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Abstract: It is known that straightforward application of the classical Lagrangian and
Hamiltonian formalism to systems with mass varying explicitly with position may lead to
discrepancies in the formulation of the equations of motion. Systems with mass varying
explicitly with position often arise from situations where the partitioning of a closed system
of constant mass leads to open subsystems that exchange mass among themselves. One possible
solution is to introduce additional non-conservative generalized forces that account for these
effects. However, it remains unclear how to systematically interconnect the Lagrangian or
Hamiltonian subsystems. In this paper, systems with mass varying explicitly with position
and their properties are studied in the port-Hamiltonian modeling framework. The port-
Hamiltonian formalism combines the classical Lagrangian and Hamiltonian approach with
network modeling and is applicable to various engineering domains. One of the strong aspects
of the port-Hamiltonian formalism is that power-preserving interconnections between port-
Hamiltonian subsystems results in another port-Hamiltonian system with composite energy
and interconnection structure. The motion of a heavy cable being deployed from a reel by the
action of gravity is used as an example.

Keywords: Modeling, variable mass systems, classical mechanics, port-Hamiltonian systems,
open systems.

1. INTRODUCTION

A prevailing trend in the description of physical systems
for analysis, control applications, and simulation is net-
work modeling. The system is split into open subsystems
(tearing), the subsystems are modeled (zooming), and the
model of the overall system is obtained by interconnecting
the models of the subsystems (linking) (Willems (2007)).
The main advantage of such approach is that the models
of the physical subsystems can be stored in libraries. The
modeling process can be performed in an iterative manner
and the model of the overall system is simply constructed
by interconnecting the library sub-models.

Although network modeling has proven a powerful frame-
work for many engineering problems, special care should
be devoted to systems in which mass is transported from
one subsystem to another. Apart from the classical rocket
problem or the problem of a chain being coiled up at
a table, some interesting examples of such systems can
be found in the textile industry (Cveticanin (1998)) or
devices in which cables are deployed or retrieved, such
as tethered satellites (Crelling et al. (1997)) and lifting
cranes in off-shore engineering (Pesce et al. (2006)). From

� Partially supported by the Spanish government research project
DPI2010-15110.

a closed system perspective the mass of these systems
may considered to be constant, but the decomposition into
open subsystems will lead to systems with variable mass.
The derivation of the equations of motion for systems
with variable mass is not as straightforward as it would
normally be for a system with constant mass. The reason
is that the basic principles of dynamics, such as Lagrange’s
or Hamilton’s equations, are only truly valid when applied
to a definite set of particles or rigid bodies. Indeed, in
(Pesce (2003)) it is shown that a naive application of the
usual Lagrange equations to a system with mass varying
explicitly with position generally leads to erroneous equa-
tions of motion. Hence, to study systems with varying
mass, one can proceed by extending the Lagrange equa-
tions. In a fashion similar as the inclusion of dissipative
forces via the usual Rayleigh dissipation function, such
approach basically consists in adding terms to the right-
hand side of the equation that compensate for the non-
conservative forces stemming from the loss or gained mass
in the system. However, the addition of non-conservative
forces destroys the variational character of the equations,
i.e., the system is not completely characterized by its
Lagrangian alone. Another problem that arises is how the
various subsystems can be interconnected in a systematic
and consistent manner.
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In this paper, we study physical systems with mass varying
explicitly with position and their properties in the port-
Hamiltonian modeling framework. The port-Hamiltonian
formalism combines the classical Lagrangian and Hamil-
tonian approach with network modeling in a variety of
domains (e.g., mechanical, electrical, electromechanical,
hydrodynamical, and thermodynamical); see (Van der
Schaft (2000)) for a basic introduction and (Duindam et al.
(2009)) for a comprehensive summary of the developments
of this framework over the past decade. Exposing the rela-
tion between the energy storage, dissipation, and intercon-
nection structure, this framework underscores the physics
of the system. One of the strong aspects of the port-
Hamiltonian formalism is that a power-preserving inter-
connection between port-Hamiltonian systems results in
another port-Hamiltonian system with composite energy,
dissipation, and interconnection structure. Based on this
principle, complex, multidomain systems can be modeled
by interconnecting port-Hamiltonian descriptions of its
subsystems.

In order to present the essential ideas as clear as possible
we will treat the simple problem of a heavy cable being de-
ployed from a reel by the action of gravity. Section 2 briefly
reviews the application of the Lagrangian and Hamiltonian
formalism from both a closed and open system perspective.
The discrepancies occurring in the latter case are high-
lighted and possible solutions are discussed. In Section
3, it is first briefly shown how the classical Hamiltonian
equations can be generalized to port-Hamiltonian systems
with dissipation. Next, the port-Hamiltonian structure is
accommodated to include systems with mass depending
explicitly on position. The paper is concluded by con-
sidering the cable-reel system as the interconnection of
two open port-Hamiltonian (sub)systems in Section 4, and
some final remarks in Section 5.

2. BACKGROUND MATERIAL AND A MOTIVATING
EXAMPLE

In classical mechanics the starting point in setting up
the Lagrangian equations of motion is to determine the
Lagrangian, see e.g., (Abraham and Marsden (1978)).
For a mechanical system consisting of N particles with
constant mass mk, k = 1, 2, . . . , N , the Lagrangian is given
by L(r, ṙ) = T ∗(ṙ) − V (r), where r = col(r1, . . . , rN )
represents the positions of the particles, ṙ = dr/dt are the
corresponding velocities, T ∗(ṙ) is the kinetic (co-)energy

T ∗(ṙ) =
1

2

N∑
k=1

mk‖ṙk‖
2, (1)

and V (r) is the potential energy. If the system is subjected
to holonomic constraints, then it is convenient to write
the Lagrangian in terms of generalized coordinates q =
col(q1, . . . , qn), where n ≤ 3N is the number of degrees of
freedom. Letting r = r̂(q), then the kinetic (co-)energy
takes the form

T ∗(q, q̇) =
1

2
q̇T M(q)q̇, (2)

with generalized mass matrix

M (q) :=

[
∂r̂

∂q
(q)

]T
[
m1 . . .

mk

]
∂r̂

∂q
(q). (3)

The equations of motion, which are equivalent to Newton’s
second law, are then the Lagrange equations

d

dt

∂L

∂q̇j

−
∂L

∂qj

= 0, j = 1, 2, . . . , n, (4)

where L(q, q̇) = T ∗(q, q̇) − V (q).

In passing on to the Hamiltonian formulation, we define
the conjugate momenta p = col(p1, . . . , pn) as pj = ∂L

∂q̇j
,

which in this case are simply given by p = M (q)q̇. Hence,
the second-order equations (4) transform into 2n first order
equations

q̇j =
∂H

∂pj

,

ṗj = −
∂H

∂qj

, j = 1, 2, . . . , n,

(5)

where the Hamiltonian

H(q, p) =
1

2
pT M−1(q)p + V (q) (6)

represents the total energy stored by the system. A key
property of (5) is that the rate of change of the Hamilto-
nian

Ḣ(q, p) = 0, (7)

expressing that the energy is conserved within the system.

The Lagrange equations (4), with as Lagrangian the dif-
ference between the kinetic co-energy and the potential
energy, are only valid for conservative systems. The same
holds for the associated Hamiltonian equations (5). If the
system is not purely conservative it can not completely
be characterized by its Lagrangian. Moreover, as will be
shown next, a straightforward application of the usual La-
grange equations to a system with mass varying explicitly
with position leads to discrepancies in the formulation of
the equations of motion.

2.1 Cable-Reel System: A Closed System Approach

Consider the elementary problem of a heavy cable that
is deployed from a reel depicted in Fig. 1 by the action
of gravity. The empty reel has radius R and moment of
inertia Io around the axis of rotation. The mass per unit
length of the non-stretching and infinitely flexible cable is
denoted by μ. For simplicity we assume that the diameter
of the cable is very small compared to the diameter of
the reel and that all turns can be accommodated into a
single winding layer. Furthermore, let � be the total length
of the cable such that the total mass of the cable equals
mc = μ�. If qr, with qr ≤ �, represents the length of the
cable that is wounded on the reel, then the cable’s wounded
and suspended mass equal mr = μqr and ms = mc − mr,
respectively.

As shown in (Pesce (2003)), when the cable-reel system
is considered as a closed (invariant mass) system, the
equation of motion can be derived using the Lagrangian
formalism. Indeed, selecting the angular displacement θr

as the configuration coordinate, together with its associ-
ated angular velocity ωr = θ̇r, the total kinetic (co-)energy
is given by

T ∗(ωr) =
1

2

(
Io + mrR

2
)
ω2

r +
1

2
msq̇

2

s

=
1

2

(
Io + mcR

2
)
ω2

r ,
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Fig. 1. A cable-reel system.

where we have used the fact that translational displace-
ment can be expressed as qs = � − Rθr, so that the
translational velocity equals q̇s = −Rωr, respectively. The
potential energy due to the action of gravity is given by

V (θr) = −

�−Rθr∫
0

gmsdqs = −
1

2
gμ(� − Rθr)

2. (8)

Hence, defining the Lagrangian L(θr, ωr) = T ∗(ωr)−V (θr)
and evaluating the usual Lagrange equation

d

dt

(
∂L

∂ωr

)
−

∂L

∂θr

= 0, (9)

yields
(
Io + mcR

2
)
ω̇r + gμR(� − Rθr) = 0.

2.2 Cable-Reel System: An Open System Perspective

Physically the cable-reel system can be separated into
two subsystems at the mass transmission port indicated
in Fig. 1. At this port, the reel and the wounded part
of the cable gain mass at rate ṁr = μRωr, whereas the
suspended part of cable loses mass at rate ṁs = −μq̇s,
and vice-versa. Let us first consider the subsystem formed
by the reel and the wound part of the cable. Intuitively,
it seems natural to consider this subsystem as just a
position-dependent inertia Ir(θr) = Io + μR3θr, with θr ≥
0. Since a moment of inertia is defined by a relationship
between angular momentum pr and angular velocity ωr,
we have pr = I(θr)ωr. Hence, the equation of motion for
this subsystem is given by

ṗr =
(
Io + μR3θr

)
ω̇r + μR3ω2

r = τr , (10)

where τr denotes some external torque acting on the
subsystem. In deriving the equation of motion using the
Lagrangian approach, we define Lr(θr, ωr) = 1

2
Ir(θr)ω

2
r ,

and evaluate

d

dt

(
∂Lr

∂ωr

)
−

∂Lr

∂θr

= τr. (11)

However, we now obtain(
Io + μR3θr

)
ω̇r +

1

2
μR3ω2

r = τr, (12)

which, in comparison to (10), contains an erroneous factor
1

2
.

A similar discrepancy occurs using the Hamiltonian equa-
tions. Indeed, let

Hr(θr, pr) =
1

2
I−1

r (θr)p
2

r, (13)

yielding

θ̇r =
∂Hr

∂pr

=
pr

Io + μR3θr

,

ṗr = −
∂Hr

∂θr

+ τr =
1

2
μR3

(
pr

Io + μR3θr

)2

+ τr,

(14)

while we know from (10) that ṗr = τr.

The main reason for this discrepancy is due to the fact
that the Lagrange and Hamiltonian equations in the form
of (11) and (14), respectively, are generally only suited for
conservative systems. Since the reel is gaining or losing
mass via the mass transmission port, it is not conservative
or lossless. Starting from Newton’s second law, we have

ωr

d

dt

(
Ir(θr)ωr

)
= Ir(θr)ωrω̇r + İr(θr)ω

2

r = ωrτr, (15)

which, by using d
(

1

2
Ir(θr)ω

2
r

)
/dt = Ir(θr)ωrω̇r+

1

2
İr(θr)ω

2
r ,

can be written as

d

dt

(
1

2
Ir(θr)ω

2

r

)
= ωrτr −

1

2
İr(θr)ω

2

r . (16)

Integrating the latter over the interval [t0, t1] yields

1

2
Ir

(
θr(t1)

)
ω2

r(t1) −
1

2
Ir

(
θr(t0)

)
ω2

r(t0) =

t1∫
t0

ωr(t)τr(t)dt −
1

2

t1∫
t0

İr

(
θr(t)

)
ω2

r(t)dt,
(17)

which states that the stored energy equals the supplied
energy minus the loss or gain of energy due to the outflow
or inflow of mass, respectively.

A possible solution to compensate for the erroneous term
is to add to the right-hand sides of (11) and (14) an
additional term − 1

2
(dIr(θr)/dθr)ω

2

r ; see (Pesce (2003)).
However, two problems arise: (i) the variational character
that makes the Lagrangian equations so appealing is
lost, and (ii) if a similar Lagrangian subsystem for the
suspended part of the cable is derived it is unclear how
to formally describe the interconnection between the two
subsystems.

3. THE PORT-HAMILTONIAN FORMALISM

Historically, the Hamiltonian approach has its roots in
analytical mechanics and starts from the principle of least
action, via the Lagrange equations and the Legendre trans-
formation, towards the Hamiltonian equations of motion.
On the other hand, the network modeling approach stems
from electrical engineering, and constitutes a cornerstone
of systems theory. While much of the analysis of physical
systems has been performed within the Lagrangian and
Hamiltonian framework, the network modeling point of
view is prevailing in modeling and simulation of (complex)
physical systems. The framework of port-Hamiltonian sys-
tems combines both points of view. Although the general
structure of a port-Hamiltonian system possesses very rich
mathematical properties, we will only highlight its most
employed form that is suitable for the problem at hand.
The interested reader is referred to (Van der Schaft (2000))
for a basic introduction, and to (Duindam et al. (2009))
for a comprehensive summary of the developments of this
framework over the past decade.
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3.1 Input-State-Ouput Hamiltonian Systems

A major generalization of the classical Hamiltonian for-
malism is given by the port-Hamiltonian equations

ẋ = J(x)
∂H

∂x
(x) + G(x)u,

y = GT (x)
∂H

∂x
(x),

(18)

where x are local coordinates for an n-dimensional state
space manifold X , the Hamiltonian H(x) denotes the
total stored energy, u, y ∈ R

m denote the system’s port
variables (i.e., inputs and outputs, respectively), G(x)
denotes the n×m port distribution matrix, and J(x) is an
n×n matrix, which is assumed to be skew-symmetric, i.e.,
J(x) = −JT (x). Because of skew-symmetry of J(x), it

is easily noted that Ḣ(x) = uT y, which upon integration
over the time interval [t0, t1], i.e.,

H
(
x(t1)

)
− H

(
x(t0)

)
=

t1∫
t0

uT (t)y(t)dt, (19)

expresses the fact that the increase of internal energy
in the system is equal to the externally supplied work
(conservation of energy). The system is conservative if the
Hamiltonian H(x) is bounded from below.

Energy losses (due to e.g. friction) are naturally included
by terminating (some of) the ports with dissipative re-
lationships. Indeed, consider instead of G(x)u in (18) a
term

[G(x) GD(x)]

[
u

uD

]
= G(x)u + GD(x)uD

and extend the corresponding output equations y =
GT (x)∂H

∂x
(x) to

[
y

yD

]
=

⎡
⎢⎣GT (x)

∂H

∂x
(x)

GT
D(x)

∂H

∂x
(x)

⎤
⎥⎦ .

Here uD, yD ∈ R
mD denote the port variables which are

terminated by static relationships of the form

uD = −F D(yD), (20)

where the dissipative characteristics F D : R
mD → R

mD

satisfy yT
DF D(yD) ≥ 0. Hence (19) extends to

H
(
x(t1)

)
− H

(
x(t0)

)
=

t1∫
t0

uT (t)y(t)dt −

t1∫
t0

yT
D(t)F D

(
yD(t)

)
dt,

(21)

expressing that the increase of internal energy in the
system is equal to the externally supplied work minus the
dissipated energy. The system is passive if the Hamiltonian
H(x) is bounded from below.

A particular case, but often used, is when (20) is linear,
i.e., uD = −RDyD, where RD is a symmetric and positive
semi-definite matrix of appropriate dimensions. Then, (18)
take the form

ẋ =
(
J(x) − R(x)

)∂H

∂x
(x) + G(x)u,

y = GT (x)
∂H

∂x
(x),

(22)

where R(x) := GD(x)RDGT
D(x). Equation (22) is called

a port-Hamiltonian system with dissipation.

It will be shown next that (18) can be naturally accommo-
dated to include systems with mass depending explicitly
on position.

3.2 Position-Dependent Models

For a system consisting of N particles with mass depending
explicitly on position the kinetic (co-)energy takes the
form 1

T ∗(r, ṙ) =
1

2

N∑
k=1

mk(rk)‖ṙk‖
2. (23)

Assuming for simplicity that there are no holonomic con-
straints (r = q), the associated conjugate momenta are
given by

pk =
∂T ∗

∂ṙk

(r, ṙ) = mk(rk)ṙk, k = 1, . . . , N.

so that the kinetic energy yields

T (r, p) =
1

2

N∑
k=1

m−1

k (rk)‖pk‖
2. (24)

Let the Hamiltonian H(r, p) = T (r, p) + V (r) represent
the total stored energy, then the equations of motion for
the k-th particle in port-Hamiltonian form read

ẋk = Jk

∂H

∂xk

(x) + Gkuk + GDk
uDk

,

yk = GT
k

∂H

∂xk

(x),

yDk
= GT

Dk

∂H

∂xk

(x),

(25)

with xk = col(rk, pk),

Gk =

[
0

Bk

]
, Jk =

[
0 I
−I 0

]
.

Inspired by the energy-balance in (17), let us instead of
the static relationships (20) terminate the ports by

uDk
= −

1

2
ṁk(rk)yDk

. (26)

Then, by letting

GDk
=

[
0 0

0 I

]
,

the port-Hamiltonian structure of a system with position-
dependent mass is described by

[
ṙk

ṗk

]
=

[
0 I
−I −Dk(r, p)

]⎡
⎢⎢⎣

∂H

∂rk

(r, p)

∂H

∂pk

(r, p)

⎤
⎥⎥⎦ +

[
0

Bk

]
uk,

yk =
[
0 BT

k

]
⎡
⎢⎢⎣

∂H

∂rk

(r, p)

∂H

∂pk

(r, p)

⎤
⎥⎥⎦ , k = 1, . . . , N, (27)

1 It is important to realize that (23) differs from (1) in that the
masses of the particles are now depending explicitly on position, i.e.,
mk = mk(rk), whereas the dependence of (2) on the generalized
position coordinates is only due to a change of coordinates (removal
of the holonomic constraints).
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where

Dk(r, p) :=
1

2
ṁk(rk)I =

1

2
ṙT

k

∂mk

∂rk

(rk)I

=
1

2
m−1

k (rk)pT
k

∂mk

∂rk

(rk)I

(28)

represents the gained or lost mass.

Note that Dk plays a role that is similar to the dissipa-
tive matrix R that represents the energy converted into
heat in (22). Equation (27) still has a Hamiltonian form,
however, the matrix Dk is not (positive) definite because
it represents the mass lost or gained.

In order to show that (27) indeed provides the correct
equations of motion, we notice that by Newton’s second
law we must have ṗk = − ∂V

∂rk
(r) + Bkuk, or equivalently,

−
∂T

∂rk

(r, p) − Dk(r, p)
∂T

∂pk

(r, p) ≡ 0,

which, in turn, implies (28).

The energy-balance of the overall system reads

H
(
x(t1)

)
− H

(
x(t0)

)
=

t1∫
t0

N∑
k=1

uT
k (t)yk(t)dt (29)

−

t1∫
t0

N∑
k=1

[
∂H

∂pk

(
x(t)

)]T

Dk

(
x(t)

) ∂H

∂pk

(
x(t)

)
dt,

which now expresses that the increase of internal energy
in the system is equal to the externally supplied work
plus or minus—depending on the sign of Dk—the energy
associated to the gained or lost mass.

4. THE CABLE-REEL SYSTEM REVISITED

Let us return to the cable-reel system discussed in Section
2. First, the equations of motion for the reel and suspended
part of the cable subsystems are expressed as a port-
Hamiltonian system. Secondly, it is shown that the port-
Hamiltonian framework allows the two subsystems to be
interconnected in a concise and systematic manner.

4.1 The Reel Subsystem

As illustrated in Section 2.2, the reel with the correspond-
ing wounded cable is a position-dependent mass system.
Hence, applying the procedure outlined in the previous
section, the reel subsystem can be represented in a port-
Hamiltonian fashion as follows. Since n = N = 1 (the
system consist of only one particle with one degree of
freedom), let x = col(θr, pr), u = τr, and y = ωr. Hence,
according to (27), we have

[
θ̇r

ṗr

]
=

[
0 1
−1 −Dr(θr, pr)

]⎡
⎢⎢⎣

∂Hr

∂θr

(θr, pr)

∂Hr

∂pr

(θr, pr)

⎤
⎥⎥⎦ +

[
0
1

]
τr,

ωr = [0 1]

⎡
⎢⎢⎣

∂Hr

∂θr

(θr, pr)

∂Hr

∂pr

(θr, pr)

⎤
⎥⎥⎦ , (30)

with the same Hamiltonian as given in (13), and

Dr(θr, pr) :=
1

2
İr(θr) =

1

2

dIr

dθr

(θr)I
−1

r (θr)pr. (31)

The associated energy-balance takes the form

Hr

(
θr(t1), pr(t1)

)
− Hr

(
θr(t0), pr(t0)

)
=

t1∫
t0

τr(t)ωr(t)dt

−

t1∫
t0

Dr

(
θr(t), pr(t)

) [
∂Hr

∂pr

(
θr(t), pr(t)

)]2

dt,

which, by noting that ωr = I−1(θr)pr, precisely coincides
with (17).

4.2 The Cable Subsystem

Similarly, the suspended part of the cable is also a position-
dependent system with mass ms(qs) = mc+μqs. Following
(27), with vs = q̇s, ps = ms(qs)vs, and fs the external
force in the transmission point, the port-Hamiltonian
description is

[
q̇s

ṗs

]
=

[
0 1
−1 −Ds(qs, ps)

]⎡
⎢⎢⎣

∂Hs

∂qs

(qs, ps)

∂Hs

∂ps

(qs, ps)

⎤
⎥⎥⎦ +

[
0
1

]
fs,

vs = [0 1]

⎡
⎢⎢⎣

∂Hs

∂qs

(qs, ps)

∂Hs

∂ps

(qs, ps)

⎤
⎥⎥⎦ , (32)

with

Ds(qs, ps) :=
1

2
ṁs(qs) =

1

2

dms

dqs

(qs)m
−1

s (qs)ps. (33)

and Hs(qs, ps) = 1

2
m−1

s (qs)p
2
s + V (qs), where we recall

that V (qs) denotes the potential energy, see (8), due to
the gravitational force acting on the cable.

4.3 The Overall System

Linking the reel and the suspended cable subsystems is
achieved by setting

τr = Rfs, (34)

vs = −Rωr. (35)

This leads to the port-Hamiltonian system 2

⎡
⎢⎣

θ̇r

ṗr

q̇s

ṗs

⎤
⎥⎦ =

⎡
⎢⎣

0 1 0 0
−1 −Dr 0 0
0 0 0 1
0 0 −1 −Ds

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Hr

∂qr

∂Hr

∂pr

∂Hs

∂qs

∂Hs

∂ps

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎣

0
1
0

−R−1

⎤
⎥⎦λ,

(36)

together with

2 For ease of presentation we omit the arguments.
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0 =
[
0 1 0 −R−1

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Hr

∂qr

∂Hr

∂pr

∂Hs

∂qs

∂Hs

∂ps

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (37)

where λ = τr = Rfs denotes the internal constraint force.
Note that this particular interconnection results in G = 0,
i.e., the interconnected system no longer has external
ports. The constraint on the velocities, (35), is represented
by (37).

The internal constraint force can be eliminated as follows.
Let b =

[
0 1 0 − 1

R

]T
and let b⊥ denote its full-rank

left annihilator 3 , i.e.,

b
⊥

b = 0 ⇒ b
⊥ =

[
1 0 0 0
0 1 0 R
0 0 1 0

]
. (38)

Hence, premultiplying (36) with b⊥, and using the defini-
tions in (31) and (33), yields

⎡
⎣ θ̇r

ṗr + Rṗs

q̇s

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂Hr

∂pr

(θr, pr)

−R
∂V

∂qs

(qs)

∂Hs

∂ps

(qs, ps)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (39)

From the constraint in (35), q̇s = −Rθ̇r, the qs-dynamics
are superfluous and can thus be disregarded. Finally, defin-
ing the total momentum pt := pr+Rps, the interconnected
system reduces to

[
θ̇r

ṗt

]
=

[
0 1
−1 0

] ⎡
⎢⎢⎣

∂Ht

∂θr

(θr, pt)

∂Ht

∂pt

(θr, pt)

⎤
⎥⎥⎦ , (40)

with Hamiltonian function

Ht(θr, pt) =
1

2
(Io + mcR

2)−1p2

t + V (θr). (41)

The port-Hamiltonian equations (40), with ωr = (Io +
mcR

2)−1pt, precisely correspond to the equation of motion
derived in Section 2.1.

3 In general, a full-rank left annihilator of b ∈ R
n×m, b

⊥, implies:
b
⊥

b = 0 and rank(b⊥) = n − m.

5. CONCLUDING REMARKS

We have presented the application of the port-Hamiltonian
formalism to systems with mass explicitly dependent on
position. The inclusion of mass transport in the port-
Hamiltonian framework turns out to be almost as straight-
forward as the inclusion of dissipative elements. The dif-
ference is that in the latter case free energy is always
converted into heat, while in the former energy can both
be added or extracted from the system. Apart from pro-
viding a consistent modeling framework, several control
design methodologies are available that exploit the energy
and interconnection structure; see for instance (Duindam
et al. (2009)). It is precisely in this context that a port-
Hamiltonian description can be of added value.
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