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Abstract
The capability of a computational system to deal
with unexpected, changing situations and limited
perception of the environment is becoming more a
more relevant, in oder to make systems flexible and
more reliable. Multi-agent Systems offer a com-
puting paradigm where properties such as auton-
omy, adaptability or flexibility are basic in the con-
struction of agent-based solutions. However most
of current implementations are not flexible enough
to cope with important changes in the environment
or information loss. In this paper we propose to
introduce abductive reasoning mechanisms in BDI
agents and show how such agents are able to oper-
ate with partial models of the environment.

1 Introduction
For over a decade, Software agents have been proposed as
a software engineering paradigm which eases the creation of
flexible autonomous computational entities specially capable
to operate in complex situations. Motivated by the inability
of existing manufacturing systems (i) to deal with the evo-
lution of products and (ii) to maintain a satisfying perfor-
mance outside normal operation, agent-based technology is
more and more used on industrial setups. But abnormal sit-
uation handling in industrial plants is often a challenging ap-
plication area even for agent-based solutions. The main agent
paradigm, BDI agents, is based on a mentalistic approach
which tends to rely on a supra believe defining its knowledge
as complete and consistent, even if there is missing informa-
tion or imprecision on the expected observations.

In this work we want to investigate ways to improve BDI
agents to operate in dynamic domains where information
about the environment may be incomplete and agents need
to establish some hypothesis in order to unblock a given rea-
soning process. Our approach is that agents, when faced with
a hypothesis or a new piece of uncertain information, would
try to seek an explanation or justification for the new hypoth-
esis/information. After doing so, it could incorporate the ex-
planation into its epistemic state together with the new infor-
mation. We model this strategy through the use of abductive
reasoning. This allows us to then investigate the role of ab-
ductive inference within a belief revision framework. In this

paper we not only cover the incorporation of new information
but also the removal of information.

Abduction, as opposed to deduction and induction1, is
based on the inference of φ (explanans2) from knowledge of
the rule φ → ψ and the observation ψ (explanandum). This
means that abduction is not an analytic form of inference, but
rather based on the Affirming the Consequent fallacy. Like
induction, abduction is defeasible: the arrival of new obser-
vations might invalidate prior abductive inferences.

The conditions which define when a fact φ qualifies as a
valid abductive explanation for an observed fact ψ, with a
background theory Θ, are [Sindlar et al., 2009]:

• Θ ∪ φ |= ψ

• Θ ∪ φ 6|= ⊥
• Θ 6|= ψ

• φ 6|= ψ

In this paper we do not focus on the abductive logic expla-
nation, as it is based on the work by [Sindlar et al., 2009].
Our main concern is to infer some abductive logic conclu-
sions at a lower level, and then construct a knowledge model
that can be used for believes and desires reasoning approach
to the human knowledge retrieval.

The structure of the paper is as follows: in §2 we describe
the industrial use case scenario that will be used in the rest of
the paper. Then in §3 we propose an architecture for a BDI
agent capable of abduction-driven reasoning. In §4 we show a
concrete example where abductive reasoning is applied. In §5
we discuss how BDI agents can process the results of abduc-
tion at the level of their practical reasoning. In §6 we compare
our work to other approaches. Finally in §7 we present our
conclusions and advance some of our future lines of work.

2 Use case example: industrial process
Nowadays industries are facing a profound change towards a
wide-ranging awareness of the environmental impact of their
inner processes. In order to identify specific ways to im-
prove the production sustainability, industrial engineers more

1Deduction is based on the modus ponens syllogism ({φ, φ →
ψ} |= ψ), while induction is based on the inference of φ → ψ as a
rule from the observation of φ followed by ψ

2Some authors call this explanantia.
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Figure 1: Example of flow diagram in a industrial process (premises).

and more employ a well-known framework described on
ISO4000. This norm specifies a methodology that should be
followed in order to model the industrial activity by the per-
spective of matter as a flow through an extensive knowledge
about the relations between different individual processes, the
matter that enters and the one that transits to another pro-
cess. This general approach is called Life-Cycle Analysis and
provides a useful way to achieve a horizontal conciseness of
the industrial practices. However the world model is often
incomplete mainly because industrial processes evolve over
time leading, in most cases, to a built flow that only truly
fully represents the activity on the short time span when the
model was built. Figure 1 shows an example of a flow dia-
gram for a gold-processing industry, with its inputs (top left
and its outputs (right).

Another aspect of this model is that it usually is strongly
goal oriented, meaning that it focuses on the global amount
of matter produced and just specifies the quantifiable losses
in a forward way, not proposing, directly at least, chains of
events that could address a really systemic view over several
independent processes. One can build some kind of deductive
reasoning that contrasts specific consequences with the gener-
alized description of a singular process. Also we can achieve
a kind of induction based on the repetition of an independent
variable so we can extract an inference rule not noticed on the
initial model. However, some stochastic processes could be
used to propagate a particular kind of property over a graph,
and then obtain some time dependency probability model,
such as Markov chains or Bayesian networks. Nevertheless
these methods rely also on a finite space state and they are un-
able to provide solutions based on hypothetical correlations,
essential to extract innovative knowledge that could be used

to accomplish marked changes on the organization, even if
the facing model is incomplete or inconsistent.

Also, the industry internal dynamics are very complex and
the complete processes report, tracking each unit consumed
until its transformation and final output, is an intricate task
given the model’s fuzziness. It usually involves extensive
monitoring of the different steps of the process, and it is not
uncommon that some information loss may happen due to,
e.g. the failure of a sensor or its connection to the central
control system. Computing over these process snapshots ad-
dresses an amount of useful knowledge that can easily be
viewed on those cases that the control agent has to choose
between different actions based on this limited information,
conjecturing about what are the possible implicated outcomes
of some particular process on a given moment.

3 A hybrid agent architecture supporting
abduction

What we propose here is an extension of the traditional archi-
tecture for a BDI agent, adding the capability of abduction-
driven reasoning. The formal logic used in our proposal is
LAr, presented in [Meheus and Batens, 2006].

This logic represents abductive steps as formulas of the
form:

B(β), (∀α)(A(α) ⊃ B(α))/A(β)

LAr [Meheus, 2006] is a logic based on Classical Logic
with a non-monotonic dynamical process in which deductive
steps are combined with abductive steps. Abductive steps
may be withdrawn if, via deductive steps, its negation is de-
rived.



Also we may consider that even if the agent could moni-
tor all the processes over time, also as the proceeding chain
of past events, its access to computational resources of-
ten encounters limitations such as [Langley et al., 2008;
Magnani and Belli, 2006]:

• bounded information: sensor centric systems rely on
partial information given by sensors refresh rate and also
due to imprecise data acquisition or multiple failures,

• lack of time: decisions must be taken ön the go,̈ meaning
that since the world state is always changing so is its
knowledge model. A theory is simply valid on a precise
time-windowed constrain, and

• limited computational capacity: since the agent is
strongly goal-oriented, the knowledge access and actu-
alization is limited to the remaining computational ca-
pacity.

Therefore this hybrid architecture must balance between
the immediate efficiency and hypothesis retrieval mechan-
ics. We also know that in a large time span, if the abduc-
tive knowledge base is boosted so as the actions effectiveness
increase, therefore the real cost of abduction may just be con-
sidered on future steps and not on the strict time it occurs, as
we consider that as an investment.

4 Applying abduction in the use case example
Let us take a look to the forward example of a mineral extrac-
tion industry. The production diagram is shown in Figure 1
and we can then set the rules that define this scope [Stylios et
al., ].

Note that the arrows on the diagram represent the matter
flow, not the entailment between predicates. In order to use
the architecture presented in §3, each relation A 7→ B in the
diagram is translated into two entailment rules:

(∀x)(B(x) ⊃ A(x))

(∀x)(¬A(x) ⊃ ¬B(x))

For example, the arrow between P14 and P13 in the dia-
gram is translated into two rules: (∀x)(P14(x) ⊃ P13(x))
(i.e., in all cases if there is a BREAKING process then it is
true that there is also a STORAGE AND TRANSPORT one);
and (∀x)(¬P13(x) ⊃ ¬P14(x)) (i.e., in all cases if there is
not a STORAGE AND TRANSPORT process then there is not
also a BREAKING one). Please note also that we have some
non-restrictive conjunctive clauses, which lead to a general
premise that just represent the co-occurrence of two or more
conditions.

As explained before, in this example context, we can just
observe some of the processes that are occurring in the indus-
try on a given moment. Based on the agents’ observations,
we build a table (see Figure 2) were we identify the observed
events and also the ones that we know that have not happened.
We leave in white the events which we do not know if they
have happened or not.

Let us now start explaining the abduction process in case
C01 for the predicates P9 and P28 in this order, meaning that
we will try to extract the larger amount of information from

this subset of the observed experience. The set of explanans
thus is defined as W e = {P9(1), P28(1)}. The ”+” signs
at row C01 state that P9(1) and P59(1) hold, while the ”−”
sign states that ¬P25(1) and ¬P28(1) hold. Formally:

C01 ≡ P9(1) ∧ ¬P (25) ∧ ¬P (28) ∧ P59 ∧ ¬P (66)

The first abduction is easily observed; from rule
(∀x)(P3(x) ⊃ P9(x)) (which comes from the P9 7→ P3
in Figure 1) we can abduce an explanatory hypothesis for
P9(C01) (defined by the premise R85 on our arguments list).
We can represent RC (conditional rule), allowing for adding
abductive hypotheses to the proof, but only on a certain con-
dition, called abnormality. This condition is represented by
the last element of the line:

1 P3(1) RC R85, C01 {[[P9(1),¬P3(1)]]}

We can read this step as: P3(1) could be derived from
P9(1) until the proof condition keeps being undefeatable
(meaning that in this C01 we do not find that ¬P3(1)). If,
at a later stage of the proof, it turns out that the abnormality
condition holds, then this line will be marked and the formula
that occurs on it will no longer be considered to be inferred.
We continue this process for:

2 P4(1) RC R79, 1 {[[P3(1),¬P4(1)]]}
3 P2(1) RC R80, 2 {[[P4(1), P2(1)]]}
. . .
5 P21(1) RU R86, C01 ∅

As we can see on the condition on 5 we apply RU, an un-
conditional rule that, unlike RC, does not lead to the intro-
duction of new conditions. If we continue this process we
will find these cases:

15 P64(1) RC R164, 12 {[[P31(1),¬P64(1)]]}
. . .
17 P29(1) RU R109, 15 ∅
. . .
24 P65(1) RU R111, 17 {[[P29(1),¬P65(1)]]}
25 P30(1) RU R110, 24 {[[P65(1),¬P30(1)]]}
. . .

We are finished with P9(1). The only available abduction
for the second explanans, ¬P28(1) is:

29 ¬P64(1) RC R115, C01 {[[¬P28(1), P64(1)]]}

As we can see on condition 29, there is an abnormality with
respect to condition 15, and as a consequence, the conclusion
of line 29 is withdrawn from the proof 15. The withdrawal of
a conclusion from the proof is recorded by marking the line
on which the formula occurs and tracking all the conditionals
identified on the same way, recursively.

We can conclude, on the presented limited set of obser-
vations, that there are correlated hypothesis in which all or
some of the processes could occur except those ones involved
on PERCOLATION processes. We may also conclude that
SEDIMENTATION POOL and TALLING GUTTER probably
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Figure 2: Table of observations
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Figure 3: Abduction graph for the use case

were not used, leading us to also conclude that, based on the
xor (⊗) condition on GUTTER, that we are facing probably a
flux of matter to GRAVIMETRIC CONCENTRATION instead
of SEDIMENTATION POOL. This remarkable information,
extracted with such few data sources, could hypothetically
reconstruct the world model for this specific situation. This
information could be inserted on the knowledge base for fu-
ture inductions.

This example shows the viability of abduction in those
cases where the agent has access to limited observations, be-
cause of, for example, a sensor fault, and it needs to main-
tain a certain degree of definition about the world state and
therefore enduring discontinued operation. The knowledge
extracted about correlations between distant entities can also
be used to develop new production strategies based on hy-
pothesis revision and test experiments suggested by the un-
certainness of abduction explanation. For that reason, both
creative and operation goal issues can be accomplished with
abductive reasoning [Eco and Sebeok, 1983].

5 Knowledge creation strategies
As we discussed in 1, we aim at giving BDI agents the capa-
bility to process the results of abduction at the level of agent
reasoning. In order to do this we need to give a higher level
representation of the process that led to the whole set of ex-
planantium. We define this structure as the abduction graph
G of a proof U :

G(U) =< V,E >

where V is the set of stages s of the proof U(Γ), and
E is the set of ordered pairs (u, v), being u the abductive

hypothesis of Us(Γ) and v the explanantium of Us(Γ), ∀s ∈
V , plus the set of ordered pairs (u, v), being u = and v an
element of W e, ∀e ∈W e.

Figure 3 depicts the abduction graph for our example use
case.

Using abduction an agent can hypothesize using this re-
stricted information and, if the explanation proves to be cor-
rect it saves time and resources [Peirce, 1995]. If it is not cor-
rect the agent can always compute a new hypothesis, based
on the new observations and valid until inferring future ones.
The world-model consistency is now improved with new
knowledge that, if using another inference rule like induc-
tion, would take a larger amount of observations. The use of
this tool for diagnosis problems is understandable because the
implicit interaction act, in which the agent could test the re-
sulted hypothesis contrasting it with the results of the test. In
our example this could lead to new organizational challenges,
bringing into being new paradigms that are now directed un-
covered on the initial model.

In this sense, abduction has already been used and veri-
fied as a knowledge production mechanism [Subagdja et al.,
2006; Bracciali and Torroni, 2004; Niiniluoto, 1999]. How-
ever, in the literature, abduction is a process that is carried
at the logic level. Our proposal is to improve the results of
abduction from the higher level of agent reasoning, that is, to
make some high-level interpretation of the background theory
resulted from the logic abduction. Our agent reasoning cycle
includes two knowledge creation strategical approaches: 1.
the verification of sensitive abductions through intention re-
vision, and 2. the selection of new explanans.

5.1 Verification of abductions through intention
revision

Abduction, as we have seen, helps creating new knowledge,
but this knowledge will always be tainted with a mark of un-
certainty, that is, the permanent possibility that new facts or
rules inserted into the background theory will arise abnormal-
ities and thus removing knowledge that might have been used
to arrive to wrong conclusions.

BDI agents are usually focused on actions rather than on
the creation of new knowledge through learning [Rao and
Georgeff, 1995; Meneguzzi, 2006]. The reason for this is that
the fact agent is capable of maintaining a representation of the



world that is good enough to carry the desires though deduc-
tion is taken as a fair assumption. However, it has been shown
[Subagdja et al., 2009; Herzig et al., 2001] that abduction and
intention can lead to better intention-based planning through
non-analytic methods, namely induction and abduction.

We go a step further by creating new intentions. These
intentions, rather than aiming at general actions, represent
knowledge-driven actions. In other words, we want BDI
agents to actively look for new knowledge that will help re-
view the beliefs rather than the intentions. For this objective,
suitable concepts representing learning ought to be defined
and added to the ontologies used by BDI agents. The objec-
tive of this revision is to attack those critical abductions that,
a priori, seem to be more prone to be refuted by an abnormal-
ity in a future state of the background theory.

From the strategical point of view of the agent, there is a
variable of relevance in order to review the intention base,
which we name criticality. We define the criticality of a stage
s of the proof U over the theory Γ as the number of stages s′
that depend on the stage s, and being G(U) =< V,E > the
abduction graph of the proof U :

criticality(s) =
∑∀(s,u)∈E 1 + criticality(u)

The criticality of a proof stage can be seen as a measure of
how important that step in terms of the reliability of the poste-
rior inferences not only of its abduction, but more notably, of
the whole set of inferences recursively inferred from it. The
higher the number of inferences depend on an abduction, the
more dangerous it is to work with them and the more fragile
the posterior inferences are.

Our BDI agents take criticality into account by putting em-
phasis on it from the intentional perspective. That is, the
agent will actively look for possible attacks to the proof stage
and thus reinforcing or finally discarding it by. Operationally,
what the agent will do is to create an ordered set of actions
I(G)′ of an abduction graph G(U) =< V,E > such that:

I ′ = {validate(s1), validate(s2), . . . , validate(sN )}

where ∀validate(si) ∈ I ′, si ∈ V ,
and ∀validate(si), validate(sj) ∈ I ′, i < j →

criticality(si) > criticality(sj)
Each of these actions will be part to the intention base of

the BDI agent, prioritising their execution in the order defined
by the set I(G)′. How the validate() action will be carried
out by an agent will depend on its implementation, its capa-
bilities, and its own representation of the action, e.g. commit-
ting some resources to execute actions that may confirm the
validity of the most critical abducted predicates.

5.2 Selection of new explanans
Section 5.1 describes a strategy for the reinforcement of suc-
cessful abductions. However, a problem not tackled in the
literature is how to find knowledge out of the contradictions.
In the example presented in 4, there is a contradiction that
arises because of the inference of a disjunctive abnormality:
proof stages 15 and 64. Adaptive logics define several possi-
ble strategies to solve these contradictions, but the one used
by LAr, reliability, is conservative and thus the conflictive

proof stages and their posterior inferences are marked as re-
moved. This is fine at the level of the logics, but this repre-
sents potential useful information that can be used from the
agent reasoning level. In fact, what this kind of contradic-
tion means is that either A or ¬A can be abduced, but we are
unsure of which one is the right inference path.

From the knowledge creation point of view, these contra-
dictions are attractive, not only because there is a plausible
explanation, but also because at the level of the logic we are
pruning potentially good inferences. The strategy to follow in
the case of found contradictions is simple: investigate about
which is the correct inference path. To do so, we will follow
a pure CL inference based on the main proof by adding as in-
ference each one of the literals of the abnormality condition
that is not the one related to the contradicted abduction.

Formally, if we have two proofs s1 and s2 such that s1 has
as abnormality condition [[Ra, Qa]] and s2 has as abnormal-
ity condition [[Sa,¬Qa]], we will test:

Γ ∧Qa¬ `CL⊥ and Γ ∧ ¬Qa¬ `CL⊥
It might be the case that none of the tests arise a positive

result. If that is the case, then the agent can assume that there
is not enough knowledge of the world to make a proper de-
cision. If one of both tests is positive, we can safely add the
literal, Qa in the first case and ¬Qa in the second case. We
can then add this literal to the set W e of explananda and con-
tinue abducing.

In the contradiction of our example, we have that:

[[P31(1),¬P64(1)]] ∨ [[¬P28(1), P64(1)]]

The proof is trivial, as from the premises, ¬P28(1) and
by modus ponens we have ¬P64(1). Therefore, the second
case entails false from P64(1) ∧ ¬P64(1). This allows us to
add ¬P64(1) to the theory and abduce explanations from this
literal3.

6 Discussion
Abduction is a powerful inference mechanism that generates
conditional proofs, the conditions being assumptions. Both,
together with a given knowledge base will enact the conclu-
sion of the proof. However, the abduced conditions can be
viewed as an answer, or as an explanation, in the context of
the knowledge base, of the conclusion. The focus of [Ma et
al., 2008] is on distributed abduction where knowledge and
constraints are distributed over a group of agents that coop-
erate to produce the proof. Each agent has its own knowl-
edge base and consistency constraints. The abduced condi-
tions for the collective proof may come from different agents
but they must satisfy the relevant consistency constraints of
all the agents who have contributed to the abductive proof.
Our proposal condenses the task of consistency proof on in-
ner logical steps that could recursively unfold the detected
abnormality. The major difference resides on the objective of

3This seems to be an unnecessary check, as ¬P64(1) can be di-
rectly inferred from the premises. However, LAr is driven by the
explananda, and this kind of cases can happen. Although the se-
lection of new explananda is intended for more complex contradic-
tions, it also helps in solving this kind of inferences that LAr does
not tackle directly.



abductive reasoning, in our case being not goal oriented but
instead driven by a knowledge inference engine that models
the mental state of the agent. This allows for detecting possi-
ble relevant correlations, optimizing the hierarchy of knowl-
edge acquisition tasks.

Our proposal presented in this paper presents the idea of
processing at a higher level of abstraction the results of the ab-
duction. This is an approach that can be used to improve other
approaches like [Chang et al., 2005; Johnson and Zhang,
1995]. It would also be interesting to incorporate research
done with respect to the improvement of ontologies via ab-
duction [Elsenbroich et al., ; Peraldi et al., 2008]. However,
our main focus will be on the definition and formalisation of
new less conservative strategies.

The formalism chosen for the conceptual definition of our
BDI architecture is LAr, although we are currently analysing
how to adapt modal logics [Meheus and Batens, 2006] to our
architecture. For a grounding to a real deployment, there are
several possible implementations of an abductive-inductive
logic, being the most notable HAIL and XHAIL [Ray, 2008].
However, it is not available right now, so we are carrying our
proof of concept at the conceptual level for the moment.

7 Conclusions
In this paper we have presented an approach for agent reason-
ing with the use of abduction mechanisms. It has been shown
with an example how this can be applied to a real industrial
process setup.

We are currently working on verifying the proof of the con-
cept and creating new high level reasoning strategies for the
generation of new knowledge. Future work should focus on
the consequences of induction after abduction in BDI agents,
and to extend the idea to desires and intentions.
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