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ABSTRACT 
Real-time processing is a requirement for many practical 
signal processing applications. In this work we implemented 
online 2-source acoustic event detection and localization 
algorithms in a Smart-room, a closed space equipped with 
multiple microphones. Acoustic event detection is based on 
HMMs that enable to process the input audio signal with 
very low latency; acoustic source localization is based on 
the SRP-PHAT localization method which is known to per-
form robustly in most scenarios. The experimental results 
from online tests show high recognition accuracy for most of 
acoustic events both isolated and overlapped with speech. 

1. INTRODUCTION 

Activity detection and description is a key functionality of 
perceptually aware interfaces working in collaborative hu-
man communication environments like meeting-rooms or 
classrooms. Actually, in the context of person-machine 
communication, computers involved in human communica-
tion activities have to meet certain requirements and be de-
signed to have minimal possible awareness from the users. 
Consequently, there is a need of perceptual user interfaces 
which are multimodal and robust, and which use unobtru-
sive sensors that should sense the ongoing human activity. 
As human activity is reflected in a rich variety of acoustic 
events, either produced by the human body or by objects 
handled by humans, acoustic event detection (AED) may 
help to describe the human and social activity. Ringing tele-
phones, clapping or laughter inside a speech discourse, a 
strong yawn in the middle of a lecture, knocks on doors, 
doors opening and closing, footsteps, or even the difference 
between one person speaking or more people speaking at the 
same time, are auditory cues that can be used to detect rele-
vant events and state changes on meetings.  

For meeting-room environments, the task of AED is rela-
tively new; however, it was already evaluated in the frame-
work of two international evaluation campaigns: in CLEAR 
(Classification of Events, Activities, and Relationships 
evaluation campaigns) 2006 [1], by three participants, and in 
CLEAR 2007 [2], by six participants. In the last evaluations, 
5 out of 6 submitted systems showed accuracies below 25%, 
and the best system got 33.6% accuracy [3]. In most submit-
ted systems, the standard combination of cepstral coeffi-

cients and hidden Markov model (HMM) classifiers, widely 
used in speech recognition, was exploited. It was found that 
the overlapping segments account for more than 70% of 
errors produced by every submitted system. It was clear 
since then that the detection of overlapped AEs was a chal-
lenging task in the context of meeting-room  AED [4][5]. 

In the work reported here we implemented both an 
HMM-based AED system and an acoustic source localiza-
tion (ASL) system operating in real-time (on-line) in the 
UPC's smart-room using the signals captured by the set of 
distant microphones available in that room. The proposed 
system is able to detect not only isolated AEs but also AEs 
overlapped with speech. The problem of signal overlaps is 
dealt with at the level of models [6]: additional acoustic 
models for signal overlaps are considered for both training 
and testing. 

There was a first online implementation of AED and 
ASL technologies in our smart-room in the context of the 
European CHIL project [7] in 2007. That one-source AED 
was implemented using support vector machines (SVMs) [6]. 
An improved version was developed later, in 2009 [8], where 
the system was able to detect not only isolated AEs but also 
AEs overlapped with speech. In those SVM realizations, the 
AED was performed by sequential classification of 1sec slid-
ing windows with 0.2 sec shift. In the work reported here we 
propose an alternative algorithm for AED based on HMMs, 
where the acoustic analysis is performed on a frame-by-
frame basis, using the Viterbi segmentation algorithm for 
recognition. Besides, the acoustic source localization algo-
rithm is extended to 2 sources. 

2. SCENARIO, DATABASES AND 
EXPERIMENTAL SETUP 

In our work we consider 12 classes of AEs which naturally 
occur in meeting-room environments, like in [4], [5], [6] and 
[8] (Table 1). 

The UPC's smart-room (Figure 1) is a closed space 
equipped with multiple microphones and cameras, which 
was designed to assist human activities. It provides infra-
structure for doing research on audio-visual perception tech-
nologies.  

The meeting scenario adopted for this work assumes 3 
different modes: 
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• there is no acoustic activity 
• there is only one acoustic source in the room 
• there are two simultaneous acoustic sources, one of 

which is always speech 
 

 
 

Figure 1 – The UPC smart-room. 
 

Table 1 – Number of occurrences per acoustic event class 
for the training and testing data. 

Event Type label Number of Oc-
currences 

Door knock [kn] 79 
Door open/slam [ds] 256 
Steps [st] 206 
Chair moving [cm] 245 
Spoon/cup jingle [cl] 96 
Paper work [pw] 91 
Key jingle [kj] 82 
Keyboard typing [kt] 89 
Phone ring [pr] 101 
Applause [ap] 83 
Cough [co] 90 
Speech [sp] 74 

 
 
In the case when there are two simultaneous acoustic 

sources, we assume that speech is always at the right part of 
the room (a speaker close to the blackboard), and the other 
AE is at the left part (people placed around the table). This 
assumption enables to associate each of the two acoustic 
sources with the coordinates provided by the ASL system.  

The database used to train and test the models consists of 
the audio part of the publicly available multimodal database 
used in [5]. The number of acoustic event instances for each 
isolated AE is displayed in Table 1. The database of AEs 
overlapped with speech was artificially generated using 
speech recorded separately. To do that, for each AE instance, 
a segment with the same length was extracted from a random 
position inside the speech signal. The overlapping was per-
formed with 3 different signal-to-noise ratios (SNRs): 10dB, 
0dB, -10dB, where speech is considered as “noise”. 

Although the database with overlapped AEs is generated 
in an artificial way, it has some advantages: 

• The behavior of the system can be analyzed for dif-
ferent levels of SNR. 

• The existing databases of isolated AEs with high 
number of instances can be used for training and test-
ing.  

The metric referred to as AED-ACC [7], which is the F-
score (harmonic mean between precision and recall), is em-
ployed to assess the accuracy of the presented algorithm. 

3. METHODOLOGY 

The flowchart of the proposed online AED-ASL system is 
depicted in Figure 2. It consists of 4 main blocks: audio ac-
quisition, 2-source AED, 2-source ASL and visualization.  
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Figure 2 – The flowchart of the proposed AED-ASL system 

working online. 
 
A software package called SmartAudio++ developed un-

der Linux platform was used to implement those compo-
nents. In the audio acquisition block, the audio signals are 
captured simultaneously from 24 microphones from T-shape 
clusters located on the walls of the room. The audio signal 
from the microphone #18 is used for subsequent feature ex-
traction and recognition in the 2-source AED block; the 2-
source ASL block uses the whole set of 24 microphones to 
estimate the position(s) of the acoustic source(s). The micro-
phone #18 is used because it is the nearest one to the table.  
The output from the 2-source AED block is either an isolated 
AE (if one source is detected) or an AE overlapped with 
speech (if 2 sources are detected). The output from the 2-
source ASL block is either one or two sets (x, y) of coordi-
nates of the acoustic source(s). Both outputs are combined 
together and visualized by a graphical user interface (GUI). 
An ambiguity happens when the number of acoustic sources 
detected by the AED and ASL blocks is different. In this case 
the number of the displayed acoustic sources corresponds to 
the number of acoustic sources detected by the AED block. 
The AEs are displayed in default positions if the number of 
localization coordinates is less than the number of detected 
AEs. 

 
3.1 Two-source AED system 
The first step in our 2-source AED system is feature extrac-
tion. A set of audio spectro-temporal features is extracted to 
describe every audio signal frame. In our experiments, the 
frame length is 30 ms with 20 ms shift, and a Hamming win-
dow is applied. There exist several alternative ways of para-
metrically representing the spectrum envelope of audio sig-
nals. The mel-cepstrum representation is the most widely 
used in recognition tasks. In our work, we employ a variant 
of them called frequency-filtered (FF) log filter-bank ener-
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gies (LFBE) [9]. It consists of applying, for every frame, a 
short-length FIR filter to the vector of log filter-bank energies 
vector, along the frequency variable. The transfer function of 
the filter is z-z-1, and the end-points are taken into account. 
That type of features have been successfully applied not only 
to speech recognition but also to other speech technologies 
like speaker recognition [10]. In the experiments, 16 FF-
LFBEs are used, along with their first temporal derivatives, 
the latter representing the temporal evolution of the envelope. 
Therefore, a 32-dimensional feature vector is used.  

We use a hidden Markov model (HMM) based AED sys-
tem like the ones used for continuous speech recognition, 
where Gaussian mixture models (GMM) are used to compute 
the state emission probability [11][5]. The HTK toolkit [12] 
is used for training and testing the HMM–GMM system. 
There is one HMM for each AE, with only one emitting state, 
a topology that showed the best results using a cross-
validation procedure on the development data. Hence, 
GMMs are actually used, and the HMM formalism is only 
concerned with the actual implementation. 64 Gaussian com-
ponents with diagonal covariance matrix are used per model. 
Each HMM is trained with the signal segments belonging to 
the corresponding event class using the standard Baum–
Welch training algorithm [11]. In total, 24 HMMs are trained, 
one for each isolated AE class and one for each AE class 
overlapped with speech. For testing, the Viterbi algorithm is 
used. In the online system implementation we use ATK, an 
API designed to facilitate building experimental applications 
with HTK. 

In the proposed implementation, the AED recogniser al-
ways operates in one of three possible states as indicated by 

 

 
 

Figure 3 – Finite-state machine. 
 

 
 

Figure 4 – AED grammar. 

the state diagram shown in Figure 3. Initially, when there is 
no acoustic activity in the room, the recognizer operates in 
FLUSH state and discards the input audio packets (frames). 
When the energy of the N consecutive packets exceeds the 
predefined threshold, the recognizer starts operating in RUN 
state. Similarly, the recognizer goes back to FLUSH state if 
N consecutive packets are below this threshold. In RUN state 
the recognizer continuously performs the Viterbi decoding of 
the waveform within the time interval [t0 ti], where t0 is the 
time instance when the first non-silence packet is received, 
and ti is the current time stamp. The defined grammar, illus-
trated in Figure 4 allows only one AE to be detected on that 
interval. In the ANS state the recognizer sends the current 
decision obtained in the RUN state to the visualization block. 
There are 2 possible conditions for the recognizer going to 
the ANS state: 

• The confidence of the current decision exceeds a 
predefined threshold. In this case the corresponding 
AE label is sent to the visualization block. Very often 
a confident decision is obtained with just a few input 
packets. In this case the time delay between the AE 
production and its visualization is small. 

• During 1 second of operation in the RUN state, a de-
cision with enough confidence is not obtained. In this 
case the “unknown” AE is sent to the visualization 
block. 

The recognizer goes back to the RUN state immediately 
when the output label is sent to the visualization block.  
 
3.2 Two-source acoustic source localization system 
The acoustic localization system used in this work is based 
on the SRP-PHAT [13] localization method, which is known 
to perform robustly in most scenarios. The SRP-PHAT algo-
rithm is briefly described in the following. Consider a sce-
nario provided with a set of NM microphones from which we 
choose a set microphone pairs, denoted as Ψ. Let Xi and Xj be 
the 3D location of two microphones i and j. The time delay 
of a hypothetical acoustic source placed at  is ex-
pressed as: 
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where s is the speed of sound. The 3D space to be analyzed is 
quantized into a set of positions with typical separations of 5 
to 10 cm. The theoretical TDoA jix ,,τ  from each exploration 
position to each microphone pair is pre-calculated and stored. 
PHAT-weighted cross-correlations of each microphone pair 
are estimated for each analysis frame [14]. They can be ex-
pressed in terms of the inverse Fourier transform of the esti-
mated cross-power spectral density Gi,,j(f) as follows:  
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The contribution of the cross-correlation of every micro-
phone pair is accumulated for each exploration region using 
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the delays pre-computed in Eq.1. In this way, we obtain a 
sound map at every time instant, as depicted in Figure 5. Fi-
nally, the estimated location of the acoustic source is the po-
sition of the quantized space that maximizes the contribution 
of the cross-correlation of all microphone pairs: 

 
∑

Ψ∈

=
ji

jixji
x

Rargmaxx
,

,,, )(ˆ τ      (3) 

 
The sum of the contributions of each microphone pair cross-
correlation gives a value of confidence of the estimated posi-
tion, which is assumed to be well-correlated with the likeli-
hood of estimation. 

 

 
 

Figure 5 – Example of sound map obtained with the SRP 
PHAT process. 

 
In the proposed scenario the acoustic localization system 

has to detect up to 2 acoustic sources produced simultane-
ously. We employ the method that dynamically estimates the 
number of sources based on a birth/death system. The ASL 
system uses a spatial segmentation algorithm to group loca-
tions that are close to each other in space and time. When a 
minimum number of locations Nb are found in a space region 
over a defined time window Tb, the system decides whether it 
is a new acoustic source. Similarly, if the previously detected 
acoustic source does not have any measurements that fall 
within its acceptance region for a given amount of time Td, 
then it is dropped. The ratio between Tb and Nb used in the 
detection module is a design parameter. It must be high 
enough to filter out noises and outliers, but also not too high 
in order to be able to detect sporadic acoustic events. In our 
experiments Nb is set to 4, Tb is 460 ms and Td is also 460 ms. 

 
3.3 Visualization 
We developed a graphical interface (GUI) that fully de-
scribes the acoustic activity in a smart room, and allows the 
observers to evaluate the system performance in a very con-
venient way. The GUI application is based on the QT Troll-
tech toolkit [15], an open-source (GPL) library widely used 
for the development of GUI programs. There are two screens 
in the GUI output, as shown in Figure 6. One corresponds to 
the real video captured from one of the cameras installed in 
the UPC’s smart-room, and the other is a graphical represen-
tation of the output of the AED and ASL technologies.  

When there is acoustic activity in the room, the GUI dis-
plays the animated puppets in the positions provided by the 
ASL system. The number of puppets depends on whether the 
acoustic event is produced in isolated manner (one puppet) or 

it is overlapped with speech (two puppets, one of which is 
always producing speech, as depicted in Figure 6). 

Using this application, a video recording has been cap-
tured that contains the output of the GUI during a session 
lasting about 2 min, where three people in the room speak, 
interact with each other or produce one of the 12 (isolated as 
well as overlapped with speech) meeting-room AEs reported 
in Table 1. The video recording has not been edited, so it 
shows what can be seen in the room in real time. The two 
functionalities are simply juxtaposed in the GUI, so e.g. it 
may happen that the AED output is correct but the output of 
acoustic source localization is not, so showing the right event 
in a wrong place.   

 

 
(a) 

 
(b) 

 
Figure 6 – The two screens of the GUI: (a) real-time video, and 

(b) graphical representation of the AED and ASL functionalities 
(‘‘cup clink” overlapped with speech is being produced). 

4. EXPERIMENTAL RESULTS  

In order to prove the adequateness of the proposed approach, 
a series of experiments has been conducted to compare the 
implemented AED system working online with the baseline 
offline system [5] and the results are presented in Table 2. In 
both online and offline tests the first column corresponds to 
the detection accuracy of the isolated acoustic events and the 
second one corresponds to AEs overlapped with speech.  

In our experiments we used 8 sessions of isolated acous-
tic events from the database described in Section 2. Addi-
tionally, these sessions were artificially overlapped with 
speech with different SNRs: -10 dB, 0 dB and +10 dB. For 
both offline and online tests, seven sessions (from 2 to 8) 
were used for training, and the remaining session 1 for test-
ing. 
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The main difference between the online and the offline 
tests is in the way of processing the input waveform. During 
the offline tests the entire session is available for Viterbi 
segmentation. In this case the only parameter for tuning is the 
word insertion penalty parameter (p-value) that is a kind of 
trade-off between misses and false alarms. In our experi-
ments p = -200. In online tests, the recognition is performed 
on a frame-by-frame basis using the additional modules de-
scribed in Sub-section 3.2: silence detector, finite state ma-
chine, etc. In that case, more parameters have to be tuned: the 
silence threshold, the number of silence frames, the confi-
dence thresholds for each AE, etc. Note that in the online 
tests the output hypothesis labels are those that are displayed 
by the visualization block.  

Table 2 – Comparison of the recognition results (in per-
centage) between offline and online AED systems. 

Offline system Online system AEs 
Isolated Overlap Isolated Overlap 

ap 100 100 92 84 
cl 100 100 85 89 
cm 97 97 64 65 
co 67 95 87 75 
ds 83 100 84 84 
kj 100 100 97 93 
kn 100 95 52 72 
kt 67 100 85 86 
pr 100 96 92 97 
pw 64 86 74 73 
st 80 82 75 70 
     
Average 91.3 % 80.6% 

 
As can be seen from Table 2, almost all AEs are well de-

tected in offline simulations. Relatively low detection rate 
corresponds to low-energy AEs, such as “keyboard typing”, 
“paper work” and “steps”; additionally, the AE “cough” is 
often confused with speech. In online simulations the best 
detection rate is achieved for AEs “applause”, “cup clink”, 
“key jingle” and “phone ring”.“Door knock” and “chair mov-
ing” showed relatively low detection rates; actually, these 
AEs have the shortest duration in the employed testing data-
base. In average, 80.6% of accuracy is achieved in online 
simulations. 

5. CONCLUSIONS AND FUTURE WORK 

In this work we developed a 2-source acoustic event detec-
tion and localization system running in real-time in the 
UPC’s smart-room. The detection of AEs is performed using  
a HMM approach, which allows analyzing the input wave-
form on a frame-by-frame basis that offers low latency. The 
AED and ASL systems are visually monitored by a GUI ap-
plication which shows the output of AED and ASL technolo-
gies jointly in real-time.  

In order to visualize the 2 acoustic sources of the over-
lapped AE in its correct position in the room, we adopted a 
scenario where speech can only appear at the right part and 
the remaining AE at the left. To remove this constraint, future 

work will be devoted to developing source separation tech-
niques in the room using multi-microphone processing.  

6. ACKNOWLEDGEMENTS 

This work has been funded by the Spanish project SARAI 
(TEC2010-21040-C02-01). The authors are grateful to Eros 
Blanco, Andrey Temko and Joan-Isaac Biel, co-authors of the 
previous versions of the system, for their contribution in the 
development of SmartFlow-based software deployed in the 
Smart-room.  The first author is partially supported by a 
grant from the Catalan autonomous government. 

REFERENCES 

[1] CLEAR, 2006. Classification of Events, Activities and 
Relationships. Evaluation and Workshop. 
<http://isl.ira.uka.de/clear06>. 
[2] CLEAR, 2007. Classification of Events, Activities and 
Relationships. Evaluation and Workshop. <http://www.clear-
evaluation.org/>. 
[3] A. Temko, C. Nadeu, J.-I. Biel, 2008, “Acoustic event 
detection: SVM-based system and evaluation setup in 
CLEAR’07”, Multimodal Technologies for Perception of 
Humans, LNCS, v. 4625, Springer. pp. 354–363, 2008. 
[4] X. Zhuang, X. Zhou, M. A. Hasegawa-Johnson and T. S. 
Huang, “Real-world acoustic event detection”, Pattern Rec-
ognition Letters, vol. 31, issue 12, pp. 1543-1551, 2010. 
[5] T. Butko, C. Canton-Ferrer, C. Segura, X. Giro, C. 
Nadeu, J. Hernando, J.R. Casas, “Improving detection of 
acoustic events using audiovisual data and feature level fu-
sion”, Proc. Interspeech, 2009. 
[6] A. Temko, C. Nadeu, “Acoustic event detection in meet-
ing-room environments”, Pattern Recognition Letters, vol. 
30/14, pp 1281-1288, Elsevier, 2009. 
[7] A. Waibel and R. Stiefelhagen, Computers in the human 
interaction loop, Springer, New York, USA, 2009. 
[8] E. Blanco, Identification of two simultaneous sources in 
a real meeting-room environment, Master Thesis, Politec-
nico di Milano and UPC, 2009. 
[9] C. Nadeu, D. Macho, J. Hernando, “Frequency & time 
filtering of filter-bank energies for robust HMM speech rec-
ognition”, Speech Communication, vol. 34, pp. 93-114, 
2001. 
[10] J. Luque and J. Hernando, “Robust speaker identifica-
tion for meetings: UPC CLEAR-07 meeting room evalua-
tion system”, Multimodal Technologies for Perception of 
Humans, LNCS, vol. 4625/2008, pp. 266-275, 2008. 
[11] L. Rabiner, B. Juang, Fundamentals of Speech Recogni-
tion, Prentice Hall, 1993. 
[12] S. Young, et al., The HTK Book (for HTK Version 3.2)”, 
Cambridge University, 2002. 
[13] J. Dibiase, H. Silverman, M. Brandstein, Microphone 
Arrays. Robust Localization in Reverberant Rooms, 
Springer, 2001. 
[14] M. Omologo, P. Svaizer, “Use of the crosspower-
spectrum phase in acoustic event location”, IEEE Trans. on 
Speech and Audio Processing, vol. 5:3, pp. 288–292, 1997. 
[15] QT Trolltech toolkit , http://trolltech.com/products/qt. 
 

1321


