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Abstract. Specific hardware customization for scientific applications has
shown a big potential to address the current holy grail in computer architec-
ture: reducing power consumption while increasing performance. In partic-
ular, the automatic generation of domain-specific accelerators for General-
Purpose Processors (GPPs) is an active field of research to the point that
different leading hardware design companies (e.g. Intel, ARM) are announc-
ing commercial platforms that integrate GPPs and FPGAs. In this paper we
present a new framework with a holistic approach that addresses the chal-
lenge of design exploration of specific application accelerators. Our work
focuses on a target platform consisting of a GPP with a reconfigurable
functional unit. The framework includes a reconfigurable 1-core 1-thread
OpenSPARC with a new programmable specific purpose unit (SPU) inside
the OpenSPARC core. In order to program the SPU we have developed
an automatic toolchain that profiles an application and discovers its main
computing bottlenecks. With that information our toolchain is able to both
design hardware specific accelerators that can be automatically mapped in
the aforementioned SPU, and generate the binary code necessary to run the
application using those accelerators. The OpenSPARC with the new spe-
cific application accelerators, defined in a Hardware Description Language,
can then be executed and measured. Still awaiting further development,
nowadays our framework is a proof-of-concept that shows that this kind
of systems can be developed and programmed as easily as a GPP. In a
near future it would be the source of very interesting information about the
capabilities and drawbacks of those mixed GPP-FPGA systems.

1 Introduction

General purpose computing has reached a point where it is not possible to go
further beyond the limits of Amdahl’s law applying the same techniques all over
again. The reasons for that assertion are at least two: (1) power imposes a limit
to the number of CPU parts that can be running at the same time, reducing the
capacity of increasing the speed of current processors; and (2) general purpose
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processors (GPPs) are not able to cope with application-specific characteristics
because of their generality.

Current trends in processor design lead to increase the number of proces-
sors on the same chip. This approach has two main variants: homogeneous and
heterogeneous multicore processors. Of course, either way has its drawbacks: on
one hand, homogeneous multicores may have several cores wasting computing
power since their full exploitation (all cores running) depends on the runtime
of the programming model used, and the programmability and expression of
the parallelism of the application, if it exists. On the other hand, heterogeneous
multicores reduce the problem of power consumption with power-efficient units,
but the time to market of new applications is higher because of increased pro-
gramming complexity. There are not known efficient mechanisms to automati-
cally map every application or application parts to their best suited hardware.
Therefore, the generation of an application-specific processor based on profiling
information may help to solve the wasted power problem and to exploit the par-
allelism of the applications at low cost. Of course if we want to address more than
one application (or set of applications) with the same hardware this can only be
achieved with a reconfigurable unit. In this direction, new architectures includ-
ing a GPP attached to an FPGA are being introduced by leader companies in
hardware design (e.g. Intel [5], ARM [11]). This new trend can overcome several
of the aforementioned problems: FPGAs can now implement very specific fea-
tures needed for special applications, and then be programmed to achieve high
data-level parallelism as the most suitable configuration for other applications.
However these gains are achieved at the cost of putting even more stress in the
programmability of the system which is not leveraged but hindered.

In this paper we present a new framework as a proof-of-concept of an auto-
matic mechanism, transparent to the programmer, that can exploit those new ar-
chitectures. The mechanism automatically: (1) identifies the application-specific
hardware accelerators needed based on profiling analysis, (2) generates HDL code
for those hardware accelerators and (3) modifies the binary code of the origi-
nal application to run on the application-specific reconfigured architecture. In
particular, the software framework presented on this paper has been build using
the LLVM infrastructure. And the hardware framework uses the OpenSPARC
T1 with a reconfigurable functional unit, added for the purpose of exploring and
analyzing application-specific fine-grained hardware accelerators.

2 Related work

The automatic extraction of fine-grained hardware accelerators is equivalent to
extracting ISA extensions. This is usually divided into two different objectives:
identification of candidates, and selection of new instructions [7]. The identifica-
tion of candidates involves the generation of patterns consisting of subsets of the
sequence of instructions executed on the original application. That identification
can be solved with an exhaustive search through the graph that represents the
application. As the search can grow exponentially, some authors propose differ-
ent backtracking approaches [2]. The selection of the final set of instructions may
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Fig. 1. Toolchain processes of the Framework.

vary depending on the metrics that are evaluated. The most popular way to ad-
dress this selection is the use of heuristics, guided by a cost function [12,4,9, 8.
This approach might not give the optimal solution, although experimentally has
been tested to be good-enough, depending on the metrics of the cost function.
In order to get optimal solutions, the selection problem is often tackled with In-
teger Linear Programming methods [12, 1]. While previously cited works do not
use real hardware prototyping, our fine-grained approach does, as well as other
coarse-grained approaches, like the coprocessor in the MOLEN Architecture [10]
and the runtime acceleration of a MIPS processor in [3].

3 Framework Description

The envisioned architecture of our framework consists of a single core which
incorporates a new specific-purpose reconfigurable function unit (RFU) to its
pipeline along with its typical functional units. That RFU is modified conve-
niently for each application based on a profiling analysis and some heuristics
criteria. In our particular implementation, the single core is one core of the
OpenSPARC T1 processor (synthetizable on a Xilinx Virtex 5 FPGA), and the
RFU is implemented as an adaptation of its floating-point unit (FPU), which
has been integrated into the core to better match the architecture proposed.
Figure 1 gives an overview of the toolchain presented in this paper. Dark
grey boxes stand for processes, while light grey ones are the input or output
data to/from processes. There are seven main processes:
1. Analysis and compilation: generates application-specific hardware accelera-
tor candidates and an executable from the application source code.
2. Profiling: gets data from executing the application in the target architecture.
3. Selection of the hardware accelerators: generates the best set of fine-grained
hardware accelerators from the set of candidates, the profiling data (before
and after accelerating the application) and other metrics obtained from the
bitstream generation (e.g. area, power).
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4. Accelerator pipeline creation: creates the pipeline HDL that can execute the
accelerator description from the input.

5. Compilation with ISA extensions: the new ISA is used to generate an exe-
cutable that can use the new reconfigurable function unit (RFU).

6. Synthesis + PAR: generation of a bitstream from the HDL of the OpenSPARC
core and the new accelerator pipeline. Its results may help with selection
heuristics.

7. Execution of the program on an FPGA running the modified OpenSPARC.
Results may feed the selection to help with heuristics.

Functionality and implementation of the baseline OpenSPARC platform and
the toolchain of the framework are detailed in subsequent sections.

4 Generic Reconfigurable OpenSPARC Platform

OpenSPARC is an in-order pipelined RISC processor implementing the SPARC
v9 ISA. The choice of this processor is due to both its availability as an open
source Verilog code and the fact that can be mapped to a FPGA board.

4.1 Design Decisions

Once the OpenSPARC processor has been chosen as our base processor there are
three different possible approaches in order to create a baseline platform with
enough flexibility to automatically reconfigure an application-specific functional
unit: (1) modifying the execution unit, (2) modifying the Cryptography unit,
and (3) modifying the floating point unit (FPU).

Modifying the integer execution unit would be faster than using the FPU or
the cryptographic unit for two operand instructions, but it provides our schema
with no extra flexibility. The cryptographic unit might allow more flexibility if
all its code was open source. As it is not, it does not seem to be easily modified to
become a baseline platform that can be automatically reconfigured. Therefore,
the FPU was finally chosen since it implements input and output queues as
a co-processor unit. Using the same strategy than the OpenSPARC, we solve
the problem of having operations with different number of cycles, allowing the
integration of new accelerators in a pipeline with arbitrary latency. This is done
without changes to the control unit.

4.2 In-core Reconfigurable FPU

The original FPU has three different pipelines, one for each floating point (FP)
operation family implemented: add, multiply, and division. Add and multiply
data paths are totally pipelined and have a fixed number of stages, while divisions
take a variable time to execute (depending on its operands) and are not pipelined.
Those FP operations are firstly requested by the front-end unit (FFU) to the
local store unit (LSU), that is in charge of requesting operations through the
crossbar to the FPU, which will finally capture those requests. The FPU only
allows two source operand requests. FFU also forwards memory requests through
the LSU. Simpler FP instructions, such as register to register and memory to
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register movement instructions, are implemented in the FFU. Therefore, the
original FPU is off-core and that makes accessing it a high latency operation.

In this work, our first modification has been to move the FPU inside the
OpenSPARC core. That has been done in such a way that we minimize the
changes in the rest of the OpenSPARC architecture. In particular, we have cre-
ated a bridge between the FFU and the original FPU (now inside the core), and
the LSU. That bridge forwards FFU memory requests to the LSU, and prepares
the FFU FP requests, with the same format they were prepared by the LSU
on the original OpenSPARC, to the FPU. Our second modification allows more
than two source operands on the requests, introducing:

— A new register file whose registers can be used as operands in the RFU-based
accelerators. This new register file is called Temporal Register File (TRF).
The values stored in the TRF can be read and used by the instructions
implemented using the new pipeline added to the FPU.

— Three new instructions called Temporal Move (TMV): TMV1 to move an extra
operand to a given register in the TRF. For more than one extra operand,
we use TMVR and TMV2. TMVR moves two operands to registers 0 and 1 of
the TRF initializing an index (idx) to 2, and TMV2 moves two operands to
registers idx and idx+1 and increments (idx<=1idx+2).

Any new pipeline added to the OpenSPARC processor using our reconfig-
urable platform will work the same way as the add or mul pipelines. It would
be divided in two submodules (one for the control unit and another one for the
data path), and would return only one value to the SPARC core. The coding of
the new pipeline has been selected from available free codes of the FPU. More
details about implementation, coding and some examples can be found in [6].

5 Generation of Application Specific Accelerators

In this section we go through the process of identification, selection and gener-
ation of new accelerators for the target platform.

5.1 Identification of Application Specific Accelerator Candidates

The input of this phase is the target application source code. It can be written
in any language that is supported by LLVM-GCC frontend, such as C, C++,
Fortran, etc. LLVM transforms the high-level code into an intermediate repre-
sentation as a direct acyclic graph (DAG) that is analyzed to identify the new
accelerator candidates. This step is implemented within the target-independent
Code Generator of LLVM.

LLVM Instruction Selection Analysis. The first phase of the LLVM code
generator is Instruction Selection, where graphs called SelectionDAGs are cre-
ated from the LLVM intermediate representation of the original source code. We
decided to perform our analysis on a SelectionDAG because it is an abstract
representation very close to the target architecture instructions, yet being the
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process target-independent.Thus, this part of the framework can be reused in as
many different testing hardware platforms as desired. We introduced our analysis
step before the latest step (scheduling) of the Instruction Selection.

Analysis: Algorithm description. The analysis algorithm is executed for ev-
ery basic block on the code that we want to accelerate, selected by profiling.
This analysis is fed by the SelectionDAG, the list of allowed types of operations
that the accelerator will execute, and the maximum number of inputs and out-
puts allowed for the accelerator. The analysis algorithm creates a topologically
sorted matrix that contains only the allowed operation types and then fixes the
maximum number of inputs and outputs. The output result of this process is
the most promising accelerator candidate for the basic block being analyzed, and
this feeds the next phase of the toolchain.

5.2 Selection of Best Application Specific Accelerators

Once we have got a set of accelerator candidates, the selection of the most
promising accelerators is done based on performance metrics. Those metrics
(e.g. frequency, area usage number of pipeline stages and/or power consump-
tion) are used as the heuristics data of the selection algorithm. The selection
behaves as follows: First, each candidate is given a score based on those metrics.
Second, duplicated candidates are merged keeping their basic block information
so that accelerator candidates that initially seemed unlikely to be selected may
became the most promising ones because they are used in more than one basic
block. Finally, the best scored accelerator is chosen to be implemented as a real
hardware accelerator.

One of the interesting points of the selection is that the heuristics can be
configured to accept any type of metric that may be considered relevant for
the accelerator selection. The most straightforward metric is the timing or cycle
count for each basic block. This indicates the frequency of execution for a given
part of the code. Profiling counters are used to get this kind of information, ob-
tained through a previous execution of the application in the SPARC processor.
In addition, we can feed the heuristics with data from later stages of previous
runs of the toolchain; for instance, area occupancy of the new accelerator, or the
number of stages of the new pipeline.

5.3 Generation of Application Specific OpenSPARC Accelerators

In this section we present a case study to describe the results of our toolchain:
(1) the new assembler code of the application using the generated accelerators,
and (2) the hardware description of the functionality of the RFU. We show how
the FIR example in Figure 2(a) is accelerated, whose original assembler code is
shown in Figure 2(b). Note that we have chosen an integer application to simplify
the generation of the hardware accelerator. However, that should be integrated
into the RFU with the correspoding execution overhead, explained in Section 7.

First of all, our toolchain will identify and select the sequence of instruc-
tions inside the loop body of Figure 2(a) to be executed in an accelerator. This
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Fig. 2. Source(a), compiler generated assembly(b), transformed code(c), for the FIR

algorithm.
assign flstg_partial-out [63:32] = (flstg-inl =
5) + (flstg-in2 * 11);
assign flstg_partial_out [31:0] = rf_in = 3;
assign reg.r = flstg_vlid ? 0 : assign f2stg_partial_out [63:32] = f2stg._partial
f2stg_vld ? 1 : [63:32] + f2stg_partial [31:0];
f3stg-vld ? 2 : assign f2stg_partial-out [31:0] = rf_in x 9;
5'bzzzzz; assign f3stg_-partial_-out [63:32] = f3stg-partial
} [63:32] + f3stg_partial [31:0];
assign f3stg_-partial_out [31:0] = rf_in % 7;
. assign fir_out = f4stg_partial [63:32] +
(a) Control section of the ffir fastg_partial [31:0];
accelerator

(b) Datapath section of the £fir accelerator

Fig. 3. Verilog code for the ffir hardware accelerator.

sequence is an ideal accelerator candidate as it includes several multiply opera-
tions that could be done all in parallel, depending on the hardware resources and
width and number of memory ports. Once the selection is done, the toolchain
generates new assembler code as shown in Figure 2(c) using the accelerator (i.e.
ffir) instead of the original sequence of instructions. As commented in Sec-
tion 4.2, this new code also includes the register movement instructions (i.e.
tmv*) in order to be able to operate with more than two registers.

On the other hand, the verilog code of the hardware for the new accelerator
should be generated and included into the reconfigurable OpenSPARC platform,
in particular into the RFU. To perform this work two types of codes are used:
(1) control code that indicates which registers should be read in each stage
as shown in Figure 3(a), and (2) datapath code that indicates which are the
operations to be done in each stage. As it can be seen in Figure 3(b), in the
case of the ffir accelerator there are four stages, and just mul operations (that
can be optimized). Therefore, with the baseline platform created, the hardware
generation difficulty only falls into the implementation of the operations to be
done rather than in the integration of the new accelerator.
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6 Experimental Setup

The modified OpenSPARC platform has been synthesized on to a Xilinx Virtex
5 110T, using the Xilinx Synthesis Technology (xst) 11.1, and the OpenSPARC
T1 1.7 release. sims simulator, included in the OpenSPARC T1 1.7 package, has
been used to analyze the performance of the original and modified OpenSPARC.

The fine-grained hardware accelerator identification has been implemented
within LLVM 2.8, meanwhile the hardware accelerator candidates has been
stored in a Mysql database accessed with the Django 1.1.1 Python framework.

Three different integer application examples have been evaluated in this pa-
per: FIR, EDGE detection, and Stencil 3D [6].

7 Results

In this section we analyse the modified and the original OpenSPARC in terms
of area, cycle time, number of instructions executed, cycles and overhead.

Element Baseline| 50stg| FIR|EDGE|Stencil3D
# of Slice Registers 23212/69120(35368|23725| 24186 25164
# of Slice LUTs 36971/69120(57345(37677| 37996 39297

# used as Logic 34710/69120(55089(35427| 35629 36984
# used as Memory | 2261/17920| 2256| 2250 2367 2313
# used as RAM 1786| 1686| 1778| 1778 1778

# used as SRL 475 570| 472 589 535

Table 1. Slice logic utilization for the sparc module.

First, Table 1 shows the slice logic utilization for the SPARC module with 5
different configurations: (1) the FPU without accelerators is integrated into the
SPARC module (baseline); (2) an empty accelerator with 50 stages is integrated
(50stg) in the FPU; (3) the FIR accelerators are in the FPU; (4) accelerators
for EDGE are in the FPU; and (5) Stencil3D accelerators are in the FPU. The
amount of registers used in the FPU with FIR and EDGE accelerators is half-
way between the baseline and the 50 stage pipeline, as shown in the slice usage
increment of the SPARC module. That reflects that the number of slice registers
used is proportional to the number of stages. Indeed, the number of slice LUTs
used is larger when integrating FIR and EDGE accelerators than for the 50-stage
pipeline because they implement new functional units and the 50-stage pipeline
is just an empty pipeline. Integrating the Stencil3D accelerator increases the used
slice LUTs and slice registers compared to FIR and EDGE extensions. That is
because the FPU with Stencil3D needs a 16-entry TRF, compared to the 8-entry
TRF used by the FPU with FIR, EDGE, and the 50 stage pipeline. As it can
be seen there is enough space for design exploration on new accelerators.

Regarding to the cycle time, the SPARC module, with the FPU integrated,
has a maximum frequency of 93M Hz which is slightly faster than the original
SPARC module with the FPU separated (91M Hz). In any case, the maximum
frequency obtained would depend on the amount of work to be done in each
stage of the new accelerators.
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Fig. 4. Speedup for the analyzed codes assuming extra and no extra latency.

Figure 4 shows the speedup for the accelerated code compared to the original
code running in the baseline architecture. For each application there are three
columns. First column corresponds to the baseline architecture running the ap-
plication (normalized to 1). Second column is obtained by timing the new code
using the accelerators. Third column subtracts the execution overhead due to
current limitations of our platform, to the second column. Those limitations are
two: (1) there are still some extra cycles that have to be paid to reach FPU
although we have integrated the FPU within the SPARC core, and (2) the ac-
cesses to the floating point registers in the SPARC core are more expensive than
accesses to integer registers. That could be solved allowing TMV instructions to
access the integer register file of the core, however this improvement is still not
implemented in our actual version. Therefore, considering the third column, the
best speedup achieved is for the ffir accelerator. Using this accelerator, the
number of instructions in the body loop has been reduced from 22 to 12 instruc-
tions, and in addition, the £fir accelerator only has 4 cycle latency. In the case
of the EDGE and STENCIL applications, the number of instructions are not
reduced as much as FIR, and the latency of the accelerators is bigger, 8 and 10
respectively. As it can be seen the final speedup is completely application specific
and another iteration of profiling may be necessary to fine-tune these issues.

8 Conclusions and Future Work

In this work we have presented a new framework that automates the inclu-
sion of application specific hardware accelerators in a standard GPP as the
OpenSPARC. Our toolchain is able of automatically profile new applications,
identify their computing bottlenecks, generate new hardware accelerators that
are integrated to the reconfigurable unit of our platform, and generate assembler
code that uses those accelerators. The modified OpenSPARC has been mapped
to a FPGA, and tested using the HDL testing infrastructure of the OpenSPARC.

Results show that out proposed system can achieve a speed-up of up to
1.83 with an increase in size over the original processor of up to 7%. Indeed,
these figures are expected to be improved as the automatic system evolves, since
there is still a lot of work to be done to overcome the limitations of our sys-
tem. For instance, providing more than one result, introducing vector processing
and data reuse support, using larger FPGAs to synthesize, place and route the
OpenSPARC system at higher clock frequencies, etc.
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10

Finally, to the best of our knowledge, this is the first automatic and flexible
framework that can be used to evaluate the real behaviour of new hardware
accelerators included in standard processors. Furthermore, the whole toolchain
can be applied to new commercial architectures that join a GPP to a relatively
large FPGA to provide fast deployment of new applications.
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