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Abstract

This Technical Report introduces a data structure and an algorithm to efficiently to efficiently
determine rigid clusters in a given molecule. This is a relevant problem in Monte Carlo sim-
ulations where the actuated DOFs change at each iteration. If the number of actuated DOFs
is small, large temporary rigid groups appear during the time spanned by a MCS step. This
document also provides a way of calculating the total energy in the molecules taking into ac-
count only inter-rigid energy terms. Thus, a large fraction of energy terms are not required to
be computed, namely intra-rigid terms.
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1 Montecarlo with few dof’s in large molecules

When a Montecarlo step changes simultaneously a limited number of random dof’s, some dis-
tances between atoms remain constant will remain the same than in the previous step. When
the molecule is large and the number of simultaneous dof is small, the fraction of constant dis-
tances is very large. It is possible to take advantage of this fact applying the trick exposed in
the paper. However, since the set of dof’s is different in each step, what can be considered a
rigid changes from one step to the other. Here, we show how to obtain efficiently: 1) The set of
atom pairs whose distance changed in the last iteration. This is enough for a steric-clash filter.
2) Total energy, avoiding the calculation of the terms that did not change in the last movement.

Our first scope is therefore to obtain

Rt ≡ {(i, j) s.t. i and j the distance between them changed in time t}, (1)

or, considering the set every set of atoms whose internal distance do not change in the step as
temporary rigid,

Rt ≡ {(i, j) s.t. i and j do not belong to the same rigid in time t}. (2)

A similar algorithm can be used for an steric-clash filter of to calculate Einter(t)(t), the sum of
the terms Ei,j whose value changed in time t:

Einter(t1)(t) ≡
∑

i,j∈Rt1

Ei,j(t) (3)

We illustrate the algorithm with the calculus of Einter(t)(t), explained first for molecules with
tree topology.

Figure 1: Depth-first numeration of atoms in a loop-free molecule. The thick
segments represent bonds between atoms and the arrows represent the end

tag, indicating the end of the subtree.

Before beginning the Montecarlo simulation (i.e., only once), the atoms should be conve-
niently tagged:

• Numeration tags. Each atom must numbered following a depth-first ordering (see Figure
1). Any of the possible numerations is valid, for example the first atom is arbitrary.



2 IRI Technical Report

Figure 2: Example of temporary rigid configuration for the molecule in Figure
1. In the current movement the dof’s between 1 and 2 and between 8 and 9
have changed. This creates three temporary rigids. The atoms with the br

tag set to true (in color) indicate the beginning of a rigid. Only the values
of the end tags (arrows) used in the current MCS step are shown.

• End of subtree tags. Each atom a (or at least, every atom that can be the beginning of a
rigid) must have a field end with the number of the last atom of the subtree to which a

belongs.

Assuming a number of dofs k change in each MCS step, a molecule without loops is composed
of k+1 rigids. Each atom has a boolean field br indicating whether it is currently the first atom
of a rigid or not. Besides, the same information is contained in an array B[] of length k + 1
containing the numbers of the atoms with which each rigid begins. Before each MCS step, when
the i-th, 1 ≤ i ≤ k, dof of freedom is selected –assume for instance a torsional dof between atom
a1 and a2 –, B[i] is set to a2 and a2.br is set to true. Anyway, the algorithm below works also
with non-torsional dofs (creo). Since the first atom of the molecule is not associated with any
dof and is however the first atom of a rigid, B[k + 1] is always set to ‘1’. An example of rigid
configuration in a MCS step is depicted in Figure 2. At the end of the MCS step the first k

atoms contained in B[] have to reset their br field to false.

The algorithm to calculate Einter(t)(t) is basically rigid-CLL. This processing of each rigid in
this algorithm consists in two loops going through the atoms of the rigid: the first checking the
interactions of each atom in the rigid an the second inserting the atoms in the cell grid. The
modifications to this algorithm involves only the way in which the atoms of a rigid is obtained (a
simple array or list in rigid-CLL). We will illustrate the method with the insert loop of rigid-CLL,
that becomes the one showed in Algorithm 1.

Given the topology (without loops) of a molecule, and the br labels of the atoms indicating
where the dofs that changed are located, Algorithm 1 identifies exactly the set of atoms corre-
sponding to current rigid beginning with B[i]. When the molecule is large and there are few
dofs, a very small percentage of atoms have their br fields set to true. In consequence, the most
internal loop is almost never entered (i.e., it behaves like an ‘if’) and thus, the cost of Algorithm
1 is very similar to going over the elements of a list or array of atoms to call the Insert function
with them.

With respect to possible loops in topology, we distinguish between small ones, and large
ones, those that cannot be closed with a chain of six or less atoms. In the first group we find all
the rings in the side-chains of the amino acids and the loop in proline. Thus, a protein without
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Algorithm 1: Loop through the atoms of the temporal rigid i, i.e, the rigid beginning by
B[i in the current MCS step, calling Insert with them.

1 j ← B[i];
2 end← j.end;
3 while j ≤ end do
4 Insert(a) ;
5 j ← j + 1;
6 while j.br do j ← j.end+ 1;

long range bonds only contains this kind of loops. The algorithm works with the small loops if
the dofs inside the loop are not changed, which in most simulations should be avoided, because
they behave like a rigid (there is no possibility of changing an internal torsion dof, without
changing also an angle bond). In this case, by numbering the atoms of the loop like if they were
in a linear chain, the algorithm will still determine correctly the set of atoms corresponding to
each rigid. The standard PDB numeration of the atoms in a protein, is a depth-first ordering
in which the atoms of the small loops satisfy this condition [Juan o alguien deberia comprobar
esto].

When large loops exist, the algorithm is still the same, but in the depht-first numbering
procedure a long-range bond is obviated (the two involved atoms are considered branch ends).
This implies that the algorithm will not find always the maximal rigids and, therefore, not
all possible distance computations will be saved. For example, in a protein loop caused by a
disulphide bond, if all dofs in the loop remain fixed, the whole loop may be considered as a
rigid, but the algorithm will divide it into two. Although not optimal, this is still better than
classical cell-lists and the remaining rigids of the protein will be correctly identified.

The second scope is to calculate the energy E(t) =
∑

i,j Ei,j(t). It can be decomposed as
follows:

E(t) = E(t− 1) + Einter(t)(t)− Einter(t)(t− 1) (4)

Calculating E(t) in this way the computation of all intra-rigid components is avoided.
Einter(t)(t) is computed as explained above and Einter(t)(t − 1) is subtracted at the same time
with the help of a n×n matrix containing the values of Ei,j in the previous step. Note that the
only elements of the matrix that change in MCS step t are those corresponding to Rt. Thus, we
have only to initialize the matrix and the global energy variable E with E(0) at t = 0. Then,
initialize the value of E at the beginning of a MCS step with the value obtained in the previous
step. And, inside the Einter(t)(t) calculation, at the moment of summing Ei,j(t) to E, subtracting
also Ei,j(t− 1) stored in the matrix, and replace the matrix value by Ei,j(t) afterwards.
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