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Abstract— This work deals with the design and analysis of a
controller for a shunt active power filter. The design is based
on combined feedforward and feedback actions, the last using
repetitive control, and aims at the obtention of a good closed-
loop performance in spite of the possible frequency variations
that may occur in the electrical network. As these changes
affect the performance of the controller, the proposal includes
a compensation technique consisting of an adaptive change of
the digital controller’s sampling time according to the network
frequency variation. However, this implies structural changes in
the closed-loop system that may destabilize the overall system.

Hence, this article is also concerned with closed-loop stability of
the resulting system, which is analyzed using a robust control
approach through the small gain theorem. Experimental results
that indicate good performance of the closed-loop system are
provided.

I. INTRODUCTION

The control of shunt active filters can be carried out using

different approaches [1], [2]. Most of them are based on two

hierarchical control loops, an inner one in charge of assuring

the desired current and an outer one in charge of determining

the required shape as well as the appropriate power balance.

In this work, the current controller is composed of a feed-

forward action that provides very fast transient response and

an odd-harmonic repetitive control law yielding closed-loop

stability and a very good harmonic correction performance

[3]. The outer control law is based on the exact computation

of the sinusoidal current network amplitude and, in order

to improve robustness, this computation is combined with

a feedback control law including an analytically tuned PI

controller [3]. This control algorithm depends on network

voltage frequency and shows a dramatic performance decay

when this value is not properly know or changes in time. This

article proposes an adaptation of the controller sampling rate

according to the disturbance/reference period [4], [5], [6],

[7].

In this paper, both the inner and the outer loop adapt

their sampling frequency to the period of the signal being

tracked. This allows to preserve the steady-state performance

while maintaining a low computational cost. Nevertheless,
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garamosf@unal.edu.co

This work is partially supported by the spanish Ministerio de Educación
y Ciencia (MEC) under project DPI2007-62582

the structural changes induced by this operation, which

transforms an original Linear Time Invariant system (LTI)

into a Linear Time-Varying (LTV) one, may destabilize the

closed-loop system. Hence, we use the small-gain theorem-

based technique introduced in [8] to find out stability margins

where reliable performance is definitely ensured.

This adaptive procedure, along with the introduction of

feedforward paths, yield very good performance both in

transient and in steady-state behavior, as well as robustness

in front of network frequency variations for which stability

margins are derived.

II. STATEMENT OF THE PROBLEM

A. The boost converter

The system architecture is depicted in Fig. 1. A load

is connected to the power source, while an active filter is

applied in parallel in order to fulfill the desired behavior, i.e.

to guarantee unity power factor at the network side. A boost

converter with the ac neutral wire connected directly to the

midpoint of the dc bus is used as active filter. The averaged

(at the switching frequency) model of the boost converter is

given by

L
di f

dt
= −rLi f − v1

d + 1

2
− v2

d− 1

2
+ vn (1)

C1
dv1

dt
= − v1

rC,1
+ i f

d + 1

2
(2)

C2
dv2

dt
= − v2

rC,2
+ i f

d − 1

2
(3)

where d is the duty ratio, i f is the inductor current and v1,

v2 are the dc capacitor voltages; vn = Vn

√
2sin(ωnt) is the

voltage source,1 L is the converter inductor, rL is the inductor

parasitic resistance, C1,C2 are the converter capacitors and

rC,1, rC,2 are the parasitic resistances of the capacitors. The

control variable, d, takes its value in the closed real interval

[−1,1] and represents the averaged value of the Pulse-Width

Modulation (PWM) control signal injected to the actual

system.

Due to the nature of the voltage source, the steady-state

load current is usually a periodic signal with only odd-

harmonics in its Fourier series expansion, so it can be written

as il = ∑∞
k=0 ak sin(ωn (2k+ 1)t)+ bk cos(ωn (2k+ 1)t).

B. Control objectives

The active filter goal is to assure that the load is seen as a

resistive one. This can be stated as i∗n = I∗d sin(ωnt), i.e. the

1ωn = 2π/Tp rad/s is the network frequency.
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Fig. 1. Single-phase shunt active filter connected to the network-load
system.

source current must have a sinusoidal shape in phase with

the network voltage2. Another collateral goal, necessary for

a correct operation of the converter, is to assure constant

average value of the dc bus voltage3, i.e. < v1 + v2 >
∗
0= vd ,

where vd must fulfill the boost condition (vd > 2
√

2vn). It is

also desirable for this voltage to be almost equally distributed

among both capacitors (v1 ≈ v2).

C. Transforming the plant equations

It is standard for this type of systems to linearize the

current dynamics by the partial state feedback α = d+1
2

v1 +
d−1

2
v2. Moreover, the change of variables

i f = i f , EC =
1

2

(

C1v2
1 +C2v2

2

)

, D =C1v1 −C2v2

introduces two more meaningful variables. Namely, EC, the

energy stored in the converter capacitors and D, the charge

unbalance between them. Assuming that the two dc bus

capacitors are equal (C = C1 = C2, rC = rC,1 = rC,2) the

system dynamics using the new variables is

L
di f

dt
= −rLi f + vn −α (4)

dEC

dt
= −2EC

rCC
+ i f α (5)

dD

dt
= − 1

rCC
D+ i f . (6)

It is important to note that (4) and (6) are linear and

decoupled with respect to state variable EC. The partial state

feedback and the change of variables will be applied as the

lowest level control action on the closed-loop system.

III. CONTROL DESIGN

The controller is designed using a two level approach, as

portrayed in Fig. 2: first, an inner current controller forces the

sine wave shape for the network current and, second, an outer

control loop yields the appropriate active power balance for

2x∗ represents the steady-state value of signal x(t).
3< x >0 means the dc value, or mean value, of the signal x(t).
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Fig. 2. Global architecture of the control system.

the whole system. The output of this loop is the amplitude

of the sinusoidal reference for the current control loop. The

active power balance is achieved if the energy stored in the

active filter capacitors, EC, is equal to a reference value, Ed
C.

A. The current loop controller

Taking advantage of the linearity of (4), a linear controller

is designed to force a sinusoidal shape in in. This controller

consists of two parts, as pictured in Fig. 3:

∙ A feedforward controller which fixes the desired steady

state:

i∗n = I∗d sin(ωnt) (7)

∙ A feedback controller which compensates uncertainties

and assures closed-loop stability.

As previously stated, the current control goal is to assure

that

i∗n = I∗d sin(ωnt) = i f (t)+ il(t),

where I∗d is constant in steady state. From the circuit topology

and (4),

din

dt
=− rLin

L
− α

L
+

vn

L
+

dil

dt
+

rLil

L
. (8)

In order to force in to achieve the desired value (7), it is

necessary that α takes the value

α f f = vn +

(

L
d

dt
+ rL

)

il − (rL sin(ωnt)+Lωn cos(ωnt)) Id

= vn +F(il)+M(Id , t,ωn), (9)

thus defining the nominal control action that may keep the

system tracking the desired trajectory. Hence, it is used as a

carrier
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Fig. 3. Current control block diagram.
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feedforward action. As the system is digitally implemented,

the operator F is approximated by

F(z) =
(L+TsrL)z−L

Tsz
.

This action is combined with a feedback controller to over-

come model uncertainties, disturbances and measurement

noise.

The discrete-time model of (4), once filtered by an anti-

aliasing device with time constant τ , answers to:

Gp(z) = Z

[ −1

Ls+ rL

⋅ 1

τs+ 1
⋅ 1− e−Ts

s

]

Ts

(10)

As the signal to be tracked and rejected in this system is

an odd-harmonic periodic one, it is convenient to design a

controller which allows to track/reject this type of signal. A

technique that has been proved to be specially suitable for

this case is odd-harmonic repetitive control [9].

Repetitive controllers are composed of an internal model,

which assures steady-state performance, and a stabilizing

controller, Gx (z), which assures closed-loop stability. Tradi-

tionally, repetitive controllers are implemented in a “plug-in”

fashion, i.e. the repetitive compensator is used to augment an

existing nominal controller, Gc (z) (see Fig. 3). This nominal

compensator is designed to stabilize the plant, Gp (z), and

provides disturbance attenuation across a broad frequency

spectrum. The internal model used in odd-harmonic repeti-

tive control [9] has the form

Gim(z) =
−H(z)

z
N
2 +H(z)

,

where N =
Tp

Ts
and H(z) is a low pass filter used to improve

system robustness. It is important to note that N corresponds

to the discrete-time period of the signal to be tracked/rejected

and its value is structurally introduced in the control system.

In this work the values Tp = 1
50

s and N = 400 have been

selected to obtain a good reconstruction of the continuous-

time signals.

The closed-loop system of Fig. 3 is stable if the following

conditions are fulfilled [9]:

1) The closed loop system without the repetitive con-

troller is stable, i.e.

Go (z) =
Gc (z)Gp (z)

1+Gc (z)Gp (z)

is stable. It is advisable to design the controller Gc(z)
with a high enough robustness margin. In this work,

the lag controller

Gc(z) =−0.6305z− 0.629

z− 0.9985

provides a phase margin of 140o.

2) ∥ H (z) ∥∞< 1. H(z) is designed to have gain close to

1 in the desired bandwidth and attenuate the gain out

of it. The first order linear-phase FIR filter

H(z) =
1

4
⋅ z+ 1

2
+

1

4
⋅ z−1

has proved to be good enough in this application.

3) ∥ 1−Go (z)Gx (z) ∥∞< 1, where Gx(z) is a design filter

to be chosen. A trivial structure4 which is often used

is [10]:

Gx (z) =
kr

Go (z)
.

In this application kr = 0.3 has been selected [11].

The repetitive controller defines the feedback law

α f b = Gc(z) [1+Gx(z)Gim(z)]
(

ire f − in
)

that will be used with the feedforward action given in (9), this

yielding α = α f b +α f f . Fig. 3 shows the complete current

control loop that will be used in the system.

Under the combined action of the feedforward and the

feedback control action, one can assume that the network

current is in(t) ≈ Id(t)sin(ωnt), which will be taken as a

fact.

B. The energy shaping controller

Following [12], the outer controller that assures a mean

value5 of the energy stored in the capacitors, i.e. ⟨Ec(t)⟩Tp

close to the desired reference value Ed
c , is made up of two

parts (see Fig. 4):

∙ A feedforward term which makes I
f f
d = a0. This assures

the energy balance in the ideal case (rL = 0 and rC = 0)

and takes into account il characteristics and changes

instantaneously. I
f f

d is calculated using an amplitude

modulator with a scaled signal of the source voltage as a

carrier and a mean value extraction. This last operation

has been implemented through the filter

P(z) =
1

N
⋅ 1− z−N

1− z−1
,

which corresponds to a good approximation of the

corresponding continuous-time mean value extraction

operation.

∙ A feedback term which compensates dissipative effects

and system uncertainties.

The dynamics of the plant can be modeled by the

discrete-time integrator

Ts (z+ 1)

2(z− 1)

4There is no problem with the improperness of Gx(z) because the internal
model provides the repetitive controller with a high positive relative degree.

5⟨ f (t)⟩Tp
= 1

Tp

∫ t
t−Tp

f (τ)dτ .

Ts(z+1)
2(z−1)

⟨Ec⟩TpVn√
2
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c

PI

+
+

+
−

I
f f

d

I
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d
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component
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Fig. 4. Simplified 50Hz energy (voltage) control loop.
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Fig. 5. Open-loop transfer function gain diagram.

and the losses in the inductor and capacitors parasitic

resistances can be considered as an additive disturbance.

So, the PI controller

I
f b

d = ki

Ts (z+ 1)

2(z− 1)
∆E + kp∆E, (11)

where ∆E = Ed
c −⟨Ec (t)⟩Tp

, will regulate ⟨Ec (t)⟩Tp
to

the desired value Ed
c with null steady-state error.

C. Network frequency variations

Most control algorithms in the previous section contain

the ratio N =
Tp

Ts
, i.e. the period Tp of the signals to be

tracked or attenuated over the sampling period Ts. In systems

where the period of the signal Tp is kept constant, N and

Ts are designed a priori according to the desired number

of samples per period and the technological constrains over

Ts. However, in this case, the electrical distribution network

frequency can undergo fluctuations and, then, Tp can not be

assumed constant.

If Tp varies, the value of N or Ts should be changed in

order to preserve the ratio N =
Tp

Ts
. If this is not the case

the control algorithm performance may dramatically decay.

As an example, Fig. 5 shows the feedback control open-loop

gain designed for a nominal frequency of 50Hz with the gain

for 49Hz, 50Hz and 51Hz (and some of their harmonics)

highlighted. Note that while for the 50Hz signal the gain

is important, it decays for the other frequencies. Something

similar occurs with the phase lag of the closed-loop control

system. While for the nominal frequency the phase is almost

zero, this is not the case for the other frequencies. It is

worth emphasizing that, for the active filter, this would

imply a reduction of the harmonic rejection capabilities and

the introduction of reactive current in the system. Clearly,

both effects would contribute to the reduction of the system

performance. To overcome this problem, the sample time Ts

will be adaptively varied in order to maintain a constant value

for N.

However, the change of Ts implies changes in the system

dynamics and, particularly in the plant model, Gp (z). It

is important to check that these changes does not imply a

loss of closed-loop stability. Next section is devoted to this

subject.

IV. STABILITY ANALYSIS

Let the discrete-time state-space representations of the

blocks Gi be denoted by (Ai,Bi,Ci,Di), i ≡ {im,x,c, p}. The

closed-loop system state equations are derived under the

following assumptions:

∙ In repetitive controllers with the structure of Figure 3 it

is Dim = 0.

∙ The continuous-time plant Gp(s) has, at least, relative

degree 1, so Dp = 0.

∙ The representations corresponding to blocks Gim(z),
Gx(z) and Gc(z) are obtained from the nominal sampling

time Ts = T̄ and remain constant ∀t.

∙ Only the plant discrete-time model matrices Ap, Bp, vary

according to sampling rate updating: Ap = Ap(Ts), Bp =
Bp(Ts), while Cp is maintained constant. Hence, assum-

ing that (A,B,C,0) stands for the continuous-time plant

state-space representation, i.e. Gp(s) = C (sI−A)−1
B,

then

Ap(T )≜ eAT , Bp(T )≜
∫ T

0
eArBdr. (12)

Let the system be sampled at time instants {t0, t1, . . .}, with

t0 = 0, tk+1 > tk, the sampling periods being Tk = tk+1 − tk.

Let also xk ≜ x(tk), rk ≜ r(tk), yk ≜ y(tk). The state equations

are given by the discrete-time LTV system:

xk+1 = Φ(Tk)xk +Π(Tk)rk, yk = ϒxk, (13)

where

Φ(T )≜

(

K L

Bp(T )M Ap(T )+Bp(T )N

)

, (14)

Π(T )≜
(

Bim 0 Bc Bp(T )Cc

)⊤
,

K, L, M, N being constant matrices available from [13].

Assume that Gim(z), Gx(z) and Gc(z) are designed to

provide stability for a nominal sampling time Ts = T̄ . Hence,

when Tk = T̄ , ∀k, the overall system is stable by construction.

A methodology for studying the closed-loop behavior under

non-uniform sampling period is developed below.

Next result allows to reduce the stability analysis of (13)

to that of its zero-input response.

Proposition 1 ([14]): Let the sampling period, Tk, take

values in a compact subset T ⊂ ℝ
+. Then, the uniform

exponential stability of

xk+1 = Φ(Tk)xk (15)

implies the uniform Bounded Input-Bounded Output (BIBO)

stability of system (13).

Proposition 2 ([14]): Let the sampling period, Tk, take

values in a compact subset T ⊂ℝ
+. If there exists a matrix

P such that

LTk
(P) = Φ(Tk)

⊤PΦ(Tk)−P < 0, s.t. P = P⊤ > 0, (16)

∀Tk ∈ T , then (15) is uniformly exponentially stable.
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The stability analysis follows the approach proposed in

[8], where the non-uniform sampling is viewed as a nominal

sampling period affected by an additive disturbance. Then,

the actual problem is to quantify the “amount” of disturbance

due to aperiodic sampling that the system can accommodate

while preserving stability.

Proposition 3: Let T = T̄ be a fixed sampling period and

define θk = Tk − T̄ . Then, the matrix Φ(Tk) may be written

as

Φ(Tk) = Φ(T̄ )+ ∆̃(θk)Ψ(T̄ ), (17)

where

∆̃(θ ) ≜

(

0 0

0 ∆(θ )

)

, ∆(θ )≜

∫ θ

0
eArdr, (18)

Ψ(T ) ≜

(

0 0

Ap(T )A Ap(T )B

)(

0 I

M N

)

. (19)

Notice that, using Proposition 3, the original system (15)

can take the form

xk+1 =
[

Φ(T̄ )+ ∆̃(θk)Ψ(T̄ )
]

xk, (20)

which allows the following interpretation [8]: (20) can be

regarded as the LTI system

Σ :=

{

xk+1 = Φ(T̄ )xk + uk

vk = Ψ(T̄ )xk,
(21)

GT̄ (z) = Ψ(T̄ ) [zI−Φ(T̄ )]
−1

being its associated discrete-

time transfer function, receiving the time-varying output

feedback control action uk = ∆̃(θk)vk.

From now on, let ∥R∥=
[

ρ(R⊤R)
]1/2

denote the 2-norm

of a real matrix R, with ρ(⋅) standing for the spectral radius.

Theorem 4 ([8]): Assume that T = T̄ is a nominal sam-

pling period. Let

γT̄ = (1+ ε)∥GT̄ (z)∥∞, ε > 0, (22)

be an upper bound of the H∞-norm of system Σ (21), and let

also T ⊂ ℝ
+ be compact. If

γT̄∥∆(T − T̄)∥ ≤ 1, ∀T ∈ T , (23)

then system (13) is uniformly BIBO stable in T .

The application of the above results to the active filter is

carried out straightforward. The continuous-time plant is

Gp(s) =− 1

2.8544 ⋅10−8s2 + 0.000081784s+0.5
, (24)

where L = 0.8mH, rL = 0.5Ω and τ = 3.568 ⋅10−5s. The con-

troller is constructed for a nominal frequency of ν̄ = 50 Hz,

and N = 400 is selected to obtain a good reconstruction of

the continuous-time signals; this yields a nominal sampling

period of T̄ = T̄pN−1 = (Nν̄)−1 = 0.05 ms. Notice that the

closed-loop system order is high, because the dimensions

of Φ are now 209 × 209. Under these assumptions, (10)

becomes

Gp(z) =− 0.02855z+ 0.01783

z2 − 1.215z+ 0.2387
. (25)

These settings yield ∥GT̄ (z)∥∞ = 2.6530× 104. In order to

define γT̄ (see (22)), ε = 0.0001 has been selected. Recall

vn

in

il

Fig. 6. Nonlinear load connected to the grid (50Hz): vn , in and il vs time
(The active filter is off).

now that the continuous-time plant matrix can be obtained

from (24). Then, according to Theorem 4, the stability

interval for the network frequency obtained from a numeric

computation of norm bounds for the matrix exponential ∆
(see (23)) is [42.4676,59.3855] Hz. It is worth mentioning

that line frequency variations use to be, at most, a 10% of

its nominal value, i.e. they can be expected to lie inside the

interval [45,55] Hz.

V. EXPERIMENTAL SETUP AND RESULTS

A. Experimental setup

The experimental setup is composed of a full-bridge diode

rectifier (nonlinear load), the previously described single-

phase active filter, the regular distribution network and

ac power source (PACIFIC Smartsource, 140-AMX-UPC12)

that acts as a variable frequency ac source6. The active

filter is connected in a shunt manner with the rectifier to

compensate its distorted current.

The active filter controller has been implemented on a

DSP based hardware, i.e. within a digital framework, with

a nominal sampling frequency equal to the switching fre-

quency of 20 kHz. The network frequency is obtained from

the network voltage zero crossings through some additional

hardware and a digital lowpass filter that runs in the DSP.

With this information, the sampling frequency is updated to

maintain the ratio N = 400.

B. Experimental results

Fig. 6 shows the waveforms of vn, il and in when the

nonlinear load is connected to the network. The rectifier

current has a total harmonic distortion(THD) of 62.6% and

RMS value of 19.56A.

As Fig. 7 shows, when the active filter is connected in

parallel with the rectifier the shape of the current at the

source port is nearly sinusoidal with a THD of 1.2% while

the power factor (PF) and cosφ at the port are unitary. The

figure shows that the mean value of v1 is maintained almost

constant7.

In the next experiment the network frequency of the

system changes from 48Hz to 53Hz in a 20 cycles ramp

6Used only in the varying frequency experiments or when not working
at the nominal frequency.

7v2 is not show due the limited number of channels in the instrumentation.
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v1

vn

in

il

Fig. 7. Nonlinear load and the active filter connected to grid network
(50Hz). (top) vn , in, il and v1 vs time; (bottom) PF, cosφ and THD for in.

manner (in this experiment the ac power source is used to

feed the nonlinear load). The response of vn, in, il and the

semibus voltage v1 is plotted in Fig. 8 (top). As it can be

seen, all variables are bounded and the mean value of v1 is

almost constant.

Additionally, Fig. 8 depicts the system behavior in the

steady state at 52Hz. As it can be shown the PF and the

cosφ return to unitary values and the THD for in is 0.4%

(in this experiment the ac power source is used to feed the

nonlinear load).

VI. CONCLUSIONS

This work shows the architecture, some design issues and

a stability analysis for an active filter digital controller based

on repetitive control. The controller includes a mechanism to

follow possible network frequency variations without losing

the advantages of the repetitive control and maintaining its

low computational cost. In turn, the stability analysis is based

on the small-gain theorem. Theoretical and experimental re-

sults prove that the controlled system has a good performance

and that, using the frequency adaptation mechanism, it is

able to cope with more aggressive frequency changes than

the usual ones in electrical distribution networks.
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digital repetitive control systems: an LMI stability analysis,” Technical

Report n. IOC-DT-P-2009-01, Universitat Politècnica de Catalunya,
2009, available online at: http://hdl.handle.net/2117/2651.

[14] W. Rugh, Linear system theory, 2nd Ed. Prentice-Hall, Inc., Upper
Saddle River, NJ, 1996.

1754


