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Abstract— A compact IR-drop model for on-chip power 

distribution networks in wire-bonded ICs is presented. Chip 

dimensions, metal coverage and piecewise distribution of the IC 

consumption are taken into account to obtain closed form 

expressions for the maximum IR-drop as well as its place. 

Comparison with simulations shows an error as small as 2% in 

most the cases.  

I. INTRODUCTION 

The design of a good and reliable on-chip power 
distribution network (PDN) of digital ICs is a very complex 
task because designers cannot anticipate all the details of the 
design. Power supply noise (PSN) depends on the place, size 
and activity of the different blocks configuring the circuit. So, 
to check that PSN is below the specified value it is necessary to 
simulate the complete circuit, which is clearly unfeasible in 
large ICs. The help of specific CAD tools alleviates this 
problem but, due to the simulation time, they are primarily 
intended for use in post-layout verification after the design is 
complete. Thus, a failure in the design involves a costly rework 
of the PDN. This promotes over-dimensioning, resulting in the 
sacrifice of valuable routing resources. For these reasons the 
use of pre-layout tools, which give approximate results for the 
expected PSN in the early stages of PDN design, becomes a 
necessity [1][5][7-9]. 

Static power supply noise (IR-drop), is due to the drop 
voltage produced in the PDN resistances caused by the supply 
current, whereas dynamic PSN results from the current 
transients exciting the distributed inductances and capacitances 
of the PDN. Despite being partial, the knowledge of the IR-
drop is very important in PDN design for a number of reasons, 
e.g., its impact on the circuit performance [6] and the 
electromigration issues. 

The purpose of this paper is to analyze the IR-drop in the 
PDN of wire-bonded ICs. Our results extend the ones presented 
in [1] and [7], which analyze only the case of constant current 
in the whole IC, by considering realistic cases for the 
distribution of the IC consumption.  In our model, the PDN is 
approximated as a continuous layer of conductive material and 
the IR-drop at any point is found by solving a partial 
differential equation, i.e. the Poisson equation, with the proper 
boundary conditions and source function. From this starting 
point, the paper gives compact expressions for the position and 

value of the maximum IR-drop. The analysis is tested for 
different combinations of the PDN parameters such as chip 
dimensions, metal coverage, sheet resistances, and current 
distribution, all of which are representative of real ICs, and the 
results are compared with simulations.  

II. PROBLEM FORMULATION 

A typical on-chip PDN is a mesh of perpendicular wires 
strongly connected in the crossing points. As sketched in 
Figure 1, horizontal wires may be made with the upper metal 
layer available, and the vertical ones are made with the second 
upper metal layer. A large number of vias strongly connect the 
wires at the crossing points. The proportion between the width 
of the metal and the distance between wires is called metal 
coverage MC of the given layer. Thus, MC = 0.5 means that 
50% of the surface is covered by the PDN wires and the other 
50 % is free for routing other signals. The PG/G is usually 
made by two or more perpendicular metal layers, so metal 
coverage could be different in X and Y direction, which will be 
identified as MCX and MCY.  Figure 1 shows a square IC with 
five, twenty-five, seventy-five and three hundred and seventy-
five horizontal and vertical wires for the power grid. There, 
MCX = MCY = 0.2.  

  

  
Figure 1. Four square power grids with 5×5,  25×25,  75×75, and 375×375,  

regularly spaced wires. 

 

In this Figure only the power grid is represented. It is 
assumed that a parallel mesh exists for the ground signal.  In 
the peripheral bounding IC packages, the power/ground pads 
are usually connected at the four sides of the PDN. Each pad 



connects directly to one or more PDN wires, or the connection 
is made through peripheral power/ground rings. The first 
solution saves space but has the drawback that an important IR-
drop may exist near the points where the supply pads connect 
to the PDN. The second solution ensures a better current 
distribution but at cost of more space. In this report we assume 
that the PDN has ideal power and ground rings, thus ensuring 
that the nominal supply voltage VDD is present at the four sides 
of the PDN. However, as we analyze the voltage drop, not the 
absolute voltage, we take the power ring voltage as zero. The 
problem of the IR-drop near to supply pads in PDN without 
supply rings is not analyzed here.  

As Figure 1 shows, each wire of the power grid can be 
thought as a set of metal segments connected in series at the 
crossing points. Each segment has a given resistance, according 
equation (1): 
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Where RSX and RSY are the metal sheet resistances, and PX, 

PY, WX and WY are the pitch and width of the segments in X and 
Y axes, respectively (see Figure 2). 
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Figure 2. Wire segments. 

 

In its turn, the current consumed by the IC flows from the 
power pads to the ground pads through the power and ground 
grids. So, the current drawn by the portion of the IC below a 
crossing point can be represented as a local current sink 
connected to this point. In this way, the power grid and the 
whole IC below it can be modeled by a mesh of cells with the 
equivalent electrical circuit depicted in Figure 3. There, the 
grid is composed by M×N wires, current sinks Ii,j are the local 
current consumption in the cell i,j, and RsegX/2 and RsegY/2 are a 
half of the resistances RsegX and RsegY. A conductor with zero 
resistance models the power ring surrounding the periphery of 
the power grid.  A similar equivalent circuit can be drawn for 
the ground grid. 

As shown in Figure 3, this configuration is well adapted to 
calculate the IR-drop by using the method of finite differences. 
Notice, however, that this method approximates a continuous 
problem by a discrete version of it, whereas our problem is 
discrete from the beginning. So, by finding the IR-drop in the 
power grid using the model of Figure 3, we find a solution 
which is as exact as the assumptions made. However, at this 
point the only assumption made is zero voltage at the four sides 

of the power grid, which is a very weak assumption if 
power/ground rings are available. 
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Figure 3. Electrical model of the power grid. 

 
By applying Kirchhoff current law to the i,j cell we can 

write for the crossing point i,j:  
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Formula (2) should be properly modified for the cells at the 

four corners and at the four sides of the PDN.   By doing so, it 
is possible to write in matrix form the set of equations for 
current balance at the whole power grid, as follows: 

 

GV = I    (3) 

 
Where G is the (M×N)×(M×N) matrix of coefficients 

(conductances) of the (M×N)×1 unknown voltages Vi,j and I is 
the (M×N)×1 column of currents Ii,j.  The voltages Vi,j are 
identified as the IR-drop voltage at each cell.  

For Dirichlet problems as the one considered here, it is 
shown that G has the required properties to be invertible [4]. 
Thus, it is possible to calculate V as follows: 

1
V = G I

−
   (4) 

 
It is clear that if the current drawn by each cell Ii,j is 

constant and M and N are odd numbers, the maximum IR-drop 
is at the cell placed at the center of the PDN. 

For given IC dimensions L an H, if the number of wires N 
and M is large enough, for constant metal coverage, the power 
grid looks like a continuous plate of conductive material (see 
Figure 1) with effective sheet resistances Rsx and Rsy in the X 
and Y directions, as follows 
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In these conditions, the static IR-drop in the PDN follows 

closely the solution of the Poisson equation (6), [1][7]. 
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where V is the IR-drop voltage, Rsx and Rsy  are the effective 

sheet resistances of the PDN in X and Y respectively, and J is 
the current density function.   

Notice the relationship between equations (3) and (6).  
Equation (3) can be interpreted as the discrete approximation of 
equation (6), as is usual in the finite differences method to 
solve Poisson equation. But the opposite is also true: equation 
(6) can be interpreted as the continuous approximation of (3), 
and all the analytical methods to solve Poisson equation will be 
useful to get its solution. This approximation is more accurate 
when the number of wires N and M are large. How large they 
must be? 

The following example sketches the answer to this 
question. It shows the difference between the solution of (3) 
and of (6) for the maximum IR-drop voltage, as a function of N 
and M.  Figure 4 shows the calculated IR-drop in the center cell 

of a square PDN with RSX = RSY = 0.1 Ω/square and MCX = MCY 
= 0.1 as a function of N (here N = M).  The current drawn by 
the IC, I = ∑Ii,j is uniformly distributed over the surface, so 
current density J and Ii,j are constant. Circles are the values 
obtained with equation (3), and the line is the value obtained 
from the continuous approximation (6). The axis X is the 
number of wires and the Y axis is the IR-drop voltage at the 
center of the PDN, in mV. 
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Figure 4. Maximum IR-drop in a square power grid as a function of the 

number of wires (circles) (3), and from the continuous approximation (6), 

line. 

 

As can be seen, the continuous approximation value is 

asymptotically close to the discrete values from relatively 

small N.  Figure 5 shows the difference in % between the 

maximum IR-drop according to (3) and from (6) for the same 

example.  
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Figure 5. Difference in % between maximum IR-drop according to (3) 

and (6) for the example. 

 
As can be seen, the difference falls below 1% for N = M = 

11, and decreases almost exponentially with N. Other examples 
show similar results. It is worth to comment that these results 
are independent of the PDN size, provided that the total IC 
current I be constant, being the only significant parameters the 
metal coverage and the sheet resistances.  

In realistic PDNs, N and M are usually in the range of 
several tens to about one hundred. So, the problem of the IR-
drop can be analyzed by using the continuous approximation 
(6) with a negligible error. This is the approach followed by 
Shakeri in [1] and Huang in [8], and also in this paper. 

Equation (5) is the link between the physical and 
geometrical variables of the PDN, as metal width and pitch, 
metal coverage, and sheet resistance, and its mathematical 
representation in equation (6). Moreover, by a change of 
variables, it is possible to further simplify equation (6) in order 
to work with only a single value for the effective sheet 
resistance, Rs.  To do so, we first define the following constant:  
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R
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Next, we change the independent variables in the following 
way: 
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And now (6) transforms into 
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where 
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Indeed, the PDN dimensions (length L and height H) 
change according to (8). They will now be  

* *,
H

L Lk H
k

= =   (11) 

The anisotropic problem (6) is thus converted into the 
isotropic one (9) at the small price of making a change in the 
IC dimensions, (11).     

For the sake of simplicity and without loss of generality, in 
the rest of the paper we will work with equation (9), and 
isotropic sheet resistance Rs according to (10), and will remove 
the superscript * in x, y, H and L. 



III. MAXIMUM IR-DROP 

According to equation (9), V is the IR-drop voltage of a 

PDN in V, Rs is the isotropic sheet resistance in Ω, and J is the 
current density function in A/m

2
. The IR-drop at the boundaries 

of the whole IC is assumed to be zero volts. 

This paper analyzes the following two cases to find explicit 
equations for the position and value of the maximum IR-drop, 
which are parameters of maximum interest in PDN design: 

1. Constant Rs and J 

2. Constant Rs but different J 

A. First case: constant Rs  and J 

In this case, the equation to solve and the boundary 
conditions become 
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where D is just the rectangle  0 ≤ x ≤ L, 0 ≤ y ≤ H and ∂D is 

the boundary. System (12) can be solved by finding the 

Green's function G(x, y, x0, y0) of the problem and integrating 

it over D.  In this case, the Green's function may be obtained 

in terms of a classical double Fourier series, which is the 

approach followed in [1], or of a single Fourier series [3][4], 

the one corresponding to one of the two variables, x or y. The 

latter approach has the advantage that the resulting solution 

turns out to have much better convergence properties than the 

standard double Fourier series, so truncation yields far more 

accurate approximations. Since we are dealing with the case of 

constant Rs and J, this problem is symmetric in both x and y 

variables, and the maximum IR-drop takes place at the centre 

of the rectangle, which is given by 
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where I = JHL is the total current of the IC and r = H/L is the 

aspect ratio of the rectangle. The series in (13) is strongly 

convergent, so we may keep just the first term as an 

approximation to the maximum value of V: 
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the relative error being less than 0.12 % in the worst case (r = 

1). Now, by reversing the change of variables (8) and 

dimensions (11), and considering (5), it is possible to find the 

required wire width and pitch in each metal layer for the 

maximum IR-drop specified. 
Notice how expression (14) extends the one shown in [1], 

which is only for square ICs, to the more general case of 
rectangular ICs. 

B. Second case: constant Rs but different J 

In this section we deal with regular PDNs whose sheet 
resistance, Rs, is constant throughout the chip, but whose 
current consumption is now piecewise constant. In particular, 
we consider a set of N different rectangular blocks, each of 
which has a constant current density, Jk. k = 1, 2, … N, The IC 
domain is, as before, a rectangle, D, with sides L and H. We 
denote by lk and hk the dimensions of block k. 

In this case, we can also derive expressions for the IR-drop 
voltage at each point of the chip by simple linear 
decomposition of the problem into N simpler equations, one for 
each block, that is, V = ∑Vk, where Vk satisfies 
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where Dk are rectangular areas with the same current 

consumption and D = UDk.  At this point, we can also use the 

previously derived single Fourier series of the Green's 

function to obtain the corresponding solution when there is a 

different current consumption in each block.  
The idea is again to decompose the problem with N 

different blocks into N problems where only one of the blocks 
has a non-vanishing current consumption. We thus start by 
considering a single block whose bottom left corner is denoted 
by (x1, y1) and upper right corner by (x2, y2), and with a current 
density of Jk. Now, to derive the corresponding voltage drop at 
any point of the IC, we just need to integrate the single Fourier 
series representation of the Green's function [3][4].  

The result is shown in the equations (16-19). 
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where 
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On one hand, it is readily seen that the maximum IR-drop 

takes place inside the consuming block, that is to say, 

( ) ( )max 1 2 max 1 2,  and y ,x x x y y∈ ∈ . This means the maximum of 

Vk is actually an interior one and therefore the partial 
derivatives with respect to x and y does vanish at that point. On 



the other hand, the series in (16) is indeed convergent at least 
like 1/n

2
, but it can be manipulated in the region where the 

maximum lies (that is, in Dk) in order to obtain an even much 
convergent one. By noting that part of the series (16) and (18) 
can be expressed in terms of Bernoulli polynomials [10], we 
obtain a new strongly convergent series, as shown in (20): 
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Note that now the convergence of the remaining series is 
exponentially fast. That is to say, the absolute error when 
truncating after the N-term of the series is easily found to be 
bounded by 
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We note that if y2 - y1 is small, this absolute error is no 
longer exponentially small and it only decays quadratically. 
This must be taken into account when dealing with very small 
blocks. In particular, by keeping the first term in (20), we 
obtain a closed form approximate expression for the voltage 
drop inside the block. We now find the position of the 
maximum IR-drop in terms of this approximate expression by 
differentiating it with respect to y and finding the zeroes. This 
provides a rather simple expression for the y-coordinate of the 
maximum: 
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As for the x-coordinate, note that we could also have 
obtained a similar solution as (20) in terms of variable y instead 
of x. By doing so and repeating the same steps as before, we 
obtain the dual expression for the x-coordinate of the maximum 
IR-drop: 
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It is thus natural to consider expressions (22) and (23) as an 

approximation for the position of the maximum IR-drop. These 
expressions turn out to be rather accurate, as shown in Table I. 
We note that only when the blocks are very small and/or the 
consuming block is close to the boundary does the relative 
error become larger than 2%. 

Table I. Position of the maximum IR-drop for a square chip of 100 units 

per side with a single consuming block, for seven different blocks. The 

approximate position corresponds to expressions (22)-(23). This 

approximate solution is compared with the solution of (15)  obtained from 

simulation. 

 
 Block edges (22)-(23) (xmax, 

ymax) 

Simul. (xmax, ymax) |%rel. 

error| 

1 (10,30)-(70,50) (44.0519,40.7741) (43.578,40.689) 1.08  

2 (10,10)-(90,90) (50,50) (50,50) 0  

3 (40,40)-(50,50) (45.1598,45.1598) (45.0,45.0) 0.36  

4 (70,10)-(90,15) (76.5431,13.6801) (79.2934,13.1250) 4.22  

5 (35,20)-60,40) 47.7470,31.8199) (47.3664,31.2070) 1.96  

6 (40,30)-(70,70) (54.3546,50) 54.3886,49.7665) 0.47  

7 (50,25)-(90,65) (65.3135,45.9974) (65.7756,45.5592) 0.96  

 
As for the value of the maximum IR-drop, Tables II and III 

compare the value of the maximum voltage drop when 
equation (15) is solved by simulation with the corresponding 
value obtained by retaining only the first term in series (20), 
and evaluating it at the position of the maximum given by (22)-
(23). It is clear that decreasing block size and greater proximity 
of the block to the boundaries lead to worse approximations 
using only the first term. However, upon taking some more 
terms in the series, the relative error is small.  

Table II. Maximum IR-drop for a small chip of 1.3 mm length, 2.5 mm 

height, and with a single active block with J = 1 A/mm2 and sheet 

resistance Rs = 0.3 ΩΩΩΩ/square for two sets of places for the active block; the 

first four correspond to a large active block [A], while the following four 

correspond to a small one, [B]. Column 3: numerical solution to (15). 

Column 4: approximate solution using (20) with one or more terms 

whenever the relative error is > 7%. 

 Block edges [mm] Simul. 

[V] 

(20) [V] |% rel. 

error| 

(0,0)-(0.7,2.5) 0.0359 0.0359 0.06 

(0.5,0)-(1.1,2.0) 0.0374 0.0374 0.08 

(0.1,0.2)-(0.5,2.2) 0.0214 0.0215 0.25 
[A] 

(0.23,0.65)-(1.23,2.15) 0.0482 0.0482 0.03 

0.0115 (N=1) 43.53 (0.1,0.2)-(0.5,0.5) 0.0076 

0.0081 (N =2) 6.61 

0.0070 (N =1) 19.33 (1.0,0.6)-(1.2,1.1) 0.0059 

0.0061 (N =2) 4.15 

0.0035 (N =1) 42.9 

0.0027 (N =2) 10.54 

(0.8,0.5)-(0.9,0.7) 0.0024 

0.0025 (N =3) 1.61 

0.0032 (N =1) 17.11 

[B] 

(0.1,0.6)-(0.2,1.1) 0.0027 

0.0029 (N =2) 5.94 

 

We also note that the data in Table III correspond to a 
larger IC than that in Table II. As a consequence, for some 
blocks we find that the IR-drop is relatively large. This would 
imply increasing the metal coverage (if possible), or 
considering the use of another kind of package (flip-chip). As 
can be seen, this type of tradeoffs can be easily checked with 
comparatively a small effort, by applying a few closed form 
formulas.  

Table III. Maximum IR-drop for a square chip of 3.5 mm per side with a 

single active consuming block with J = 1 A/mm2 and sheet resistance Rs = 

0.3 ΩΩΩΩ/square for two sets of places for the active block; the first four 

correspond to a large active block [A], while the following three 

correspond to a small one, [B]. Column 3: numerical solution to (15). 

Column 4: approximate solution using (20) with one or more terms 

whenever the relative error is > 7%. 

 Block edges [mm] Sim 

[V] 

Expr. (20) [V] |% rel. 

err| 



(0,0)-(1.4,3.5) 0.1303 0.1349 3.53  

(0.35,1.0)-(2.45,2.8) 0.1797 0.1823 1.45  

(0.35,0.35)-(2.1,2.1) 0.1471 0.1550 5.37  

0.0977 (N =1) 20.2 

[A] 

(2.1,1.75)-(3.15,3.15) 0.0813 

0.0824 (N =2) 1.35 

0.0341 (N =1) 31.2 (2.1,1.75)-(2.45,2.45) 0.0260 

0.0277 (N =2) 6.54 

0.0395 (N =1) 109.5 

0.0286 (N =2) 51.3 

0.0228 (N =3) 20.6 

[B] 
(2.8,0)-(3.5,0.7) 0.0189 

0.0201 (N =4) 6.34 

C. Specific configurations of the block 

Expression (20) becomes particularly simple for some 
specific configurations.  For instance, for a single consuming 
block located symmetrically with respect to the chip, the 
maximum IR-drop lies exactly at the centre, that is, xmax = L/2, 
ymax = H/2. Furthermore, if l and h are the dimensions of the 
block, then x1 = (L-l)/2, x2 = (L+l)/2, y1 = (H-h)/2 and y2 = 
(H+h)/2. Substituting all these quantities in (20) gives de 
simplified expression (24): 
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If the block is centred with respect to one of the two 
coordinates, that is, the center of the chip is on either x = L/2 or 
y = H/2, expression (20) is also simplified. If, in particular, the 
block is vertically symmetric, then ymax = H/2 and furthermore, 
y1 = (H-h)/2 and y2 = (H+h)/2. Then, 
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where xmax can be calculated by the same process as that used 

to obtain equation (23). 
Table IV compares the maximum IR-drop for symmetric 

blocks according to equations (24)-(25) including only one 
term in the summation, and those obtained from simulation. 

Table IV. Maximum IR-drop for a square IC of 1 mm2 with a single 

consuming block with J = 1 A/mm2, and sheet resistance Rs = 1 ΩΩΩΩ/square, 

for seven different symmetric blocks. Comparison between simulated 

solution in column 2, and the approximate corresponding to symmetric 

blocks (only the first term of expressions (24)-(25)), in column 3. 

Block edges [mm] Simul. [V] (24) or (25)[V] |% rel. 

error| 

(0,0)-(0.5,1.0) 0.04599 0.04718 2.57 

(0.1,0.1)-(0.9,0.9) 0.06874 0.06867 0.10 

(0.4,0.3)-(0.7,0.7) 0.02835 0.02934 3.49 

(0.2,0)-(0.7,1.0) 0.05693 0.05707 0.25 

(0.3,0.3)-(0.5,0.7) 0.02046 0.02176 6.35 

(0.1,0.4)-(0.8,0.6) 0.02698 0.02728 1.11 

(0.1,0.35)-(0.7,0.65) 0.03443 0.03527 2.44 

 

IV. CONCLUSIONS 

This paper provides compact expressions to calculate the 
position and value of the maximum IR-drop in wire-bonded 
ICs. The findings can be summarized as follows: (i) for 
rectangular ICs of any size with a uniform current distribution, 

the maximum IR-drop is at the center of the chip and its 
approximate value is given by (14) with a maximum relative 
error of 0.12%; (ii) for rectangular ICs of any size with a non-
uniform current distribution, the position of the maximum IR-
drop when only one block is active is approximated by 
expressions (22) and (23), and its value is given by expression 
(20); (iii) for symmetric blocks, such expression can be further 
simplified. Due to the linearity of the governing partial 
differential equation, the absolute maximum IR-drop in the 
whole IC can be calculated by summing the contribution of 
each block (expression (20)). When the results for the place 
and value of maximum IR-drop are compared with those 
obtained by simulation, the maximum relative error is below 
2% in most of the cases using a single term in the expressions. 
In the worst cases of small blocks close to the IC boundaries 
(where the maximum IR-drop is small), the maximum relative 
error increases, but falls to a small value by increasing the 
number of terms in the expressions.  
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