1.

In applications like Bayes or Hash, SPECTM achieves

up to 60% speed-up over DYNTM. On the other hand,

DYNTM can take advantage of using eager conflict

management on large transactions in Yada to improve

on FASTM-SL. On average, SPECTM produces a 7%

speed-up over DYNTM .

VII. CONCLUSIONS

Log-based HTM systems offer an elegant solution to

handle unbounded transactions. Unfortunately, conven-

tional logging mechanisms introduce significant over-

heads such as delays on transactional stores, higher L1

miss rates, or slow aborts on overflowing transactions.

Selective logging proposes a novel approach for HTM

systems that implement early updates. Our approach

moves to the software-resident log only those old values

that are not maintained in hardware, permitting a more

effective utilization of transactional resources.

We present two implementations that use selective

logging: FASTM-SL as an eager HTM system and

SPECTM as a lazy HTM system. We have evaluated both

approaches with overflow-sensitive transactional appli-

cations. FASTM-SL and SPECTM obtain, on average,

a speed-up of 36% and 7% over two modern HTM

systems, achieving similar performance than idealized

HTM systems. We have seen that implementing selec-

tive logging accelerates transactional execution, reduces

the number of slow aborts and decrements the size of

the software log. What is more, selective logging opens

new avenues on systems that enforce deferred conflict

management by permitting early updates on overflowing

data.
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