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ON THE INTEGRABILITY OF POLYNOMIAL FIELDS IN THE PLANE
BY MEANS OF PICARD-VESSIOT THEORY

PRIMITIVO B. ACOSTA-HUMÁNEZ, J. TOMÁS LÁZARO, JUAN J. MORALES-RUIZ,
AND CHARA PANTAZI

Abstract. We study the integrability of polynomial vector fields using Galois theory of
linear differential equations when the associated foliations is reduced to a Riccati type folia-
tion. In particular we obtain integrability results for some families of quadratic vector fields,
Liénard equations and equations related with special functions such as Hypergeometric and
Heun ones. We also study the Poincaré problem for some of the families.

Introduction

We consider the polynomial differential system in C2 defined by

dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y), (1)

where P,Q are complex polynomial of degree at most m, namely P,Q ∈ Cm[x, y]. We
associate to system (1) the differential vector field

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
. (2)

Integral curves of vector field (2) correspond to solutions of system (1). We are mainly
interesting not in the behavior of these integral curves with respect to time t but in the orbits
which are solutions of the first order differential equation (foliation)

y′ =
Q(x, y)

P (x, y)
. (3)

Here ′ denotes derivative with respect to x. In this geometrical language of foliations, the
latter expression is usually written as a Pfaff equation

Ω = 0, (4)

Ω being the differential 1-form Ω = Q(x, y)dx − P (x, y)dy. Remind that the connection
between the vector field X and the 1-form Ω is given by LXΩ = 0, which means that the field
is tangent to the leaves of the foliation (orbits) defined by (4). From a dynamical point of
view, the general solution of equation (4), H(x, y) = C, where C is any constant, is given by
a first integral H of the original vector field X , i.e., a non-constant function that is constant
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along any solution (x(t), y(t)) of system (1). This is equivalent to say that X(H) = 0 and,
since LXΩ = 0, to Ω∧ dH = 0 as well and, therefore, to Ω = fdH for some suitable function
f . We remind that the Liouvillian first integrals H(x, y) are first integrals obtained from
C(x, y) by means of a combination of algebraic functions, quadratures and exponential of
quadratures.

In this work we will be concerned with the study of the integrability of some families of
equations (4) inside the complex analytical category, we mean, when the original vector field
X is complex polynomial (i.e. P,Q ∈ C[x, y]) or can be reduced to a complex polynomial
field. Note that for polynomial fields there are many open problems; for instance, two classical
problems are the following:

(i) Study the existence of invariant algebraic curves of system (1) (or of algebraic solutions
of equation (3)).

(ii) Study the existence of Liouvillian first integrals of system (1) (or study if the general
solution of equation (3) is Liouvillian).

For general polynomial fields, problems (i) and (ii) are difficult ones and today we are very
far away to obtain any effective method to decide if an arbitrary polynomial field has or
has not an invariant curve or an elementary or a Liouvillian first integral. In fact, problem
(i) is connected with the classical unsolved Poincaré problem: bound the degree of possible
invariant algebraic curves as a function of the degree of the field (or of the associated foliation
defined by (3)). As we will see, these two problems are not independent: they are related
by Darboux integrability approach and adjacent results due to Prelle–Singer and Singer ones
[43, 46].

The aim of this paper is to decide about the integrability in closed form of equation (3)
(or the equivalent equation (4)) when it can be reduced to a Riccati type equation,

y′ = a1(x) + a2(x)y + a3(x)y2, (5)

being a1, a2 and a3 rational functions with complex coefficients. For Riccati’s equations
there is a very nice theory of integrability in the context of the Differential Galois theory
of the associated second order linear differential equation. We will like to stress that this is
the natural framework where it must be considered several results about the integrability in
closed form of equation (5). Moreover in 1986, Kovacic in [27] obtained an effective algorithm
to decide if the equation (5) has an algebraic solution or not. Additionally by a theorem of
J. Liouville, the existence of an algebraic solution is exactly the definition of the integrability
for the equation (5) in the context of the Galois theory of linear differential equations. Thus,
for foliations of type (5) problems (i) and (ii) are equivalent and Kovacic’s algorithm is an
extremely powerful tool to solve them.

In some sense, this work can be considered as a very particular case of the Malgrange
approach to the Galois theory of codimension–one foliations [35, 36, 6], ie, for Riccati’s
codimension–one foliations on the complex plane. Our aim is not to obtain general theoretical
classification results, but effective criteria of integrability of this kind of foliations. As we shall
see we obtain integrability criteria of several families of vector fields some quadratic fields
and some Liénard equations involving special functions, which allows us to recover previous
results of several authors. For instance, we will solve completely the integrability problem for
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the family of Liénard’s type equations (see [44]),

yy′ = (a(2m + k)x2k + b(2m− k)xm−k−1)y − (a2mx4k + cx2k + b2m)x2m−2k−1,

with a, b, c,m, k complex parameters; we note that if the above equation comes from a
polynomial vector field then m and k must be rational numbers.

We also study the Poincaré problem for some families, see for example Theorem 3.4.

The paper is structured as follows. In Section 1 we present the most necessary results of
the two theories of integrability that are used in this work: Galois theory of linear differen-
tial equations and Darboux theory of integrability of polynomial vector fields. In Section 2
we consider several useful remarks about Riccati equation. Section 3 is devoted to applica-
tions. For completeness we include in the Appendixes Kovacic’s algorithm and the necessary
information about some special functions.

1. Two notions of integrability for planar polynomial vector fields

1.1. Darboux theory of Integrability. In this section we give a very brief overview of
Darboux’s integrability ideas [17], his terminology and some essential results.

Consider vector field (2) and an irreducible polynomial f ∈ C[x, y]. The curve f = 0 is
called an invariant algebraic curve of vector field (2) if it satisfies

ḟ |f=0 = 0.

This condition is equivalent to the existence of a polynomial K ∈ Cm−1[x, y], called cofactor,
such that

X(f(x, y)) = P (x, y)
∂f

∂x
+Q(x, y)

∂f

∂y
= K(x, y)f(x, y),

or, equivalently,
X(f)

f
= X(log(f)) = K. (6)

From this expression it follows that the curve f = 0 is formed by leaves and critical points of
the vector field X = (P,Q) defined by (2). We stress that if the polynomial system (1) has
degree m, that is m = max {degP, degQ}, then we have that degK ≤ m − 1, independently
of the degree of the curve f(x, y) = 0. From definition (6) it follows that if the cofactor of an
invariant curve f = 0 is vanishes identically then the polynomial f is a first integral of the
vector field X. In terms of the associated foliation, this invariant curve f = 0 is a particular
solution of y′ = Q/P and Qdx− Pdy = 0.

Besides, an analytic C-valued function R is called an integrating factor of system (1) if it
is not constant and satisfies that

X(R)

R
= X(log(R)) = −divX,

where divX = (∂P/∂x) + (∂Q/∂y) is the divergence of the vector field X = (P,Q). In
case that the domain of definition of X is simply connected, from the integrating factor R it
follows that

H(x, y) =

∫
R(x, y)P (x, y) dy+ ϕ(x)

is a first integral of X , provided that ∂H/∂y = −RQ.
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To ensure the existence of a first integral for a system (1) is, in general, a very difficult
problem. In [17], Darboux introduced a method to detect and construct first integrals using
invariant algebraic curves. Darboux proved that any planar polynomial differential system of
degree m having, at least, m(m + 1)/2 invariant algebraic curves, admits a first integral or
an integrating factor which can be obtained using them (see also Jouanolou [24] for a study
in a general context for codimension-1 foliations).

Darboux’s original ideas have been improved considering the multiplicity of the invariant
algebraic curves, see [16] for more details. Related to the multiplicity of the algebraic curves
some other invariant objects have appeared (see [11]) they are the so called exponential fac-
tors : given h, g ∈ C[x, y] relatively prime, the function F = exp (g/h) is called an exponential

factor of the polynomial system (1) if there exists a polynomial K̃ ∈ Cm−1[x, y] (also called
cofactor) that satisfies the equation

X(F )

F
= X

(g
h

)
= K̃. (7)

It is known that if h is not a constant polynomial then h = 0 is an invariant algebraic curve

of (1) of cofactor Kh satisfying that X(g) = gKh + hK̃.
The following Theorem (starting from Darboux) shows how the construction of first inte-

grals and integrating factors of (2) can be carrying out of the invariant algebraic curves of
it.

Theorem 1.1. We consider a planar polynomial system (1) of degree m, having

• p invariant algebraic curves fi = 0 with cofactors Ki, for i = 1, . . . , p and

• q exponential factors Fj = exp(gj/hj) with cofactors K̃j, j = 1, . . . , q.

Then the following assertions hold:

(a) There exist constants λi, λ̃j ∈ C not all vanishing such that

p∑

i=1

λiKi +

q∑

j=1

λ̃jK̃j = 0

if and only if the multivalued function

fλ1

1 . . . fλp

p F λ̃1

1 . . . F λ̃q

q (8)

is a (Darboux) first integral of system (1).

(b) There exist constants λi, λ̃j ∈ C not all vanishing such that

p∑

i=1

λiKi +

q∑

j=1

λ̃jK̃j + divX = 0

if and only if the function defined by (8) is a (Darboux) integrating factor of X.

For more recent versions of Theorem 1.1 see [33, 34]. For a generalization of Theorem 1.1
to a class of non-autonomous vector fields see [30].

Functions of the form (8) are called Darboux functions. We say that the polynomial system
(1) is Darboux integrable if it admits a first integral or an integrating factor which is given by
a Darboux function.
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Remark 1.2. Prelle and Singer [43] showed that if system (1) admits an elementary first
integral then it admits an integrating factor which is the n-th root of a rational function (a
slightly improved version of this result can be found in [29, Corollary 4]). Later, Singer in [46]
proved that if system (1) admits a Liouvillian first integral then it has an integrating factor
which is given by a Darboux function. This is an important argument to motivate sentences
like “Darboux functions capture Liouvillian integrability”, or “Liouvillian first integrals are
either Darboux first integrals or integrals coming from a Darboux integrating factor”.

Given a polynomial system (1) of degree m, the computation of all its invariant algebraic
curves is a very difficult problem since nothing is known a priori about the maximum degree
of these curves. This makes necessary to impose additional conditions either on the structure
of the system (1) or on the nature of such curves, see for instance, [5, 7, 14] or references
therein. This difficulty has motivated the study of different types of inverse problems of the
Darboux theory of integrability [39, 14, 12, 15, 13, 31].

1.2. Picard-Vessiot theory. Picard-Vessiot theory is the Galois theory of linear differential
equations. We will just remind here some of its main definitions and results but we refer the
reader to [45] for a wide theoretical background.

We start recalling some basic notions on algebraic groups and, afterwards, Picard-Vessiot
theory will be introduced.

An algebraic group of matrices 2 × 2 is a subgroup G ⊂ GL(2,C) defined by means of
algebraic equations in its matrix elements and in the inverse of its determinant. That is,
there exists a set of polynomials Pi ∈ C[x1, . . . , x5], for i ∈ I, such that A ∈ GL(2,C) given
by

A =

(
x11 x12
x21 x22

)
,

belongs to G if and only if Pi

(
x11, x12, x21, x22, (detA)−1) = 0 for all i ∈ I and where detA =

x11x22 − x21x12. It is said that G is an algebraic manifold endowed with a group structure.
Recall that a groupG is called solvable if and only if there exists a chain of normal subgroups

e = G0 ⊳ G1 ⊳ . . . ⊳ Gn = G

satisfying that the quotient Gi/Gj is abelian for all n ≥ i ≥ j ≥ 0.
It is well known that any algebraic group G has a unique connected normal algebraic

subgroup G0 of finite index. In particular, the identity connected component G0 of G is
defined as the largest connected algebraic subgroup of G containing the identity. In case that
G = G0 we say that G is a connected group. Moreover, if G0 is solvable we say that G is
virtually solvable.

The following result provides the relation between virtual solvability of an algebraic group
and its structure.

Theorem 1.3 (Lie-Kolchin). Let G ⊆ GL(2,C) be a virtually solvable group. Then, G0 is
triangularizable, that is, it is conjugate to a subgroup of upper triangular matrices.

Now, we briefly introduce Picard-Vessiot Theory.
First, we say that (K, ′ ) - or, simply, K - is a differential field if K is a commutative field

of characteristic zero, depending on x and ′ is a derivation on K (that is, satisfying that
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(a + b)′ = a′ + b′ and (a · b)′ = a′ · b + a · b′ for all a, b ∈ K). We denote by C the field of
constants of K, defined as C = {c ∈ K | c′ = 0}.

We will deal with second order linear homogeneous differential equations, that is, equations
of the form

y′′ + ay′ + by = 0, a, b ∈ K, (9)

and will be concerned with the algebraic structure of their solutions. Moreover, along this
work, we will refer the current differential field as the smallest one containing the field of
coefficients of this differential equation.

Let us suppose that y1, y2 is a basis of solutions of equation (9), i.e., y1, y2 are linearly
independent over K and every solution is a linear combination over C of these two. Let
L = K〈y1, y2〉 = K(y1, y2, y

′
1, y

′
2) be the differential extension of K such that C is the field of

constants for K and L. In this terms, we say that L, the smallest differential field containing
K and {y1, y2}, is the Picard-Vessiot extension of K for the equation (9).

The group of all the differential automorphisms of L over K that commute with the deriva-
tion ′ is called the differential Galois group of L over K and is denoted by Gal(L/K). This
means, in particular, that for any σ ∈ Gal(L/K), σ(a′) = (σ(a))′ for all a ∈ L and that
σ(a) = a for all a ∈ K. Thus, if {y1, y2} is a fundamental system of solutions of (9) and
σ ∈ Gal(L/K) then {σy1, σy2} is also a fundamental system. This implies the existence of a
non-singular constant matrix

Aσ =

(
a b
c d

)
∈ GL(2,C),

such that

σ

(
y1
y2

)
=

(
σ(y1)
σ(y2)

)
=
(
y1 y2

)
Aσ.

This fact can be extended in a natural way to a system

σ

(
y1 y2
y′1 y′2

)
=

(
σ(y1) σ(y2)
σ(y′1) σ(y′2)

)
=

(
y1 y2
y′1 y′2

)
Aσ,

which leads to a faithful representation Gal(L/K) → GL(2,C) and makes possible to con-
sider Gal(L/K) as a subgroup of GL(2,C) depending (up to conjugacy) on the choice of the
fundamental system {y1, y2}.

One of the fundamental results of the Picard-Vessiot Theory is the following theorem
(see [25, 28]).

Theorem 1.4. The differential Galois group Gal(L/K) is an algebraic subgroup of GL(2,C).

We say that equation (9) is integrable if the Picard-Vessiot extension L ⊃ K is obtained
as a tower of differential fields K = L0 ⊂ L1 ⊂ · · · ⊂ Lm = L such that Li = Li−1(η) for
i = 1, . . . , m, where either

(i) η is algebraic over Li−1, that is η satisfies a polynomial equation with coefficients in
Li−1.

(ii) η is primitive over Li−1, that is η′ ∈ Li−1.
(iii) η is exponential over Li−1, that is η′/η ∈ Li−1.
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We remark that in the usual Differential Algebra terminology to say that an equation (9) is
integrable is equivalent to say that the corresponding Picard-Vessiot extension is Liouvillian.
Moreover,

Theorem 1.5 (Kolchin). Equation (9) is integrable if and only if Gal(L/K) is virtually
solvable, that is, its identity component (Gal(L/K))0 is solvable.

For instance, for the case a = 0 in equation (9), i.e. y′′ + by = 0, it is very well known [25,
28, 45] that Gal(L/K) is an algebraic subgroup of SL(2,C) (remind that A ∈ SL(2,C) ⇔
A ∈ GL(2,C) and detA = 1). For a more detailed study about this case we refer the reader
to Appendix A.

2. Some remarks about Riccati equation

Ricatti equation is probably one of the most studied equations. However, its rôle in our
study of the Darboux and Picard-Vessiot integrability has induced us to devote this section
to some of their properties. Even though the results of Section (2) are known, their proofs
have been included for completeness. We divide these properties in two types: the first one
(see Subsection 2.1) concerning transformations leading a general second order differential
equation into a Riccati equation (written in the so-called reduced form) which becomes the
starting point of the celebrated Kovacic algorithm (see Appendix A); a second one, Darboux-
like, that studies first integrals and integrating factors for a Riccati equation, see Subsection
2.2.

2.1. Transformations related to Riccati equations. It is known that any second order
differential equation can be led into a general Riccati equation through a classical logarithmic
change of variable (see, for instance [44, 23]). Next proposition recall it and summarises some
other related transformations.

Proposition 2.1. Let K be a differential field and consider functions a0(x), a1(x), a2(x),
r(x), ρ(x), b0(x), b1(x) belonging to K that, for simplicity, will be denoted without their
explicit dependence on x. Consider now the following forms associated to any second order
ordinary differential equation (ode) and Riccati equation:

(i) Second order ode in general form:

y′′ + b1y
′ + b0y = 0. (10)

(ii) Second order ode in reduced form:

ξ′′ = ρξ. (11)

(iii) Riccati equation in general form:

v′ = a0 + a1v + a2v
2, a2 6= 0. (12)

(iv) Riccati equation in reduced form:

w′ = r − w2, (13)
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Then, there exist transformations T , B, S and R leading some of these equations into the
other ones, as showed in the following diagram:

v′ = a0 + a1v + a2v
2 T

// w′ = r − w2

y′′ + b1y
′ + b0y = 0

S
//

��

B

ξ′′ = ρξ
��

R

.

The new independent variables are defined by means of

T : v = −
(
a′2
2a22

+
a1
2a2

)
− 1

a2
w, B : v = − 1

a2

y′

y
,

S : y = ξe−
1

2

∫
b1dx, R : w =

ξ′

ξ
,

and the functions r, ρ, b0 and b1 are given by

r =
1

β

(
a0 + a1α + a2α

2 − α′
)
, (14)

α = −
(
a′2
2a22

+
a1
2a2

)
, β = − 1

a2
, (15)

b1 = −
(
a1 +

a′2
a2

)
, b0 = a0a2, (16)

ρ = r =
b21
4

+
b′1
2
− b0. (17)

Proof. The proof is quite standard.

[T ]: Applying the change v = α + βw we get the equation

α′ + β ′w + βw′ = a0 + a1α + a1βw + a2α
2 + 2a2αβw + a2β

2w2

that, regrouping terms, leads to

w′ =
1

β

(
a0 + a1α + a2α

2 − α′
)

+

(
a1 + 2a2α− β ′

β

)
w + a2βw

2.

Since a2 6= 0 we can take β = −1/a2 and, therefore, a2β = −1. Having this into
account, the value of α satisfying that the coefficient in w vanishes is given by

α =
1

2a2

(
β ′

β
− a1

)
.

The expressions for α, β and r follow straightforwardly,

r =
1

β

(
a0 + a1α + a2α

2 − α′
)
, α = −

(
a′2
2a22

+
a1
2a2

)
, β = − 1

a2
.

Moreover, it is clear that α, β and r belong to K.
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[B ]: Imposing α = 0 and taking β = −1/a2 in transformation T , this is v = −w/a2, we
obtain the Riccati equation

w′ = −a0a2 +

(
a1 +

a′2
a2

)
w − w2.

Performing now the change of variables w = (log y)′ (or, equivalently, v = −a2y′/y)
we get the differential equation y′′ + b1y

′ + b0y = 0 with

b1 = −
(
a1 +

a′2
a2

)
, b0 = a0a2.

Obviously, b0 and b1 belong to K.

[S ]: The change of variable y = µξ, with µ = µ(x) and ξ = ξ(x), lead us to

ξ′′ +

(
2
µ′

µ
+ b0

)
ξ′ +

(
µ′′

µ
+ b0

µ′

µ
+ b1

)
ξ = 0.

In order to obtain the equation ξ′′ = ρξ we need to impose

2
µ′

µ
+ b0 = 0,

µ′′

µ
+ b0

µ′

µ
+ b1 = −ρ,

which gives rise to

µ = e−
1

2

∫
b0 , ρ =

b2
0

4
+

b′
0

2
− b1.

Moreover, it is straightforward to check that ρ ∈ K.

[R ]: This is a particular case of transformation [B] with the particular choice a0 = r,
a1 = 0 and a2 = −1.

Finally, composing the transformations provided by [B], [R] and [S]:

−a2v =
y′

y
, y = ξe−

1

2

∫
b0 , b0 = −

(
a1 +

a′2
a2

)
ξ′

ξ
= w,

we recover the result given by [T ],

v = −
(
a1
2a2

+
a′2
2a22

)
− 1

a2
w = α+ βw,

which implies that, in some sense and taking ρ = r, the diagram commutes: S ◦ B = R ◦ T .
Note, from this Lemma, that the function v is algebraic over K if and only if the function

w is also algebraic over K. Furthermore, in such case, the degree over K of both functions v
and w is the same.

It is known that a Riccati equation (12) has an algebraic solution on K if and only if the
differential equation (10) is integrable in a Picard-Vessiot sense. If this situation holds we
will say, from now on, that the Riccati equation is integrable over K. This is the starting
point of Kovacic algorithm (see Appendix A).
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2.2. Integrating factor and first integrals for Riccati vector fields. In this Subection
we briefly show some relations between the existence of invariant curves of a certain type of
vector fields and the integrability, via Kovacic algorithm (see Appendix A), of its associated
Riccati foliation.

We recall (see Remark 1.2) that from Singer’s work [46] we have that if a planar polynomial
vector field (2) admits a Liouvillian first integral then it has also an integrating factor given
by a Darboux function. However, very few results are known about the relation between the
existence of an algebraic invariant curve of a general planar vector field and the Liouvillian
integrability of its foliation.

Let us consider the family of planar vector fields of the form

X = (p(x) − q(x)w2)
∂

∂w
+ q(x)

∂

∂x
, (18)

with p(x), q(x) ∈ C[x] complex polynomials. Introducing an independent variable t, usually
called time, we can associate to the vector field (18) the following system of differential
equations

ẇ = p(x) − q(x)w2,
ẋ = q(x),

where we denote by ˙ = d/dt. Its foliation is governed by the equation

w′ =
dw

dx
=
p(x) − q(x)w2

q(x)
=
p(x)

q(x)
− w2,

which is a Riccati equation given in reduced form w′ = r(x) − w2 provided that r = p/q ∈
C(x). As it will be showed in the next lemma, the integrability of this “Riccati foliation”
is closely related to the existence of an algebraic invariant curve of its vector field (18). A
similar approach for this problema can be found in [21, 22].

Lemma 2.2. Let w1 = w1(x) be a solution of a Riccati equation in reduced form

w′ = r(x) − w2,

with r(x) = p(x)/q(x) ∈ C[x]. Then the associated vector field (18) has an integrating factor
given by

R1 =
e2

∫
(−w1(x)dx)

(−w + w1(x))2
. (19)

Proof. It is straightforward to check that if w1(x) is a solution of w′ = p/q − w2 then it
holds X(f1) = K1f1 with f1(w, x) = −w + w1(x) = 0 and K1 = −w − w1(x). In addition,
F (x) = e

∫
(−ω1(x)dx) satisfies X(F ) = L1F with L1 = −ω1. Note that X has divergence

divX = −2w, and additionally it holds −2K1 + 2L1 + divX = 0. Similarly to Theorem 1.1,
vector field (18) admits the integrating factor

R1 =
F 2
1

f 2
1

=

(
e
∫
(−w1(x)dx)

)2

(−w + w1(x))2
,

as it was claimed.

Remark 2.3. We would like to stress the fact that the result in Lemma 2.2 is independent of
the nature of the solution w = w1(x). Note that the integral

∫
ω1(x)dx is an abelian integral.
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The important fact is that, conversely, Picard-Vessiot theory and in particular, Kovacic
algorith, supply information about first integrals and integrating factors of the equation
w′ = r(x) − w2 from the knowledge of some of its solutions, w1, w2, w3. More precisely, from
the first three cases in Kovacic algorithm [27] (the integrable ones) we obtain the following

types of first integrals, see also Weil [50] and Żo la̧dek [52].

Proposition 2.4. The following statements hold.

Case 1: One has two possibilities:
- If only w1 ∈ C(x) then H(x, y) is of Darboux–Schwarz–Christoffel type.
- If both w1, w2 ∈ C(x) then H(x, y) is of Darboux type. In particular, from Lemma
2.2 we can construct two integrating factors R1 and R2 and so R1/R2 is a first
integral of X. Thus, we have

H(x, y) =
(−w + w2(x))

(−w + w1(x))
e
∫
[(w2(x)−w1(x))dx].

Case 2: If w1 is a solution of a quadratic polynomial then a first integral is of hyperelliptic
type.

Case 3: If all w1, w2, w3 are algebraic over C(x) then X admits a rational first integral.

3. Applications

In this section we analyze some cases concerning to integrability and nonintegrability of
some Riccati planar vector fields.

3.1. Quadratic polynomials fields. The study of the integrability of the quadratic poly-
nomial vector field

x′ = a20x
2 + a11xy + a02y

2 + a10x+ a01y + a00,
y′ = b20x

2 + b11xy + b02y
2 + b10x+ b01y + b00,

being aij, bi,j ∈ C, is in general a hard problem. In this section we only consider some special
cases for these parameters.

It is known (see [32, Prop.3], for instance) that the study of linear-quadratic planar systems
having a finite equilibrium point can be reduced to consider the following two families of
systems: a first type, using the notation introduced in [32], denoted by (S1),

x′ = x,
y′ = εx+ λy + b20x

2 + b11xy + b02y
2,

(S1)

and a second type denoted by (S2),

x′ = y,
y′ = εx+ λy + b20x

2 + b11xy + b02y
2.

(S2)

In [32], the authors proved that the linear-quadratic systems admiting a global analytic first
integral are those satisfying:

(a1) b02 = λ = 0.
(b1) b02 = 0 and λ = −p/q ∈ Q−,

in the case of (S1)-type systems and

(a2) b20 = b02 = λ = 0 and εb11 6= 0.
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(b2) b20 = b11 = λ = 0 and εb02 6= 0.
(c2) b11 = λ = 0 and b20 6= 0,

for (S2)-type systems. Furthermore, they also provide the explicit form of the corresponding
first integrals. It is important to notice that all of them are of Darboux type (and, of course,
are Liouvillian first integral).

Our aim is to show that these results can be recovered easily using arguments of the
Differential Galois theory. We start first with the (S1)-case. Thus, we consider the associated
foliation of system (S1):

dy

dx
= (ε+ b20x) +

(
λ + b11x

x

)
y +

b02
x
y2, (20)

which is a Riccati equation. By Lemma 2.1 equation (20) can be transformed to a Riccati
equation w′ = r(x) − w2, with

r(x) =
1

4
− κ

x
+

4µ2 − 1

4x2
, κ =

1√
b211 − 4b20b02

(
b02ε+

b11
2

(1 − λ)

)
, µ =

λ

2
, (21)

provided b211 − 4b20b02 6= 0.
We note that equation ξ′′ = r(x)ξ with r as in (21) is a Whittaker equation, (see Appendix

B).
Now, we can apply Martinet-Ramis Theorem B.2 for Whittaker equations which asserts

that our Whittaker equation is integrable if and only if at least one the following conditions
is verified:

±κ± µ ∈ 1

2
+ N,

or, equivalently (and more suitable for the expressions derived of κ and µ)

2 (κ± µ) ∈ 2Z + 1,

i.e., an integer odd number. In our case this condition reads

2 (κ± µ) =
2b20ε+ b11(1 − λ)√

b211 − 4b20b02
± λ.

Notice that case (a1) in (S1)-type equations corresponds to 2(κ± µ) = 1 ∈ 2Z + 1 and case
(b1) to 2(κ+ µ) = (1 + (p/q)) + (−p/q) = 1 ∈ 2Z + 1. Thus Galois recovers the integrability
result asserted in [32, Thm.1].

Let us consider now the case of a (S2)-type system, namely

x′ = y,
y′ = εx+ λy + b20x

2 + b11xy + b02y
2,

Its associated differential equation in the foliation reads

dy

dx
= (λ+ b11x) +

(
εx+ b20x

2
) 1

y
+ b02y. (22)

Thus, equation (22) falls into the following situations:

(i) If λ = b11 = 0 it leads to

dy

dx
=
(
εx+ b20x

2
) 1

y
+ b02y,
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which corresponds to a Bernoulli equation. This case corresponds essentially to cases
(b2) and (c2) for (S2)-systems.

(ii) If ε = b20 = 0 we obtain the linear equation (and integrable in a Liouville sense)

dy

dx
= (λ+ b11x) + b02y.

This possibility is not taken into account by Llibre and Valls [32] since this resulting
equation is not, strictly speaking, a Riccati.

(iii) case (a2) ) gives rise to dy/dx = b11x+εxy−1, which is a separable equation (Bernoulli
as well). Is solutions, easily computable, are all Liouvillian.

(iv) If b02 = 0 we obtain a particular case of Liénard equation

y
dy

dx
= (λ+ b11x) y +

(
εx+ b20x

2
)
,

that will be considered in the following section.

3.2. An application of orthogonal polynomials. We recall that Hypergeometric equa-
tion, including confluences, is a particular case of the differential equation

y′′ +
L

Q
y′ +

λ

Q
y, λ ∈ C, L = a0 + a1x, Q = b0 + b1x+ b2x

2. (23)

It is well known that classical orthogonal polynomials and Bessel polynomials are solutions
of equation (23), see for example [10]:

• Hermite, denoted by Hn,
• Chebyshev of first kind, denoted by Tn,
• Chebyshev of second kind, denoted by Un,
• Legendre, denoted by Pn,
• Laguerre, denoted by Ln,

• associated Laguerre, denoted by L
(m)
n ,

• Gegenbauer, denoted by C
(m)
n ,

• Jacobi polynomials, denoted by P(m,ν)
n and

• Bessel polynomials, denoted by Bn.

In the following table we present Q, L and λ corresponding to equation (23) for classical
orthogonal polynomials and Bessel polynomials.

Polynomial Q L λ

Hn 1 −2x 2n
Tn 1 − x2 −x n2

Un 1 − x2 −3x n(n+ 2)
Pn 1 − x2 −2x n(n+ 1)
Ln x 1 − x n

L
(m)
n x m + 1 − x n

C
(m)
n 1 − x2 −(2m + 1)x n(n+ 2m)

P(m,ν)
n 1 − x2 ν −m− (m+ ν + 2)x n(n+ 1 +m + ν)

Bn x2 2(x + 1) −n(n + 1)
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We remark that integrability conditions and solutions of differential equations with solu-
tions orthogonal polynomials, including Bessel polynomials, after reduction, can be obtained
applying Kovacic’s algorithm, specifically case 1 of the algorithm. The same results can be
obtained via Kimura’s Theorem and Martinet-Ramis Theorem and the parabolic cylinder
equation (see [19, 26, 37]).

Theorem 3.1. Consider Q, L and λ as in the previous table. The vector field
{
x′ = −Q,
y′ = λ+ Ly +Qy2,

has invariant curves with unbounded degree.

Proof. Only in case 1 of Kovacic’s algorithm one solution of the equation (11) can be obtained
as y = Pne

∫
ω, where Pn is one of the polynomials listed in the table. 2

3.3. Liénard equation. We consider the first order differential equation of the foliation
associated to Liénard equation in the following form

yy′ = f(x)y + g(x), (24)

where y = y(x). We will call it the Liénard equation. We are mainly interested in the case
where f(x) and g(x) are rational functions.

Problem: Obtain criteria for the polynomials f(x) and g(x) in order to reduce the equation
(24) to a Riccati equation.

This problem is difficult and, as far as we know, only some partial answers are known.
We will give some examples of these reductions from the handbook [44]. A first example

is given by the family (1.3.3.11 in [44])

yy′ = (a(2m+ k)x2k + b(2m− k)xm−k−1)y − (a2mx4k + cx2k + b2m)x2m−2k−1, (25)

being a, b, c,m, k complex parameters; if the equation (25) comes from a polynomial vector
field then m and k must be rational numbers.

The change w = xk, y = xm(z + axk + bx−k) convert (25) to a Riccati equation

(−mz2 + 2abm− c)w′(z) = bk + kzw + akw2, (26)

being the associated second order linear equation a Riemann equation; more concretely, using
Lemma 2.1 it can be write as a Legendre equation:

(1 − t2)u′′(t) − 2tu′(t) +

(
ν(ν + 1) − µ2

1 − t2

)
u(t) = 0, (27)

with

µ = −m + k

2m
,
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and ν a solution of

ν2 + ν +
m2 − k2

4m2
− abk2

mc− 2abm2
= 0.

The difference of exponents in (27) is µ, µ and 2ν − 1. Thus we are in conditions to apply
Kimura’s Theorem (Appendix B).

Proposition 3.2. The Legendre equation (27) is integrable if and only if, either

(1) µ± ν ∈ Z or ν ∈ Z, or
(2) ±µ, ±µ, ±2ν + 1 belong to one of the following seven families

(a) µ ∈ 1
2

+ Z, ν ∈ C

(b) µ ∈ Z± 1
3
, ν ∈ 1

2
Z± 1

3
and µ± ν ∈ Z + 1

6

(c) µ ∈ Z± 2
5
, ν ∈ 1

2
Z± 3

10
and µ± ν ∈ Z + 1

10

(d) µ ∈ Z± 1
3
, ν ∈ 1

2
Z± 2

5
and µ± ν ∈ Z + 1

10

(e) µ ∈ Z± 1
5
, ν ∈ 1

2
Z± 2

5
and µ± ν ∈ Z + 1

10

(f) µ ∈ Z± 2
5
, ν ∈ 1

2
Z± 1

3
and µ± ν ∈ Z + 1

6

Proof. The difference of exponents is given by µ, µ and 2ν + 1, thus by Kimura’s Theorem
we have the above possibilities, which corresponds to the cases 1,3,11,12,13,15 of Kimura’s
table. 2

The equation
dx

dw
= A(x) +B(x)w,

by means of the change of variable

w = y − A

B
,

is transformed into the Liénard’s equation

y
dy

dx
=

1

B
+

d

dx

(
A

B

)
y,

for any functions A and B.
In particular, for

A = A(x) = a+ bx + cx2, B = B(x) = α + βx+ γx2,

the Liénard’s equations falls into the Riccatti equation (12) where a0 = c + γx, a1 = b+ βx
and a2 = a+ αx.

Applying the transformation T we obtain the reduced Riccatti equation (13), and by trans-
formation R we arrive to the normalized second order differential equation (11)

ρ(x) =
β2 − 4αγ

4
x2 − 2aγ + 2αc− bβ

2
x− 4ac− b2

4
+

bγ − βc

2(γx+ c)
+

3γ2

4(γx + c)2
. (28)

We focus on the second order differential equation ξ′′ = r(x)ξ. By the change of variable
τ = γx + c we obtain the equation

ξ′′ = ρ(τ)ξ, (29)

where
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r(τ) =
β2 − 4αγ

4γ2
τ 2−2aγ2 − 2αcγ − βbγ + β2c

2γ2
τ+

b2γ2 − 2bβcγ + β2c2

4γ2
+
bγ − βc

2τ
+

3γ2

4τ 2
. (30)

By the change of variable z = 4

√
β2−4αγ

4γ2 τ , we obtain the equation

ψ′′ = φ(z)ψ, φ(z) = z2 + δ1z +
δ21
4
− δ2 +

δ3
2z

+
δ20 − 1

4z2
, (31)

where δi are algebraic functions in a, b, c, α, β and γ. We can see that equation (31) is
exactly the biconfluent Heun equation and its integrability is analyzed in Appendix B.2.

Assuming β = γ = 0 we obtain a Liénard equation which is transformable to a reduced
second order differential equation with r ∈ C[x] and degr = 1. This means that the equation
is not integrable, see [27] and the following subsection. As a particular case, we have a Liénard
equation that can be reduced to a Riccati equation given in [41, equation 1.3.2.1]:

2yy′ = (ax + b)y + 1. (32)

Now, doing some restrictions over the parameters of biconfluent Heun equation we can
obtain the Whittaker equation. For instance, the Liénard equation of the previous section

y
dy

dx
= (λ+ b11x) y +

(
εx+ b20x

2
)
,

falls into a Whittaker equation for some special values of the parameters.

Remark 3.3. The following hold.

(a) It is well–known that via the change z(x) =
∫
f(x)dx (with inverse x = x(z)), the

Liénard equation (24) can be transformed to the equation

yy′(z) = y + h(z), (33)

with

h(z) :=
g(x(z))

f(x(z))
.

In a similar way, with the change z(x) =
∫
g(x)dx, we reduce the Liénard equation to

yy′(z) = h(z)y + 1, (34)

with

h(z) :=
f(x(z))

g(x(z))
.

But if we do these changes, then, in general, for functions f(x) and g(x) in a differ-
ential field, the transformed function h(z) could not be in the same differential field;
ie, in general, the differential field of coefficients is not preserved by these changes.
For this reason we do not use these reductions of equation (24).

(b) Sometimes equation (24) is called Abel equation of second kind. The reason is that by
the change y = 1/w it is reduced to an Abel equation

w′ = −f(x)w2 − g(x)w3.

In Cheb–Terrab [8, 9] (see also references therein) are considered some families of Abel
equations reducible to Riccati equation.
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3.4. Other families. a)Polynomial Riccati equations

The Riccati equation

v′ = r(x) − v2, r(x) ∈ C[x]

has been studied for several authors, see for example [2, 52, 49]. The Galois group for its
associated second order linear differential is connected and can be either, SL(2,C) or the
Borel group, see [1, 3, 2]. In the first case, the tangent field associated to the Riccati equation
has not invariant curve and in the second case there is not exist rational first integral for this
field.

In particular, the reduced form for the triconfluent Heun equation is of this type and is
given by

y′′ = r(x)y, r(x) =
9x4

4
+

3

2
δ2x

2 − δ1x +
δ22
4

− δ0. (35)

b) Lamé families.
In the Lamé equation

d2ξ

dx2
+
f ′(x)

2f(x)

dξ

dx
− n(n + 1)x+B

f(x)
ξ = 0, (36)

where f(x) = 4x3 − g2x− g3, with n, B, g2 and g3 parameters such that the discriminant of
f , 27g23 − g32 is non-zero (see Appendix B) we consider the change to the Riccati equation

y = − ξ′

cξ
, (37)

being c = c(x) any non-zero rational function, we obtain the family of Riccati equations
associated to the Lamé equation

y′ = −n(n + 1)x +B

cf
−
(
f ′(x)

2f(x)
+
c′

c

)
y + cy2. (38)

For the Lamé case, (i.1) of B.3, with B = Bi, from Remark B.5 we have one polynomial
solution of equation (38), but the general solution of this equation is not algebraic. Further-
more, it is clear that for a fixed n we have associated Riccati equations (38) with arbitrary
degree, because the non-zero rational function c = c(x) is arbitrary. Now the Lamé functions
correspond here to algebraic solutions of (38), and moving the natural number n, we obtain
algebraic invariants curves

y +
E ′(x)

c(x)E(x)
= 0,

of unbounded degree.
We have proved the following:

Theorem 3.4. Given a fixed degree in the Riccati family (38) associated to the Lamé equation
(36) there are invariant algebraic curves of any tangent field X to the corresponding foliation
with unbounded degree. Furthermore the first integral of X is not rational.
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Appendix

Appendix A. Kovacic’s Algorithm

This algorithm is devoted to solve the reduced linear differential equation (RLDE) ξ′′ = rξ
and is based on the algebraic subgroups of SL(2,C). For more details see [27]. Although
improvements for this algorithm are given in [19, 48], we follow the original version given by
Kovacic in [27].

Theorem A.1. Let G be an algebraic subgroup of SL(2,C). Then one of the following four
cases can occur.

(1) G is triangularizable.
(2) G is conjugate to a subgroup of infinite dihedral group (also called meta-abelian group)

and case 1 does not hold.
(3) Up to conjugation G is one of the following finite groups: Tetrahedral group, Octahe-

dral group or Icosahedral group, and cases 1 and 2 do not hold.
(4) G = SL(2,C).

Each case in Kovacic’s algorithm is related with each one of the algebraic subgroups of
SL(2,C) and the associated Riccatti equation

θ′ = r − θ2 =
(√

r − θ
) (√

r + θ
)
, θ =

ξ′

ξ
.

According to Theorem A.1, there are four cases in Kovacic’s algorithm. Only for cases
1, 2 and 3 we can solve the differential equation the RLDE, but for the case 4 we have not
Liouvillian solutions for the RLDE. It is possible that Kovacic’s algorithm can provide us
only one solution (ξ1), so that we can obtain the second solution (ξ2) through

ξ2 = ξ1

∫
dx

ξ21
. (39)

Notations. For the RLDE given by

d2ξ

dx2
= rξ, r =

s

t
, s, t ∈ C[x],

we use the following notations.

(1) Denote by Γ′ be the set of (finite) poles of r, Γ′ = {c ∈ C : t(c) = 0}.
(2) Denote by Γ = Γ′ ∪ {∞}.
(3) By the order of r at c ∈ Γ′, ◦(rc), we mean the multiplicity of c as a pole of r.
(4) By the order of r at ∞, ◦ (r∞) , we mean the order of ∞ as a zero of r. That is

◦ (r∞) = deg(t) − deg(s).

A.1. The four cases. Case 1. In this case [
√
r]c and [

√
r]∞ means the Laurent series

of
√
r at c and the Laurent series of

√
r at ∞ respectively. Furthermore, we define ε(p) as

follows: if p ∈ Γ, then ε (p) ∈ {+,−}. Finally, the complex numbers α+
c , α

−
c , α

+
∞, α

−
∞ will be

defined in the first step. If the differential equation has not poles it only can fall in this case.

Step 1. Search for each c ∈ Γ′ and for ∞ the corresponding situation as follows:
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(c0): If ◦ (rc) = 0, then [√
r
]
c

= 0, α±
c = 0.

(c1): If ◦ (rc) = 1, then [√
r
]
c

= 0, α±
c = 1.

(c2): If ◦ (rc) = 2, and

r = · · · + b(x− c)−2 + · · · , then

[√
r
]
c

= 0, α±
c =

1 ±
√

1 + 4b

2
.

(c3): If ◦ (rc) = 2v ≥ 4, and

r = (a (x− c)−v + ...+ d (x− c)−2)2 + b(x− c)−(v+1) + · · · , then

[√
r
]
c

= a (x− c)−v + ...+ d (x− c)−2 , α±
c =

1

2

(
± b

a
+ v

)
.

(∞1): If ◦ (r∞) > 2, then
[√
r
]
∞

= 0, α+
∞ = 0, α−

∞ = 1.

(∞2): If ◦ (r∞) = 2, and r = · · · + bx2 + · · · , then

[√
r
]
∞

= 0, α±
∞ =

1 ±
√

1 + 4b

2
.

(∞3): If ◦ (r∞) = −2v ≤ 0, and

r = (axv + ...+ d)2 + bxv−1 + · · · , then

[√
r
]
∞

= axv + ...+ d, and α±
∞ =

1

2

(
± b

a
− v

)
.

Step 2. Find D 6= ∅ defined by

D =

{
m ∈ Z+ : m = αε(∞)

∞ −
∑

c∈Γ′

αε(c)
c , ∀ (ε (p))p∈Γ

}
.

If D = ∅, then we should start with the case 2. Now, if #D > 0, then for each m ∈ D we
search ω ∈ C(x) such that

ω = ε (∞)
[√
r
]
∞

+
∑

c∈Γ′

(
ε (c)

[√
r
]
c

+ αε(c)
c (x− c)−1

)
.

Step 3. For each m ∈ D, search for a monic polynomial Pm of degree m with

P ′′
m + 2ωP ′

m + (ω′ + ω2 − r)Pm = 0.

If success is achieved then ξ1 = Pme
∫
ω is a solution of the differential equation RLDE.

Else, Case 1 cannot hold.

Case 2. Search for each c ∈ Γ′ and for ∞ the corresponding situation as follows:

Step 1. Search for each c ∈ Γ′ and ∞ the sets Ec 6= ∅ and E∞ 6= ∅. For each c ∈ Γ′ and
for ∞ we define Ec ⊂ Z and E∞ ⊂ Z as follows:
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(c1): If ◦ (rc) = 1, then Ec = {4}.
(c2): If ◦ (rc) = 2, and r = · · · + b(x− c)−2 + · · · , then

Ec =
{

2 + k
√

1 + 4b : k = 0,±2
}
.

(c3): If ◦ (rc) = v > 2, then Ec = {v}.
(∞1): If ◦ (r∞) > 2, then E∞ = {0, 2, 4}.
(∞2): If ◦ (r∞) = 2, and r = · · · + bx2 + · · · , then

E∞ =
{

2 + k
√

1 + 4b : k = 0,±2
}
.

(∞3): If ◦ (r∞) = v < 2, then E∞ = {v}.

Step 2. Find D 6= ∅ defined by

D =

{
m ∈ Z+ : m =

1

2

(
e∞ −

∑

c∈Γ′

ec

)
, ∀ep ∈ Ep, p ∈ Γ

}
.

If D = ∅, then we should start the case 3. Now, if #D > 0, then for each m ∈ D we search
a rational function θ defined by

θ =
1

2

∑

c∈Γ′

ec
x− c

.

Step 3. For each m ∈ D, search a monic polynomial Pm of degree m, such that

P ′′′
m + 3θP ′′

m + (3θ′ + 3θ2 − 4r)P ′
m +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
Pm = 0.

If Pm does not exist, then Case 2 cannot hold. If such a polynomial is found, set φ = θ+P ′/P
and let ω be a solution of

ω2 + φω +
1

2

(
φ′ + φ2 − 2r

)
= 0.

Then ξ1 = e
∫
ω is a solution of the differential equation RLDE.

Case 3. Search for each c ∈ Γ′ and for ∞ the corresponding situation as follows:

Step 1. Search for each c ∈ Γ′ and ∞ the sets Ec 6= ∅ and E∞ 6= ∅. For each c ∈ Γ′ and
for ∞ we define Ec ⊂ Z and E∞ ⊂ Z as follows:

(c1): If ◦ (rc) = 1, then Ec = {12}.
(c2): If ◦ (rc) = 2, and r = · · · + b(x− c)−2 + · · · , then

Ec =
{

6 + k
√

1 + 4b : k = 0,±1,±2,±3,±4,±5,±6
}
.

(∞): If ◦ (r∞) = v ≥ 2, and r = · · · + bx2 + · · · , then

E∞ =

{
6 +

12k

n

√
1 + 4b : k = 0,±1,±2,±3,±4,±5,±6

}
, n ∈ {4, 6, 12}.
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Step 2. Find D 6= ∅ defined by

D =

{
m ∈ Z+ : m =

n

12

(
e∞ −

∑

c∈Γ′

ec

)
, ∀ep ∈ Ep, p ∈ Γ

}
.

In this case we start with n = 4 to obtain the solution, afterwards n = 6 and finally n = 12.
If D = ∅, then the differential equation has not Liouvillian solution because it falls in the
case 4. Now, if #D > 0, then for each m ∈ D with its respective n, search a rational function

θ =
n

12

∑

c∈Γ′

ec
x− c

,

and a polynomial S defined as

S =
∏

c∈Γ′

(x− c).

Step 3. Search for each m ∈ D, with its respective n, a monic polynomial Pm = P of
degree m, such that its coefficients can be determined recursively by

P−1 = 0, Pn = −P,

Pi−1 = −SP ′
i − ((n− i)S ′ − Sθ)Pi − (n− i) (i + 1)S2rPi+1,

where i ∈ {0, 1 . . . , n − 1, n}. If P does not exist, then the differential equation has not
Liouvillian solution because it falls in Case 4. Now, if P exists search ω such that

n∑

i=0

SiP

(n− i)!
ωi = 0,

then a solution of the differential equation the RLDE is given by

ξ = e
∫
ω,

where ω is solution of the previous polynomial of degree n.

Appendix B. Some Special Functions

B.1. Hypergeometric families.

B.1.1. Kimura’s Theorem. The hypergeometric (or Riemann) equation is the more general
second order linear differential equation over the Riemann sphere with three regular singular
singularities. If we place the singularities at x = 0, 1,∞ it is given by

d2ξ

dx2
+

(
1 − α− α′

x
+

1 − γ − γ′

x− 1

)
dξ

dx
(40)

+

(
αα′

x2
+

γγ′

(x− 1)2
+
ββ ′ − αα′γγ′

x(x− 1)

)
ξ = 0,

where (α, α′), (γ, γ′), (β, β ′) are the exponents at the singular points and must satisfy the
Fuchs relation α + α′ + γ + γ′ + β + β ′ = 1.



22 P. ACOSTA-HUMÁNEZ, J. T. LÁZARO, J.J. MORALES-RUIZ, AND CH. PANTAZI

Now, we will briefly describe Kimura’s Theorem that provides necessary and sufficient
conditions for the integrability of the hypergeometric equation. Let be λ = α−α′, µ = β−β ′

and ν = γ − γ′.

Theorem B.1 (Kimura, [26]). The hypergeometric equation (40) is integrable if and only if
either

(i) At least one of the four numbers λ + µ + ν, −λ + µ + ν, λ− µ + ν, λ + µ − ν is an
odd integer, or

(ii) The numbers λ or −λ, µ or −µ and ν or −ν belong (in an arbitrary order) to some
of the following fifteen families

1 1/2 + l 1/2 +m arbitrary complex number
2 1/2 + l 1/3 +m 1/3 + q
3 2/3 + l 1/3 +m 1/3 + q l +m+ q even
4 1/2 + l 1/3 +m 1/4 + q
5 2/3 + l 1/4 +m 1/4 + q l +m+ q even
6 1/2 + l 1/3 +m 1/5 + q
7 2/5 + l 1/3 +m 1/3 + q l +m+ q even
8 2/3 + l 1/5 +m 1/5 + q l +m+ q even
9 1/2 + l 2/5 +m 1/5 + q l +m+ q even
10 3/5 + l 1/3 +m 1/5 + q l +m+ q even
11 2/5 + l 2/5 +m 2/5 + q l +m+ q even
12 2/3 + l 1/3 +m 1/5 + q l +m+ q even
13 4/5 + l 1/5 +m 1/5 + q l +m+ q even
14 1/2 + l 2/5 +m 1/3 + q l +m+ q even
15 3/5 + l 2/5 +m 1/3 + q l +m+ q even

Here l, m, q are integers.

B.1.2. Confluent hypergeometric. The confluent Hypergeometric equation is a degenerate form
of the Hypergeometric differential equation where two of the three regular singularities merge
into an irregular singularity. The following are two classical forms:

• Kummer’s form

y′′ +
c− x

x
y′ − a

x
y = 0, a, c ∈ C (41)

• Whittaker’s form

y′′ =

(
1

4
− κ

x
+

4µ2 − 1

4x2

)
y, (42)

where the parameters of the two equations are linked by κ = c
2
−a and µ = c

2
− 1

2
. Furthermore,

using the expression (10), we can see that the Whittaker’s equation is the reduced form of the
Kummer’s equation (41). The Galoisian structure of these equations has been deeply studied
in [37, 19].

Theorem B.2 (Martinet & Ramis, [37]). The Whittaker’s differential equation (42) is in-
tegrable if and only if either, κ + µ ∈ 1

2
+ N, or κ − µ ∈ 1

2
+ N, or −κ + µ ∈ 1

2
+ N, or

−κ− µ ∈ 1
2

+ N.
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The Bessel’s equation is a particular case of the confluent Hypergeometric equation and is
given by

y′′ +
1

x
y′ +

x2 − n2

x2
y = 0. (43)

Under a suitable transformation, the reduced form of the Bessel’s equation is a particular
case of the Whittaker’s equation (42).

Corollary B.3. The Bessel’s differential equation (43) is integrable if and only if n ∈ 1
2

+Z.

B.2. Heun’s families. The Heun’s equation is the generic differential equation with four
regular singular points at 0, 1, c and ∞. In its reduced form, the Heun’s equation is y′′ =
r(x)y, where

r(x) =
A

x
+

B

x− 1
+

C

x− c
+
D

x2
+

E

(x− 1)2
+

F

(x− c)2
, (44)

A = −αβ
2

− αγ

2c
+
δηh

c
, B =

αβ

2
− βγ

2(c− 1)
− δη(h− 1)

c− 1
,

C =
αγ

2c
+

βγ

2(c− 1)
− δη(c− h)

c(c− 1)
, D =

α

2

(α
2
− 1
)
, E =

β

2

(
β

2
− 1

)
,

F =
γ

2

(γ
2
− 1
)
, with α + β + γ − δ − η = 1.

To our purposes we write the determinant Πd+1(a, b, u, v, ξ, w) as in [19]:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w u 0 0 0 . . . 0
dξw + 1 v 2(u + b) 0 0 . . . 0

0 (d− 1)ξ w + 2(v + a) 3(u + 2b) 0 . . . 0
0 0 (d− 2)ξ w + 3(v + 2a) 4(u + 3b) . . . 0
... . . .

0 . . . . . . 2ξ w + (d− 1)(v + (d− 2)a) d(u + (d− 1)b)
0 . . . . . . 0 ξ w + d(v + (d− 1)a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B.2.1. Biconfluent Heun. The equation

y′′ = (x2 + δ1x+
δ21
4

− δ2 +
δ3
2x

+
δ20 − 1

4x2
)y, (45)

is the well known biconfluent Heun equation which has been deeply analyzed by Duval and
Loday-Richaud in [19, p. 236].

Theorem B.4. [19]. The biconfluent Heun equation (45) has Liouvillian solutions if and
only if falls in case 1 of Kovacic algorithm and one of the following conditions is fullfilled:

(1) δ20 = 1, δ3 = 0 and δ2 ∈ 2Z + 1.
(2) δ20 = 1, δ3 6= 0 and δ2 ∈ 2Z∗ + 1 with |δ2| ≥ 3, and if ε = sign δ2, then

Π(|δ2|−1)/2

(
0, 1, 2, εδ1,−2ε, εδ1 −

δ3
2

)
= 0.

(3) δ0 6= ±1, ±δ0 ± δ2 ∈ 2Z∗ and if ε0, ε∞ ∈ {±1} are such that ε∞δ2 − ε0δ0 = 2d∗ ∈ 2N∗

then

Πd∗

(
0, 1, 1 + ε0δ0, ε∞δ1,−2ε∞,

1

2
(ε∞δ1(1 + ε0δ0) − δ3)

)
= 0.
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B.3. Lamé equation. The algebraic form of the Lamé Equation is [42, 51]

d2ξ

dx2
+
f ′(x)

2f(x)

dξ

dx
− n(n + 1)x+B

f(x)
ξ = 0, (46)

where f(x) = 4x3 − g2x− g3, with n, B, g2 and g3 parameters such that the discriminant of
f , 27g23 − g32 is non-zero. This equation is a Fuchsian differential equation with four singular
points over the Riemann sphere: the roots, e1, e2, e3, of f and the point at the infinity.

Now the known mutually exclusive cases of closed form solutions of the Lamé equation (46)
are as follows:

(i) The Lamé-Hermite case [42, 51]. In this case n ∈ N the three other parameters are
arbitrary.

(ii) The Brioschi-Halphen-Crawford solutions [20, 42]. Now m := n + 1
2
∈ N and the

parameters B, g2 and g3 must satisfy an algebraic equation

0 = Qm(g2/4, g3/4, B) ∈ Z[g2/4, g3/4, B],

where Qm has degree m in B. This polynomial is known as the Brioschi determinant.

(iii) The Baldassarri solutions [4]. The condition on n is n + 1
2
∈ 1

3
Z ∪ 1

4
Z ∪ 1

5
Z− Z, with

additional (involved) algebraic restrictions on the other parameters.

It is possible to prove that the only integrable cases for the Lamé equation are cases (i)–
(iii) above [38]. For cases (ii) and (iii) the general solution of (46) is algebraic and the Galois
group is finite.

Case (i) split in two subcases [42, 51]:
(i.1) The Lamé case. For a fixed natural n, the Lamé equation has a solution (Lamé function)

E(x) =

3∏

i=1

(x− ei)
kiPm(x), (47)

being Pm a monic polynomial of degree m = n/2 − (k1 + k2 + k3) and ki are 0 or 1/2; as m
must be a natural, we have four possible choices for the ki, two for n is even and the other
two for odd n, these are the four classes of Lame’s functions. Moreover the parameter B is
one of the m+1 different roots B1, ..., Bm+1 of certain irreducible polynomial of degree m+1.
Furthermore, the numbers Bi are reals.

(i.2) The Hermite case. Here we are not in case (i.1) and n is an arbitrary natural number.
We are also in case 1 of Kovacic’s algorithm, but with a diagonal Galois group.

Remark B.5. We remark that the polynomial Pm in (i.1) satisfies a second order linear
differential equation similar to the one in the case 1 of Kovacic algorithm. In fact it is
possible to obtain the above passing to normal form and using Kovacic algorithm.Then the
second linear independent solution is not algebraic and the Riccati associated equation has not
a rational first integral.

We are interested in the Lamé case. For fixed n we have

2n+ 1
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Lamé different equations that fall in Lamé case, corresponding to the different choices of the
real numbers B = Bi.
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[5] M. Carnicer: The Poincaré problem in the nondicritical case. Ann. Math. 140 (1994) 289–294.
[6] G. Casale, Feuilletages singuliers de codimension un, groupoide de Galois et intgrales premieres, Ann.

Inst. Fourier 56 (2006) 735–779.
[7] D. Cerveau, A. Lins Neto: Holomorphic foliations in CP (2) having an invariant algebraic curve. Ann.

Inst. Fourier 41 (1991), 883–903.
[8] E.S. Cheb-Terrab,. Solutions for the general, confluent and biconfluent Heun equations and their con-

nection with Abel equations, J. Phys. A 37 (2004) 9923–9949.
[9] E.S. Cheb-Terrab, A.D. Roche, An Abel ordinary differential equation class generalizing known integrable

classes, European J. Appl. Math. 14 (2003) 217–229.
[10] T. Chihara, An Introduction to Orthogonal polynomials, Gordon and Breach (1978).
[11] C. Christopher, Invariant algebraic curves and conditions for a center, Proc. Roy.Soc. Edinburgh Sect.A

124 (1994) 1209–1229.
[12] C. Christopher, J. Llibre, Ch. Pantazi, S. Walcher: Inverse problems for multiple invariant curves. Proc.

Roy.Soc. Edinburgh Sect.A 137 (2007) 1197–1226.
[13] C. Christopher, J. Llibre, Ch. Pantazi, S. Walcher, Darboux integrating factors: Inverse problem, J. Diff.

Equations, 250(1) (2008) 1–25.
[14] C. Christopher, J. Llibre, Ch. Pantazi, X. Zhang, Darboux integrability and invariant algebraic curves

for planar polynomial systems. J. Phys. A 35 (2002) 2457–2476.
[15] C. Christopher, J. Llibre, Ch. Pantazi, S. Walcher, Inverse problems for invariant algebraic curves:

Explicit computations, Proc. Roy.Soc. Edinburgh Sect. A 139 (2009) 287–302.
[16] C. Christopher, J. Llibre, J. V. Pereira: Multiplicity of invariant algebraic curves in polynomial vector

fields, Pacific J. Math. 229(1) (2007) 63–117.
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