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Abstract

This paper presents our experiments in question answering
for speech corpora. These experiments focus on improving the
answer extraction step of the QA process. We present two ap-
proaches to answer extraction in question answering for speech
corpora that apply machine learning to improve the coverage
and precision of the extraction. The first one is a reranker that
uses only lexical information, the second one uses dependency
parsing to score robust similarity between syntactic structures.
Our experimental results show that the proposed learning mod-
els improve our previous results using only hand-made ranking
rules with small syntactic information. Moreover, this results
show also that a dependency parser can be useful for speech
transcripts even if it was trained with written text data from a
news collection. We evaluate the system on manual transcripts
of speech from EPPS English corpus and a set of questions tran-
scribed from spontaneous oral questions. This data belongs to
the CLEF 2009 track on QA on speech transcripts (QAst).
Index Terms: question answering, answer extraction, oral
question answering, speech transcriptions

1. Introduction
Question Answering (QA) is the task of extracting short, rele-
vant textual answers in response to natural language questions.
As a subset of QA, factoid QA, focuses on questions whose an-
swers are syntactic and/or semantic entities, e.g. organization
names, person names, dates, etc. QA is different from Infor-
mation Retrieval (IR) because it outputs concrete answers to a
question instead of references to full documents which are rel-
evant to a given set of query words. This difference is very im-
portant when working with spoken documents instead of written
documents, since accuracy is much more desirable for a human
user when searching through audio records.

Most of factoid QA systems have three main modules that
work in a sequential pipeline [1]. First of all the question pro-
cessing module (QP) examines the question to extract a set of
query terms from it and decide what kind of answer is expected
for this question. For factoid questions this reduces to guess the
type of named entity (NE) that answers the question. The sec-
ond module is an IR engine. It retrieves documents or shorter
passages from the collection using the query terms extracted
by the former module. Ideally, these passages should contain
the answer we are looking for. Finally the answer extraction
(AE) module extracts exact answers from the retrieved pas-
sages. First, answer candidates are identified as the set of NEs
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that occur in these passages and have the same type as the an-
swer type detected by QP (e.g. for the question “When were
biometric data included in passports?” all retrieved entities
of types ‘date’ or ‘time’ are identified as candidate answers).
Then, these candidates are ranked using a scoring function and
the top n are returned as possible answers.

Current text–based QA systems use NLP technology that
require text written in accordance with standard norms for writ-
ten grammar but the syntax of speech is quite different from that
of written language. Speech contains disfluencies, repetitions,
restarts and corrections, moreover, any practical application of
search in speech requires the transcriptions to be produced au-
tomatically, and the Automatic Speech Recognisers (ASR) in-
troduce a number of errors. For these reasons, almost any QA
system for spoken documents uses only very shallow linguistic
processing (i.e. part-of-speech tagging and named entity recog-
nition) since these are more robust than complex tools like full
syntax parsers or coreference resolution systems.

The interest in question answering on spoken documents is
very recent and the literature about this subject is still small.
Many researchers currently working on QA on spoken docu-
ments participate in the Crosslingual Evaluation Forum work-
shop (CLEF). CLEF holds annual competitions on various QA
tasks, including an spoken document task [1, 2, 3] named QAst
(Question Answering on Speech Transcripts). The best system
of the 2009 evaluation, developed by LIMSI [4], makes exten-
sive use of hand-crafted rules and patterns. They use them for
named entity (NE) recognition, question classification and an-
swer extraction. The answer extraction module uses a chun-
ker and a rule-based system for identifying relations between
chunks, then candidates are scored according to edit distance
with respect to the question.

Many works dealing with written text take a more sophisti-
cated approach to answer extraction using syntactic or seman-
tic information. Some use syntax or semantic roles to identify
predicates that are not NEs but may be candidate answers [5].
These candidates are selected if they are semantic arguments of
a suitable type and are related to a search predicate from the
question. Other approaches use more informed techniques like
reducing AE to a graph matching problem between semantic
structures of the question and text passages [6]. Using spoken
documents is a severe difficulty for the whole process of QA and
would make these approaches infeasible, specially since there is
no data to train semantic role labellers or full parsers on spoken
documents.

In this work we use some tools designed for written text and
machine learning techniques to improve the AE step of a ques-
tion answering system substantially. First of all we describe a
baseline system for the extraction that uses only shallow infor-
mation and a manually developed heuristic combination. Then,



it is improved with a reranker based on machine learning. Fi-
nally we use a dependency parser to get more informed features
(but with a high error ratio) for the ranking, this improves the
precision and coverage of the extraction.

2. Approach
The following sections describe our baseline answer extractor
and two improvements of increasing complexity. In these exper-
iments we have used two different sets of questions as provided
by the QAst evaluation, one for development (called DEV) and
one for test (called TEST). Details about the document collec-
tion and question sets are provided in the description of QAst
corpora in Section 3.1.

2.1. Heuristic Answer Extractor

We will refer to the baseline version of the AE as Heuristic ex-
tractor. This is based on the properties of the context where the
candidate answers appear in the retrieved passages. The candi-
dates are ranked using a scoring function based on a set of seven
heuristics that measure keyword distance and density. Heuris-
tics are based in those of [7]:

H1: Same word sequence: computes the number of words that
are recognized in the same order in the answer context.

H2: Punctuation flag: 1 when the candidate answer is followed
by a punctuation sign, 0 otherwise.

H3: Comma words: computes the number of question key-
words that follow the candidate answer, when the later
is succeeded by comma. A span of 3 words is inspected.

H4: Same sentence: the number of question words in the same
sentence as the candidate answer.

H5: Matched keywords: the number of question words found
in the answer context.

H6: Answer span: the largest distance (in words) between two
question keywords in the given context.

H7: Distance from QFW: measures the distance between the
candidate answer and the question focus word. This is
enabled only for certain types of type question.

All these heuristics can be implemented without the need for
any natural language processing resources outside of a basic
tokenizer. For each candidate answer, these seven values are
then converted into an overall answer score using the formula

score = H1 +H2 + 2H3 +H4 +H5 −
1

4

√
H6 −H7, (1)

where the heuristic weights were manually optimized follow-
ing [7]. This score drives the final answer ranking.

2.2. Heuristic Reranker

The previously described Heuristic extractor is dependant of the
collection, since the weights must be tuned according to the
characteristics of the documents, and it is not an easy task since
it involves several variables at the same time. In addition, this is
a rough score that doesn’t make any use of simple information
such as expected answer type or repetition of candidates. Thus,
we have implemented a machine learning layer that takes the
seven heuristic scores and reranks the candidates according to
a model learned with the DEV set. This approach makes un-
necessary to manually tune the heuristics’ weights since it is
done in the learning, and it can include more information in the
extraction process.

We have used binary Support Vector Machines (SVM) for
learning a classifier to distinguish correct from incorrect answer

Question 9: Where was Tenzin Delek arrested?

Where was

ROOT

Tenzin Delek arrested?

LOC

VC

SBJNAME

Path from Where to Tenzin Delek: LOC - ROOT - VC - SBJ - NAME
Simplified path: LOC - VC - SBJ - NAME

Figure 1: Sample question with dependency parsing

candidates1. Each candidate answer got from the development
questions using the former Heuristic extractor is a training ex-
ample. The candidates may be either correct or wrong answers,
being either a positive or negative example in the SVM model.
For each candidate, the following set of features is computed:
1) score value (equation 1); 2) order in the ranking according to
score; 3) values of each heuristic H1..H7; 4) number of times
this candidate is repeated; 5) length in number of words; 6) can-
didate’s type of NE; 7) number of keyword in the query.

These features are converted into binary features before the
learning process. To do this we procede as follows: first the
range of values of each feature is split into k parts, numbered
from 0 to k − 1. Then each value is expanded with a series of
inequalities framing it. For example, if the candidate answer
is 3 words long (feature clen:3), these new features are added:
clen>0, clen>1, clen>2, clen<4. . . clen<k-2, clen<k-1. Cate-
gorical values (i.e. type of NE) are not binarized.

2.3. Adding Syntactic Information

Keyword density measures from 2.1 do not capture meaning.
Any good QA system should use syntactic and semantic infor-
mation to understand the text and make deductions from it, but
this is even more difficult in speech transcripts. In this exper-
iment we add syntactic information to our answer extractor to
improve its ability to distinguish correct and incorrect candi-
dates.

We have labelled the collection with syntactic relations us-
ing an inhouse dependency parser [8];2 thus any pair of words
in a sentence are linked by a sequence or path of syntactic rela-
tions. We have also labelled the questions with syntactic rela-
tions. Our dependency parser has been trained with the CoNLL
2007 Shared Task collection, a collection of newspaper texts3.

The key assumption is that the syntactic relations between
the keywords and the candidate answer (in the collection)
should be similar to the syntactic relations between the key-
words and the question tag in the question. This denotes that
keywords in the text are framing the candidate answer with re-
strictions similar to those expressed in the question. For factoid
questions this question tag is either who, where, when, how,
what and which. Comparing the paths should help disregard
candidate answers that are near the keywords but are not prop-
erly related to them and getting candidates that are closely re-
lated syntactically but far away in number of tokens (i.e. those
that can not be captured with local heuristics).

For example: consider the question “Where was Tenzin
Delek arrested?” Figure 1 shows the path of syntactic rela-
tions joining question tag Where with keywords Tenzin Delek.
Figure 2 shows the parsing of two sentences from the EPPS

1http://svmlight.joachims.org
2http://www.lsi.upc.edu/˜xlluis/jointparser/
3Adapting the parser to speech is beyond the scope of our work. We only
focus in extracting robust features to make the parser useful in speech.



Sentence number 1

The case of Tenzin Delek Rinpoche was

ROOT

raised with me by several of my constituents in Scotland

SBJ

NMOD NMOD

PMOD

NAME
NAME

VC ADV PMOD

LGS

PMOD NMOD NMOD

PMOD
LOC PMOD

Path from Scotland to Tenzin Delek: PMOD - LOC - PMOD - NMOD - PMOD - LGS - VC - ROOT - SBJ - NMOD - PMOD - NAME
Simplified path: LOC - LGS - VC - SBJ - NAME

Sentence number 2

Tenzin Delek Rinpoche was condemned to death having been convicted of

charges in a courtmotivatedpoliticallyanduptrumped in Tibetan China

ROOT

LOC

SBJ VC

NAME

NAME ADV PMOD APPO VC VC ADV

LOC
PMOD
NMOD LOC

PMOD

NAMENMODAMOD

NMOD

PRT
COORD

Path from Tibetan China to Tenzin Delek: PMOD - LOC - PMOD - LOC - PMOD - ADV - VC - VC - APPO - PMOD - ADV - VC - ROOT - SBJ - NAME
Simplified path: LOC - LOC - VC - SBJ - NAME

Figure 2: Two examples of dependency parsing

collection that contain candidate answers, Scotland and Tibetan
China. Our heuristic measures based on keyword density can
not distinguish between the correct one (Tibetan China) and the
totally unrelated one (Scotland). In Sentence 1, Scotland is a
locative nominal modifier of constituents but is not related to
Tenzin Delek. Prior to comparison, paths are simplified to avoid
sparsity removing frequent labels that are of little use like name
modifiers (NMOD), preposition modifiers (PMOD) and general
adverbs. Sequences of contiguous verbs are representes as a
single VC label. Note that label ROOT denotes the main verb
of the sentence; we transform it into VC since there is no need
to force the paths to contain the main verb of the sentence. If
we compare the path from the question with the paths from Sen-
tence 1 (shown in Figure 2) we can see that the latter differs with
an extra LGS relation. LGS denotes the logical subject of a pas-
sive verb. This means that Scotland modifies a noun phrase that
has a syntactic relation with the main verb other than a locative
modifier. Thus Scotland is not necessary expressing a locative
restriction of a verb whose subject is Tenzin Delek. If we look
at Sentence 2 we found one extra LOC relation, so it means
that Tibetan China is a locative modifier of a locative modifier
whose subject is the keyword Tenzin Delek.

To compare two given paths Qk and Tk, where Qk has
been extracted from the question for keyword k and Tk from the
collection, we use a dynamic programming algorithm to align
them. It finds the longest sequence (Mk) of labels that can be
matched without changing it’s order. Then it computes the la-
bels from Qk that are missing in Tk and viceversa. This infor-
mation is summarized in a set of features that enrich the model
described in the previous section. These features must be very
robust since the result of parsing speech transcripts can be very
poor. For each candidate answer, these features are added:

1. Number of keywords syntactically related and the pro-
portion over total keywords.

2. Distance from candidate answer to keywords in number
of syntactic relations between them.

3. The length of Mk and the ratio |Mk|/|Qk| for each key-
word k. Also the maximum, minimum and average of
each.

4. Total number of inserted labels and the count for each
different label.

5. Total number of matched labels:
∑

∀k |Mk|.

Before learning the model, the ratios are discretized to in-
tervals and integer values are expanded to binary features as
explained in the previous section.

3. Experimental Results
3.1. QAst corpus

In these experiments we have used the datasets provided by the
QAst evaluation task from CLEF 2009 workshop. This data is
a collection of manual transcriptions of 3 hours from the Eu-
ropean Parliament Plenary Sessions (EPPS) in English. This is
about 35,000 words. The sessions are divided in turns accord-
ing to speaker. The only punctuation mark is the full stop but
there are marks for hesitations and partial words and most of
the names are capitalized. There are two sets of questions to be
answered using the collection: a development set (DEV) of 50
questions and a test set (TEST) of 100 questions. The questions
are spontaneous oral questions manually transcribed [9]. Each
set contains factoid and definitional questions in a proportion of
roughly 75%–25%. Some of the questions do not have an an-
swer in the collection, therefore the correct answer for them is
“nil”. We have experimented only with factoid QA.

3.2. Measures

We have evaluated our answer extractor in the context of the
QAst evaluation, using the TEST set questions with manual
transcripts of the EPPS corpus (see Section 3.1 for details). The
models for the rerankers have been trained using the DEV ques-
tion set and then evaluated with the TEST set. Our evaluation



Model T1 T5 MRR Acc.
Upper Bound 46 46 0.6133 61.33%

Heuristic Baseline 15 35 0.3013 20.00%
Heuristic Rerank 19 34 0.3360 25.33%
Syntactic Rerank 22 37 0.3687 29.33%

LIMSI 22 42 0.3931 29.33%
INAOE 18 44 0.3824 24.00%

TOKYO TECH 5 11 0.1067 6.67%

Table 1: Experimental results

reports the same measures than QAst evaluation. The QA sys-
tem outputs a ranking of 5 answers for each question, this is
evaluated with two measures:

Mean Reciprocal Rank (MRR): Average of inverses of the
ranking of the first correct answer for each question. It is
defined as 1

N

∑N
i=0

1
ranki

, where ranki is the position
of the first correct answer in the answer’s list for question
number i.

Accuracy: The fraction of correct answers ranked in the first
position in the list of 5 possible answers.

Additionally, we report T1 and T5 measures. T1 is the num-
ber of questions that have a correct answer ranked first, T5 de-
notes how many have a correct answer anywhere in the ranking.

3.3. Results

As we have exposed in Section 1, the AE module is the last one
in the QA pipeline. The previous modules may introduce errors
that make impossible to extract the correct answer (e.g. errors
in passage retrieval, errors in the expected answer type, etc.).
Due to these errors, in this experiment it is possible to extract
the correct answer in only 46 of the 75 factoid questions, so this
is the theoretical upper bound of our answer extractor. Table 1
contains MRR and Accuracy for each of our three answer ex-
tractors (the heuristic baseline and the two rerankers), and the
upper bound.

Table 1 shows that Heuristic Reranker gives a better rank-
ing of candidates than the Heuristic approach in MRR and Ac-
curacy. T1 increases from 15 to 19 but coverage (T5) is not im-
proved. This may be explained by the fact that the this reranker
do not include truly new information in the features, it just
makes a better use of the heuristics.

The Syntactic Rerank improves both MRR and Accuracy of
Heuristic Rerank in more than 3 points. Now both T1 and T5
are improved indicating that dependency parsing incorporates
useful and new information.

The last three rows of the table are the results achieved by
the rest of participants in the QAst evaluation 2009. The best
results in MRR and Accuracy where obtained by the LIMSI
group [4]. The results of LIMSI are better than any of our three
runs in MRR4, but our Syntactic Rerank achieves the same Ac-
curacy. This is an important results because our approach is free
of hand-crafted or language-dependant rules and it can be easily
adapted to different tasks.

It is remarkable that even using a small training set of 50
training questions this is enough to get a significant impact with

4It is not possible to know if this difference is due solely to AE or because
modules like QC and IR are better than ours. This would require a
white-box evaluation and this is beyond the scope of this paper.

Model T1 T5 MRR Acc.
Heuristic Rerank 26 38 0.4036 34.67%
Syntactic Rerank 27 41 0.4251 36.00%

Table 2: Results with an expanded traning set

both methods. Table 2 show the results of a second experi-
ment with expanded training sets. In this experiment a reranker
model has been learned for each test question using a differ-
ent training set for each one. The training set is formed by all
examples from DEV set and all examples from TEST set but
the corresponding to the question itself. Therefore the train-
ing sets contain 149 questions instead of just 50 like in the first
experiment. This is a leave-one-out evaluations, mixing DEV
and TEST sets do not biases the results since all questions are
totally independant. As expected, the results are much better
when using bigger training sets, both rerankers have a parallel
improvement of 6 or more points and the coverage of the Syn-
tactic Reranker reaches an 89% of the upper bound.

4. Conclusions
In this paper, we have presented two approaches to answer ex-
traction in question answering for speech corpora that apply ma-
chine learning to improve the coverage and precision of the ex-
traction. The first one is a reranker that uses only lexical in-
formation, the second one uses dependency parsing to score
similarity between syntactic structures. Our experimental re-
sults show that the proposed learning models improve our pre-
vious results using only hand-made ranking rules. Moreover,
this results show also that a dependency parser can be useful for
speech transcripts even if trained with written text data.
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