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Abstract: A combination of Multivariate Statistical Process Control (MSPC) and an automatic 

classification algorithm has been developed to be applied in a Waste Water Treatment Plant. Two 

extensions of the Principal Component Analysis have been used as MSPC method to diagnose the 

process and Fuzzy Technique used to classify situation assessment of the process. The goal is to 

perform situation assessment and classify the process with simple groups that describe the batch 

contributions and helps to fix the limits used to determine abnormal situations..    
 

Introduction 

The new regulations for quality monitoring of WWTP(law 91/271/CEE) [8] has 

been a very important reason for situation assessment. In recent years, major 

advances in wastewater treatment using activated sludge have been developed. In 

this work, the WWTP is a Sequencing Batch Reactor (SBR) where nutrient 

removal reactions and sedimentation are stages of the operation cycle of a batch 

process that occurs in the same reactor (see figure 1).  The SBR has a cyclic 

nature, each cycle consist of several phases depending on the objective of 

operations (figure 2). This process is highly nonlinear, timevarying and subjected 

to significant disturbances such hydraulic changes, atmosphere changes (rain), 

composition variations, among others.  To diagnose situations in a process is 

essential to take knowledge about the process and the operational behaviour of 

process variables along the time. Using this knowledge about the process is 
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necessary to blend control approach and artificial intelligence [3]. Now, the 

problems into modern process are highly complex and operate with a large 

number of samples and variables. Therefore, the control model must consider the 

correlation structure between variables [5], characterized by the covariances 

matrix, due to the existing relation between variables and process. When 

statistical process control is used to batch process, often false alarms are generated 

[6].  Fortunately, this problem can be solved using Multivariate Statistical Process 

Control (MSPC). MSPC compresses the multidimensional information in few 

latent variables which explain the variability of the measured variables, including 

their relationships. In this paper, some models are developed using a extension of 

the Principal Component Analysis method to detect abnormal batch behaviours.  

This extension is Multiway Principal Component Analysis (MPCA) for batch data 

[9][17]. When the data collected during the operations have been previously 

diagnosed, it can be categorized into separate classes where each class belong to a 

particular condition. Therefore, in order to discover types of batch, an automatic 

fuzzy classification algorithm working under a non-supervised strategy is 

proposed. 

 

 
 

Figure 1. Schematic overview of SBR Pilot 
Plant. The data acquisition and control 
software was responsible for operation of 
(1,2,3) peristaltic pumps, (4) reactor mixing 
and (5) air supply control; as well as on-line 
monitoring of reactor (6) pH, (7) ORP, (8) DO 
and (9) Temperature. 

Figure 2. Fixed operational cycle applied in the 
pilot plant 

 

Operation of the SBR process is presented in next section, PCA extensions for 

process monitoring is presented consecutively the fuzzy classification method is 

expounded. Finally a numerical example, future work and conclusions are 

summarised. 
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Influent composition and operational conditions of 
SBR plant 

The SBR goal is mainly nitrogen removal. Nitrogen removal has been in two 

steps:  Nitrification : the ammonia is converted to nitrate by aerobic 

microorganisms and Denitrification : nitrate is converted to nitrogen gas under 

anoxic conditions by anoxic microorganisms. 

 

Pilot plant SBR is composed by a metal square reactor of 1m3. Minimum 483 

liters and maximum volumes of the reactor 683 liters, it defines 200 liters of water 

to process. Waste water was taken directly from Cass`a-WWTP (Girona-Spain) 

by means of a peristaltic pump and it was stored in a storage tank, which has not 

temperature control. 

 

Until now, the operation cycles of the process are fixed. Each batch spend 8 hours 

of the time, it has 392 samples (obtained every 60 seconds) by each variable: pH, 

Oxidation Reduction Potential (ORP), Dissolved Oxygen (DO) and Temperature 

[12]. Each cycle of the pilot plant SBR was based on alternating anoxic and 

aerobic reaction, where the filling only occurred during anoxic stages. The anoxic 

period was longer than aerobic period for increasing denitrification. Total filling 

volume was 200 liters, divided in six feeding parts during the cycle of 8 hours. 

The settling and draw spend of 1 hour and 0.46 hours respectively, in figure 2 is 

showing the scheme of operation cycle applied [4]. 

 

In this work, the chemistry engineers provided the types of batch classification 

depicted in table 1. It has been used to locate and establish the relationship 

between classes and types of batches. In this analysis has been used the analytical 

methods proposed in [11] where is the specific use of organic matter for 

denitrification purpose. The normal behavior was the most common type with a 

higher nitrogen efficiency than legally-required effluent standards.  Composition 

variation is due the ORP disturbance. In table 1 is possible to observe difference 

between ORP for normal and abnormal behavior. Others type of batch are 

equipment defects and atmospheric changes. 
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Table 1. Classification of Batch types 

Extension of the Principal Component Analysis 

Multiway Principal Component Analysis (MPCA) model 1 

Consider a typical batch run in which j = 1, 2, ..., J variables are measured at k = 

1, 2, ...,K time instants throughout the batch. Similar data will exist on a number 

of such batch runs i = 1, 2, ..., I. All the data has been summarized in the X (I x J x 

K) array illustrated in figure 3, where different batches are organized along the 

vertical side, the measurement variables along the horizontal side, and their time 

evolution occupate the third dimension. Each horizontal slice through this array is 

a (J x K) data matrix representing the time histories or trajectories for all variables 

of a single batch (i). Each vertical slice is an (I x J) matrix representing the values 

of all the variables for all batches at a common time interval (k). [9] [17] 

 
Figure 3. Arrangement of a three-way array X and Decomposition of X to 2-D (IxKJ) 
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The objective of MPCA is to decompose the three-way X, into a large two-

dimensional matrix X.  The MPCA algorithm derives directly from the NIPALS 

algorithm and as a result the matrix X. It is the product of score vector tr and 

loading matrices Pr, plus a residual matrix E, that is minimized in a least-squares 

sense as  

 
where R denotes the number of principal components retained. 

 

Multiway Principal Component Analysis (MPCA) model 2 

Another suggestion is unfolding this three-way array into a two-way matrix of 

size (KIxJ) by preserving the variable direction see figure 4.[15] 

 
Figure 4: Other decomposition of a three-way data matrix,X, by MPCA 
 

Abnormal behaviour of batch can be identified by projecting the batch onto the 

model. Control charts that are used in monitoring batch processes are generally 

based on the the Q-statistic and D-statistic, in which control limits are used to 

determine whether the process is in control or not. The assumption behind these 

approximate confidence limits is that underlying process exhibits a multivariate 

normal distribution with a population mean of zero.  This is to be expected, 

because any linear combination of random variables, according to the central limit 

theorem, should follow a normal distribution.  The Q-statistic is a measure of the 
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lack of fit with the established model.  The D-statistic or Hotelling T2 statistic, 

measures the degree to which data fit the calibration model (see equation 3). 

 
(3) 

Fuzzy Classification Method 

For classification purpose a Learning Algorithm for Multivariate Data Analysis 

(LAMDA) has been used. This method combines both, numeric and symbolic 

classification algorithms, taking profit of fuzzy logic and hybrid connectives. 

LAMDA is proposed as a classification technique to determine the current 

situation of the process and provide more information about the process and a 

solution for diagnosis when the influent composition affect to the reactions of the 

process [2][7]. The following paragraphs resumes the classification principle used 

in LAMDA. 

 

One  row (object) is a batch. This object has a number of principal components 

called ”descriptors”. These descriptors are obtained by MPCA which are used to 

describe the batch (see table 2). 

 
Table 2. Descriptors used by batch Figure 5. Basic LAMDA recognition 

methodology 
 

Every object is assigned to a ”class” in the classification process [10]. Type of 

batch is the result of class assignment (see table 1). Class (ki) is defined as the 

universe of descriptors, which characterize one set objects (batch) as pictured in 

figure 5. 
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MAD (Marginal Adequacy Degree) concept is a term related to how similar is one 

object descriptor to the same descriptor of a given class, and GAD (Global 

Adequacy Degree) is defined as the pertinence degree of one object to a given 

class as in fuzzy membership functions (mci(x)) [1].  Classification, in LAMDA, 

is performed according to similarity criteria computed in two stages. First MAD 

to each existing class is computed for each descriptor of an object. Second, these 

partial results are aggregated to get a GAD of an individual to a class [2]. 

Results and Discussion 

The MPCA algorithm were applied to the three-way data array, X, with 

dimensions 179 x 4 x 392, where k = 392 is time intervals throughout the batch 

(samples), J = 4 are measured variables and I = 179 are the historical data batches. 

The three-way array X has been unfolded in the batch direction (I x KJ) so, the 

new dimensionality are (179 x 1568) (model 1), with dimensionality reduction 

technique are obtained only (179 x 8). The model is created with eight 

components which explained 92.79% of the total variability. 

 

 
Figure 6. Multiway PCA. Q and D-statistic charts with 92.79% confidence limits 
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Abnormal behavior of batch can be identified by projecting the batch onto the 

model. Figure 6 shows the Q and D-statistic charts for all process batch.  In the Q-

statistic chart, it can be seen that some batches exceed its limits. These batches 

have several behaviors. In T2, two batches is far the limit. These batch presented 

electrical fault. For model 2 is possible to determine the connection of variables at 

one batch to other.  The SBR process is exposed to various disturbances such as 

influent composition variation, atmosphere changes, equipment defects, etc. But 

all the batches is not classified so Fuzzy classification is used for apply expert 

knowledge to the different types of batch (table 1). The training method has been 

not supervised but exigency level was maximum. The classification is performed 

using eight principal components. 

 

LAMDA classify the all data in eleven classes. Table 3 is showing the number 

and percentage of batches in each class. Class 1 have a 48.04% of the total the 

historical data. 

Table 3. Resulting classes in the analysis for SBR process 

 

Finally, the figure 14 compares the classes and the type of batch presented in the 

process. According to this results, it is possible to identify classes that only 

contain batch with equipment defects, electrical faults. The classes 1,9 and 10 

correspond to normal behavior batch.  The group conformed 4,5 and 6 are into 

SBR process of water rain.  The batch with waste water in season rain is 

considerate normal batch which the only different is that it has few organic matter. 

The other classes are abnormal batches. The class 3 is composition variations in 

ORP. The classes 7 and 8 are electrical fault and class 11 is due equipment 

defects. Only the class 2 has normal and abnormal batches. This result is useful to 

identify the possible type of batch. 
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Figure 14. Batch class composition according to type of batch 

 

Conclusions 

Multivariate Statistical Process Control has been used to detect abnormal behavior 

in SBR process, also it was projecting the data into a lower dimensional space that 

accurately characterizes the state of the process. Therefore, the new variable 

matrix is smaller. In addition, a fuzzy classification has been used to relate classes 

with type batches. This information helps to relate the batch behavior with the 

defined by the chemistry engineers.  In general, the results has been satisfactory, 

but there are type of batch where, if expert applies the knowledge in this moment, 

the type of batch will be normal so it is necesary to apply Multiblock MPCA. 
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