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Abstract 

In climate change impact studies it is common to run a given response model (from ecosystem
changes to wavestorm or landslide occurrence) nested into one of the available long-term Global 
or Regional Circulation Models (GCM, RCM) reproducing the climate for the XX century or 
predicting it for the XXI.  In this way, it is expected to capture the average behaviour of the stud-
ied system to a changing climate forcing: in other words, with such response forecasts, one does
not actually expect to be able to reproduce each and every single event, but rather its statistical 
behaviour. Regarding weather-related hazard, the relevant statistical properties are the occur-
rence return period of events, and their expected magnitude. The present study focuses on wave 
storm occurrence, and aims at presenting a general methodology to check the adequate reproduc-
tion of the return period of hazardous weather-related events by such response forecast models. 
This is attained by analysing a compound data set formed by series of real data (typically of 
around 20-30 years in the last decades of the XX century or the beginning of the XXI one) and 
longer hind- or forecast series. Occurrence of a stormy event is considered to follow an inhomo-
geneous Poisson process, with: a linear trend to capture climate change, and a step in the junc-
tion real data-forecast data to capture systematic model biases. A Bayesian method is proposed
to assess the influence of these two elements, i.e the presence/absence of a climate trend and the 
adequate reproduction of the statistical properties of wavestorm occurrence by forecasting mod-
els. Results suggest a  non-significant trend albeit negative trend in the storm occurrence, and an 
inability of the used forecast model to reproduce wavestorm occurrence.
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1 The data set 

We focus on the region around the Ebro delta, with the aim of detecting any climate change in-
fluence in the wave storm events. The Ebro river has a relatively low sediment supply, specially 
after its full hydraulic regulation with the several dams and reservoirs built during the XX cen-
tury. This makes the delta particularly weak nowadays against breaking storms, specially the 
several lateral sand bars and beaches protecting the highly productive (in ecological and agricul-
tural terms) wet areas.  

To detect climate trends, it is typical to analyse long data series obtained with local instrumenta-
tion. Unfortunately, systematic monitoring of this area started in the early 80s, thus a maximum 
of approx. 30years of observations may be available. This is not enough to adequately assess 
climate trends. For this reason, it was though to complement this �true data� with hindcasts of
the second half of the XX century, obtained within the HIPOCAS project (Sotillo et al, 2005; 
Guedes Soares et al, 2002). HIPOCAS nested the WAM wave generation model (WAMDI
group, 1988) into a REMO weather model (Jacob and Podzun, 1997), transferring the energy of 
daily average wind fields into wave fields. We took the series of significant waveheight at HI-
POCAS node 2056046 (longitude 40.75 N, latitude 1.00 W) for the period 1958/01/03-
1990/06/15, and complemented it from 1990/06/16 to 2008/12/31 with significant waveheight 
measurements at the Tortosa buoy (XIOM network, longitude 40.72 N, latitude 0.98 W). Signifi-
cant waveheight (Hs) is a measure of the total energy contained in the wave spectrum in a given 
region, and it is correlated with the average height of the upper third of all measured weights. 
Lionello et al (2008) already used a similar strategy to infer trends on waveheight field  for the 
XXI century. 

The resulting data series is treated with a standard Peak-Over-Threshold methodology (Em-
brechts et al, 1997), defining a (marked) Poisson process: an event is defined as the time while 
Hs is larger than a given threshold (200cm), if this time span is larger than 6 hours. The event 
intensity is taken as the maximum observed Hs value within that period. Two consecutive events 
are considered independent if the second starts more than 3 days later than the end of the first 
one. If two or more events are not considered independent, we just keep the largest one. These 
criteria define a series of �instantaneous� events with a given magnitude.  Figure 1 Shows the 
obtained series of Hs, in m and as adimensional exceedances over the critical threshold of
200cm: X = log(Hs/200). 
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Figure 1: Data set of events and their magnitudes. The first part of the series correspond to HIPO-
CAS hindcast events, the second part contains observed events at the Tortosa buoy 

2 Peak-Over-Threshold occurrence model 

Typically, occurrence and magnitude are modelled separately. This paper focuses on the model-
ling of occurrence, which is Poisson distributed. However, we assume that the intensity parame-
ter of this Poisson process is not constant, but that it has a linear trend in time and a jump at the 
critical time tc, midnight 1990/06/15 to 16 (the position of the junction between hindcast and ob-
served data): 

(1)

With this, an event is expected to occur at a random time T, with the intensity given by: 

which taking limits yields �(t) = FT'(t)/(1-FT(t)), a differential equation that may be integrated 
by separate variables. The resulting cumulative distribution function has as associated probabil-

ity density function  . Thus, assuming that we have a series of events at 
occurrence times t1, t2, �, tn, we can obtain the likelihood of the model (Eq. 1) parameters 

 as the product of the individual occurrence probabilities, or in logarithms: 
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(2)

This log-likelihood expression can be maximized to obtain the maximum likelihood estimations 
of  the parameters , or we can try a Bayesian approach. 

3 Bayesian estimation 

To estimate a given parameter vector �, Bayesian estimation methods combine the information 
coming from its likelihood (Eq. 2) given the data L(�|data) with a prior assessment of the prob-
ability distribution �0(�) of �. This prior distribution is the way the analyst has to introduce all
his/her knowledge about the most likely values of the parameters, prior to having a look at the 
data. This is obtained by perturbing the prior by the likelihood, or  

In our case, we will simply assume some reasonable intervals for the parameters, and a uniform 
prior distribution �0(�0, ��
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) within the hypercube (�0
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To characterize it, we will obtain a sample of the posterior �(�) with a Gibbs sampling 
scheme (e.g. Robert and Casella, 2000). This is obtained following these steps 
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5. return to step 2, with k=k+1 

We run the chain a certain burn-in period (100 samples in our case), to be sure that the algorithm 
has converged to sample the true posterior distribution. After that moment, we store the vectors 
of simulations �k=(�0, ��

, �
�
)k. We can then later study the statistics of this sample to charac-

terize the posterior distribution of the parameters. 
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4 Results and discussion 

Using the algorithm outlined before, we obtained a sample for the three parameters describing 
the change on event intensity along time. Figure 2 shows kernel estimates of the posterior den-
sity for the pair (�

�
, �

�
) and for each marginal. Parameter �

�
 represents the linear trend with

time (a decreasing but not significant one), while �
�
 is the jump at the transition HIPOCAS-

buoy (a clearly significant increment) thus indicating the systematic differences between the 
model and the actual measurements. To illustrate these results, Figure 3 shows the expected 
number of events for a representative subsample of size ten from the sample of posterior parame-
ters. These are compared with the number of events actually observed each year. From these dia-
grams it is evident that HIPOCAS does not adequately reproduce the occurrence statistics of
wavestorms as shown by actual buoy data. The reasons for that undesirable behaviour might be: 

Figure 2: Posterior density estimates of the slope parameter (�
�
) and jump parameter 

(�
�
). The red vertical line marks the position of the posterior mode: the red curve in the 

lower right diagram shows the density profile for �
�

along this mode. 
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� either the REMO model underpredicts winds systematically, or the WAM does not effi-
ciently transfer wind energy to wave energy; this would produce a systematic reduction 
of the number and magnitude of events in the HIPOCAS set with respect to the buoy set; 

� or else that predicted wave fields have �too much inertia�, growing too slowly, but also 
decreasing too slowly, i.e. tending to smooth the series to the average; this would yield a 
reduction of the number of events for the modelled part, but could produce an increment
of the predicted magnitude of events. 

To distinguish one from the other, it would be good to model event magnitude as well. This is a 
matter of further research. 

5 Conclusions 

When modelling the effects of climate change with a numerical model nested on a GCM/RCM, 
it is important to be sure that the chosen model adequately reproduces the �climate� of the pre-
sent or past situations (i.e. the statistical properties of the phenomenon under study). It is actually 
more important to ensure this statistical reproduction than the ability to predict one by one each
possible individual event. In the case of hazardous phenomena (droughts, fires, landslides, 
surges, wavestorms) it is reasonable to use the Peak-Over-Threshold methodology to model their 
extremes, those actually producing the damages. In a POT framework, we model events as 
marked Poisson processes, where occurrence is captured by a conventional Poisson process and 
event magnitude corresponds to the marking. This paper presented a methodology that allows to 
check the adequate statistical reproduction of occurrence of hazardous events by models with 
respect to data. This is obtained analysing with conventional Bayesian methods an inhomogene-
ous Poisson process, where event occurrence intensity is considered a linear function of time
with a different intercept for the observed and the modelled series: significant differences of 

Figure 3: Number of events per year, comparing observed values with expected values for a se-
lected set of posterior estimates
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these intercepts will indicate a systematic under/overestimation of the event occurrence by mod-
els with respect to data.

This framework was applied to the study of wave storm occurrences as predicted by the HIPO-
CAS project of wave field hindcasting for the XX century, in the region of the Ebro delta. Re-
sults indicate a strong underestimation of event occurrence with respect to buoy data, tentatively 
related to a high inertia of models, that reduce their ability to follow sharp space-time variations
of wind fields observed in reality in the studied region. 
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