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Abstract: The problem of controlling single-phase shunt active power filter is addressed in presence of 
nonlinear loads. The control objective is twofold: (i) compensation of harmonic and reactive currents 
absorbed by the nonlinear load; (ii) regulation of the inverter output capacitor voltage. A two-loop cascade 
control strategy is developed that includes an inner-loop designed, using the backstepping technique, to 
cope with the compensation issue and an outer-loop designed to regulate the capacitor voltage. The 
controller performances are formally analysed, using the averaging theory. The analysis results are 
illustrated by simulation. 



1. INTRODUCTION 

In presence of nonlinear loads, current harmonics are 
generated that cause the distortion of the voltage waveform at 
the point of common coupling (PCC), leading to voltage 
harmonics and disturbing other connected loads and 
electronic equipments. For a long time, the compensation of 
these harmonics has been sought using passive LC filters and 
capacitor banks. The latter were resorted to improve the AC 
loads power factor. This conventional solution presents 
several shortcomings. Then, efforts have been made, by 
engineers and researchers in power energy and power 
electronics, to develop alternative solutions to these power 
quality problems. In this respect, the concept of active power 
filter (APF) emerged a couple of decades ago (Gyugyi & 
Strycula, 1976). Since then, many research programs have 
been conducted on active power filters and their practical 
applications. Nowadays, modern active power filters, 
compared to traditional passive filters, are superior in 
filtering performance, smaller in physical size and more 
flexible in application.  

APFs can be divided into single phase and three phase active 
filters. Single phase APFs have attracted less attention than 
three phase APFs because they are limited to low power 
applications. However, implementing a low-power single-
phase APF to each single-phase nonlinear load may be, in 
some situations, a better solution than installing a single 
medium or high power three-phase APF at the PCC.  

In the last decade, the problem of controlling single-phase 
shunt APFs has been given a great deal of interest. In this 
respect, several control strategies have been proposed 
including simple fuzzy logic based control (Doğan & 
Akkaya, 2009), linear control (Costa, 2007) and nonlinear 
control (Miret, 2004). One common shortcoming of most 
previous works is the lack of formal performance analysis 
backing the proposed control strategies. In this paper, a new 

control strategy is developed for single-phase shunt APFs in 
presence of nonlinear loads. Specifically, a nonlinear 
controller is proposed to ensure a satisfactory compensation 
of harmonic and reactive currents absorbed by the nonlinear 
load and a tight regulation of the inverter output capacitor 
voltage. The controller is a two-loop cascade structure 
involving an inner-loop designed using the backstepping 
technique, to cope with the compensation issue, and an outer-
nonlinear PI control loop designed to regulate the output 
capacitor voltage. It is formally shown, using tools from the 
Lyapunov stability and averaging theories, that all control 
objectives are actually achieved. This theoretical result is 
confirmed by several numerical simulations. 

The paper is organized as follows: the converter is modeled 
in Section 2; the control problem is formulated in Section 3 
which also includes the controller design and analysis; the 
controller performances are illustrated by simulation in 
Section 4. 

II. ACTIVE POWER FILTER MODELING 

2.1 APF Modelling 

Applying the Kirchhoff’s laws to the single phase shunt APF 
one easily gets: 

f
f s AB

dc
f d

di
L v v

dt
dv

C i
dt


 


  c

 (1) 

The inverter undergoes the equations: 

AB

dc f

v .v

i .i





 

dc
 (2) 

The switching function   of the converter is defined by: 
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   

1 4 2 3

1 4 2 3

1

1

  if   s ,s   is  ON   ;  s ,s  is OFF

  if   s ,s   is  OFF   ;  s ,s  is ON


 
  (3) 

 
Combining (1) and (2), one obtains the instantaneous model 
of the filter: 

 1

1

f
s dc

f

dc
f

f

di
v v

dt L

dv
i

dt C






 



 


 (4) 

The model (4) is useful to build-up an accurate simulator for 
the converter. However, it cannot be based upon in the 
control design as it involves a binary control inputs, namely 
 . This difficulty is usually coped with resorting to average 

models and the averaging is performed over cutting intervals 
(Abouloifa et al., 2003). Accordingly, the mean value of   

turns out to be the system control input. The obtained average 
model is the following: 

   

 

1
2

2
1

1

1

s
f

f

dx
v u x      a

dt L

dx
u x                 b

dt C


 



 


 (5) 

where 1x , 2x  and  denote the average values, over cutting 

periods, of the signals 

u

fi ,  and dcv  . The system (5) is 

clearly nonlinear. 

 
Fig.1. Shunt filter connected to the network-load system. 

III. CONTROLLER DESIGN AND ANALYSIS 

The controller synthesis is carried out in two major stages. 
First, a current inner loop is designed to cope with the power 
compensation issue. In the second step, an outer loop is built-
up to achieve voltage regulation in the DC side of active 
power filter. 

3.1  Current inner loop design 

This aims at making the network current si  sinusoidal and in 

phase with the network voltage sv . This means that 1x  

should follow the reference 1
*x  defined by: 

1
*

s cx v i   (6) 

For theoretical design considerations, it is more convenient to 
late the above objective in term of the energy 

function 
reformu

 t  defined as follows: 

  2
12 2

f fL C
t x   2

2x  (7) 

Using (5) and (7) it follows that that  t  undergoes the 

following equations: 

1sv x     (8) 

1
s

s s
f

v
v x v ux

L
     2  (9) 

It readily follows from equation (8) that: 

1sv x d    (10) 

The control objective is now to make   track as closely as 

possible the reference signal * , obtained substituting 1
*x  to 

1x  in (10). Specifically: 

 dtxvs
*
1

*  

Doing so, the network current harmonics and reactive power 
will be cancelled. To this end, a regulator will now be 
designed in two steps, using the backstepping technique 
(Krstic et al., 1995). 

Step 1. Introduce the tracking error on the energy  :  

1
*z     (11) 

Using (8), time-derivation of (11) yields: 

 1 1
*

sz v x x  1  (12) 

In (12), the quantity  1sv x  stands as a virtual control 

variable. Then,  can be regulated to zero by letting 1z

 1sv x 1  where 1 , called stabilizing function, is defined 

by: 

1 1 1
*

sc z v x    1

1

 (13) 

where  is a design parameter. Indeed, this choice 

would imply 
1 0c 

1 1z c z  , ensuring the asymptotic stability of 

(12) with respect to the Lyapunov function: 

2
1

1

2
V  1z  (14) 

Indeed, time-derivation of V would then imply: 1

2
1 1 1 0V c z    (15) 

which is negative definite with respect to . As  1z  1sv x

z

1

 is 

not the actual control input, a new error variable, denoted , 

between the virtual control and its desired value (
2

 ) is 

introduced: 

Cf A 
Lf 

idc
vdc 

u 

B 

S1 S3 

S2 S4 

˜
vs  ic L

if 

u 

is 
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 2 1sz v x 1   (16) 

Then, equation (12) becomes, using (13) and (16): 

1 1 1z c z z   2

2

 (17) 

Also, the derivative of Lyapunov function (15) becomes: 

2
1 1 1 1V c z z z    (18) 

 
Step 2. Achieving the control objective now amounts to 
enforcing the errors  1 2z ,z  to vanish. To this end, one needs 

the dynamics of . Deriving (16) and using (5a) yields: 2z

  2
2 1 2

1 1 *
1s s s s

s s

z v c v e v x v u v x
L L

      s                      (19) 

with: 

1 1
*e x x   

The actual control variable, namely , has emerged for the 
first time in equation (19). An appropriate control law for 
generating  must now be determined so that the 

u

u  1 2z ,z -

system is made globally asymptotically stable. To this end, 
consider the Lyapunov function candidate: 

2
2 1

1

2
V V z  2



2z

                   (20) 

Using (18) and (20), the time-derivative of  can be 

rewritten as: 
2V

 2
2 1 1 2 1 2V c z z z z               (21) 

This shows that, for the -system to be globally 

asymptotically stable, it is sufficient to choose the control  

so that V c  which, due to (21), amounts to 

ensuring that:  

 1 2z , z

2
2

u
2

2 1 1 2z c z  

2 1 2z z c              (22) 

Comparing (22) and (23) yields the following backstepping 
control law: 

 1 1 2 2
1

2

1f s s *
s

s f s

L v c v z c z
u e v x

x v L v

  
   










       (23) 

Using (11), (13) and (16), this control law can be expressed 
as follows: 

 1 2 1 1 2
2

1
sf *s s

s f

v e dL v v
u c c e x c c

x v L vs

 
             


 (24) 

As the network voltage  vanishes periodically, the control 

law (24) entails singularities. To overcome this issue the 
following modified version of (24) is proposed: 

sv

 1 2 1 1 2
2

1f *s s
m

f

V̂ .e.dL v v
u c c e x c cˆx LV V̂

 
        


  







 (25) 

The above control law involves the derivative of the 

reference signal . From (6) and (25), it follows that the 

ratio 

*
1x

  and its derivative must be available. The results thus 

established are summarized in the following proposition. 

Proposition 1. Consider the system, next called inner closed-
loop, consisting of the system (5) and the control law (25). If 
the ratio    and its first time-derivative are available, then 

the inner closed-loop system undergoes, in the  1 2e ,e -

coordinates, the following equation: 

  
1 1

2
1 2 1 22 2

0 1

1 s s s s

e e

c c sin t c c cos te e   

    
              



   (26) 

with  1e e  and 2e e   

Proof. Substituting , generated by the control law (25) , to 

 in (the first equation of) (5) yields the following dynamics 
of the current error:  

mu

u

    1 2 1 21s se cos t c c e c c ed          (27) 

Deriving this wit respect to time gives:  

   2
1 2 1 21 0s s s se c c cos t e c c sin t e             (28) 

which also takes the state space representation (28)   

3.2 Voltage outer loop design 

The aim of the outer loop is to generate a tuning law for the 

ratio β in a way that makes the output voltage 2x  regulated to 

a given reference value 2
*x . To this end, the relation between 

  and x2 must be made clear. This is carried out in the 
following proposition. For simplicity, it is supposed that the 
inner loop is much faster than the outer loop, a condition that 
will be accounted for when tuning the parameters of the inner 
and outer loop. 

Proposition 2. Consider the power active filter described by 
(7) in closed-loop with the inner control law defined by (27). 
Under the same assumptions as in Proposition 1, one has: 

1) The output voltage 2x  varies in response to the tuning 

ratio    according to the following equation: 

  

  

2 2
2

2

2

2

2

2

1 2
2

1
1 2 2

1

f
s

f

s f s c f s

f

f
c s c c

f f

L ˆx V cos t
C x

ˆ ˆ     V cos t L v i L V sin t
C x

L
      i v i i

C x L

 

  



  

     

 
    

 



 (29) 

with   1 21 c c e d     is a constant. 

2) The squared-voltage 2
2y x  varies, in response to the 

tuning ratio  , according to the following equation: 
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  

  

2 2

2

2

1 2

1
1 2 2

2 1

f
s

f

s f s c f s

f

f
c s c c

f f

L ˆy V cos t
C

ˆ ˆ     V cos t L v i L V sin t
C

L
     i v i i

C L

 

  



  

     

 
    

 



   (30) 

3) When  can be neglected, the above relation becomes: fL

   2
1 2o s

f

y k cos t v i
C

    s c  (31) 

with  
2

o

f

V̂
k

C
 . 

Proof. 1) Equation (29) is immediately obtained replacing, in 
(the second equation of) (5), u  by  (given by (25)) and 

letting there  . 
mu

0e 

2) Equation (30) is easily obtained by deriving  with 

respect to time and using (29).  

y

3) Putting  in equation (30) yields (31)    0fL 

The ratio   stands as a control input in the first-order system 

(31). The problem at hand is to design for   a tuning law so 

that the squared voltage 2
2y x  tracks a given reference 

signal . Bearing in mind the fact that  22
*x*y    and its 

derivative should be available (Proposition 1), a PI control 
law is considered: 

3 3 4 4c e c e      (32) 

with      ,   3e y * y 4 3

0

t

e e d   

At this point, the regulator parameters   are any 

positive real constants. The next analysis will make it clear 
how these should be chosen for the control objectives to be 
achieved. 

3 4c , c

3.3  Control system analysis 

In the following Theorem, it is shown that the control 
objectives are achieved (in the mean) with an accuracy that 
depends on the network frequency s .  

Theorem 1 (main result). Consider the shunt active power 
filter shown by Fig.1, represented by its average model (5), 
together with the controller consisting of the inner-loop 
regulator (25) and the outer-loop regulator (32). Then, the 
closed-loop system has the following properties: 

 1) Let the reference signal *y  be any positive signal. There 

exists a positive real *  such that if *   then, the tracking 
errors , ,  and the ratio 1e 2e 3e   are harmonics signals, with 

frequency, that continuously depends on 1 s  , i.e. 

 1 1e e t , ,  2 2e e t , ,   3 3e e t , ,   t ,   .  

2) Furthermore, when 0  , all errors vanishes and   

converges: 

 1
0

lim    e t ,





0 ;   ;   2 0t , 
0

lim   


 e  3
0

m    e t ,


0li


  

  1
1

c

0
lim   t ,


Î
cos

V̂
  


.   

Proof. 1) First, notice that equation (32) guarantees that   

and its first time-derivative are available.  

Then, by Proposition 1, the couple of errors  

undergoes equation (26).  This together with (31) and (32) 

show that the augmented state vector  

undergoes the following state equation: 

), 21 ee

 3 4
T

e e

(

1 2oE e e

       *
o s c, y ,v ,i

 
 

1 2

2 2 2

0

0
,

,

A t

o oE t P t E t A t                         (33) 

where: 

 A t 2

A t

 
  
 

  

     s ct i t

 
 
 
 
 
 
 
 

2

0 1

sc cos 

0

0

2

0

*
*o s c

f

P t , y ,v ,i
y v

C

 
 

with 

 1 1
A t 

 

     2
1 2 1s s sc c sin t c t  

 
 
     

 

 

  3 31 2o sk cos t c k      1 2

1 0

o cos t  
  
 

2

c
A t  s  

The stability of the above system will now be dealt with 
making use of system averaging theory. To this end, 
introduce the time-scale change s t  . 

It is readily seen from (33) that   

undergoes the differential equation: 

)/)(0 s

def

Z  ()( 00 EtE 

     o
o o

dZ  *
s cA Z P

d 


    


  , y ,v ,i  (34) 

with: 

    
 

1 2 2

2 2 2

0

0
,

,

A
A

A









 

 
 

  (35a) 
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     1
1 2 1 22

0 1

1
A sin cos

c c c c   



 

           




   

   






 (35b) 

       3 3
2

1 2 1 2

1 0

o oc k cos c k cos
A 




   
   





 (35c) 

Clearly, the above time-varying matrices are periodic with 
period 2 . Now, let us introduce the average functions: 

 
2

0 0

1
A lim  A d

2


 


 


   

 
2

0 0
o o

1
Z lim  Z d

2




 


   

 2

0 0

*
o o

1
P lim  P ,y ,v ,i d

2


 


s c 


   

It follows from (35a-c) that: 

1

2

0

0

A
A

A






 
 




 (36a) 

  1
1 2 1 2

0 1

1
A

c c c c


      




 (36b) 

3 4
2 1 0

oc k c k
A 

 
 
 

o 
  (36c) 

1
1

0

0

0

T

o c

f

ˆˆP VI
cos

C
 

 
 
 


 
  
 




 (36d) 

The last equality is obtained making use of the constant or 

periodic nature of the reference signal . In order to get 

stability results regarding the system of interest (34), it is 
sufficient (thanks to averaging theory) to analyze the 
following averaged system: 

*y

o oZ  A P     (37) 

To this end, notice that (37) has a unique equilibrium at: 

 1
1

4

0

0

0*
o

c

Z
ˆˆVI

cos
c



 
 
 
 
 
 
  
 

   (38) 

On the other hand, as (37) is linear, the stability properties of 

its equilibrium are fully determined by the state-matrix A . 

More specifically, the equilibrium *
oZ  will be globally 

exponentially stable if the matrix A  is Hurwitz. It is readily 

checked that 1A   is Hurwitz whatever  and . 

Indeed, its characteristic polynomial is 

01 c 02 c

2121
2

1 1)()det( ccsccsAsI    and a second order 

polynomial is Hurwitz if its coefficients are nonzero and of 
the same sign. 

Similarly, 2A   is Hurwitz whatever  and  

because its polynomial characteristic, namely 

03 c 04 c

0403
2

2 )det( kcskcsAsI   , has positive coefficients. 

The fact that 1A  and 2A   are both Hurwitz implies that the 

bloc diagonal matrix A , given by (36a) is in turn Hurwitz. 

Then, the equilibrium *
oZ  of the linear system (37) is actually 

globally exponentially stable.  Applying e.g. Theorem 4.10 in 

(Khalil, 2003), one concludes that there exists a  such 

that for 

0* 
*  , the differential equation (34) has a harmonic 

solution  0 0Z Z t ,  that continuously depends on  . 

Moreover, one has . This, together with 

(38), yields in particular that 

  *
o t , Z 


0

lim  Z


2
0

lim   e t,


0  ,  2
0
   e 0t,lim


 , 

 3
0

lim   e


0t,   and    4 1
1

4

c
ˆˆVI

cos
c0

 e t ,li   m


 




 

. Then, 

using (32) one gets 1
1scÎ

t , co
V̂0

m   li


  


 .   

The Theorem is thus established.   

IV.   NUMERICAL SIMULATIONS 

The performances of the proposed controller are now 
numerically evaluated using a shunt APF based system with 
the following characteristics: 

 
PARAMETERS VALUES 
network vs 220V, 50Hz 
Power active filter Lf 

Cf 
3mH 
1000μF 

Rectifier L 
R 
Lo 

3mH  
2-5Ω 
100mH 

Current regulator c1 
c2 

5000 
5000 

Voltage regulator 
 

c3 
c4 

6.75×10 -7 
2.20×10-5 

The simulation aim at illustrating the behavior of the 
controller in response to step changes on both the voltage 

reference 2
*x  and the nonlinear load resistance . More 

specifically, the voltage reference goes from 600V to 1000V. 

R

The resulting controller performances are illustrated by Fig. 2 
to 11. As expected by Theorem 1, the output voltage  

converges, in the mean, to its reference value with a good 
accuracy (Fig. 2). Furthermore, it is observed that the voltage 
ripples oscillates at the frequency 

dcv

s2 , but their amplitude 

are too small compared to the average value of the signals, 
confirming thus Theorem 1. Fig 3 shows that the network 
current si  is sinusoidal. Fig. 4 shows the waveform of the 

load current ; this clearly presents a harmonic distortion ci
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6. CONCLUSION and phase shift with respect to sv . In order to better 

appreciate the controller performances, a zoom is made in 
Figs 4 and 5 on the input current and network current. 

A nonlinear control strategy is proposed for single-phase 
shunt active power filters. A nonlinear two-loop cascade 
controller is developed to achieve current harmonics and 
reactive power compensation in presence of nonlinear and 
uncertain loads. Unlike former works, the controller is 
presently designed and analysed making use of advanced 
tools from the control theory e.g. backstepping design 
technique, system averaging theory. The theoretically proved 
performances of the controller are confirmed by several 
simulations that also show its robustness against load change 
and uncertainty.  

 

       Fig.2 output voltage           Fig.3 network current  dcv
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