
Efficient Utilization of Bus Idle Times in

CAN-based Networked Control Systems ⋆

Pau Mart́ı ∗ Antonio Camacho ∗ Manel Velasco ∗

Mohamed El Mongi Ben Gaid ∗∗

∗ Automatic Control Department, Technical University of Catalonia,
Pau Gargallo 5, 08028 Barcelona, Spain (e-mail:

{pau.marti,antonio.camacho.santiago,manel.velasco}@upc.edu)
∗∗ Technology, Computer Science, and Applied Mathematics Division,
IFP, 92852 Rueil-Malmaison, France (e-mail: mongi.ben-gaid@ifp.fr)

Abstract: This paper presents a novel approach to networked control systems (NCS) analysis
and design that provides increased control performance for a set of control loops that exchange
control data over the Controller Area Network (CAN). This is achieved by enabling the following
functionality for each control loop: first, standard periodic messaging is guaranteed to ensure
stability, and second, non-periodic additional messaging is added whenever the bus is idle in such
a way that the aggregated control performance for all control loops is improved. The proposed
approach, named Maximum Difference (MD) policy, is computable in a distributed manner,
and is practically feasible (computationally efficient and CAN-implementable). We theoretically
prove that the MD policy behaves better than static strategies. Simulation results complement
the theoretical derivations and show that the MD policy outperforms static, random and Largest
Error First policies.

Keywords: Networked control systems, Controller Area Network, LQR control, bandwidth
management, control performance maximization.

1. INTRODUCTION

The most common design and implementation approach
for NCS consists in the periodic execution of the control
algorithm, which implies that control messaging is peri-
odic (Hristu-Varsakelis et al., 2008). The benefit of this
approach is that each control loop stability can be easily
guaranteed at the expenses of making a static use of the
bandwidth: the given messages periodicity is imposed from
the control design stage regardless of the current load in
the network and/or changes in the plants that are being
controlled. To overcome this periodicity limitation, this
paper presents a novel approach to NCS analysis and
design, which, by combining periodic messaging with addi-
tional non-periodic messaging, provides increased control
performance for a set of control loops that share a single
CAN broadcast domain.

The baseline idea of the approach is to use at run-time the
available bus idle times for applying as many control ac-
tions as possible in such a way that the aggregated control
performance is improved. This is achieved by defining a
policy that permits choosing and transmitting specific ad-
ditional messages whenever the bus is idle in an instanta-
neous manner, without requiring to know a priori the frac-
tion of available bandwidth. The definition of the policy
guarantees that, when spare bandwidth can be consumed,
each control action accommodated in the bus is chosen
is such a way that, taking into account the controlled

⋆ This work was partially supported by C3DE Spanish CICYT

DPI2007-61527 and by ArtistDesign NoE IST-2008-214373.

plants’ dynamics, the best control performance increase
among all possible choices is achieved. The definition of
the policy is also inspired by the observation that certain
functions such as min or max (minimum and maximum
value, respectively) can be efficiently implemented in CAN
(Andersson et al., 2008). Looking at CAN, the key idea is
1) to encode quantities in sensor messages identifiers, and
2) to achieve contention for the medium, in such a way
that, after the operation of the bitwise arbitration phase,
the desired function is accomplished. Using this principle,
and under the optimal control formalism, the paper shows
that the efficient utilization of bus idle times among several
control loops can be formulated as a max problem that is
then efficiently solved by the CAN bitwise arbitration.

The approaches introduced in Walsh et al. (2001), Yépez
et al. (2003), and Anta et al. (2009) present similarities
to the approach described in this paper. However, their
policies are based on instantaneous metrics rather than a
metric based on some sort of prediction as it is developed
in this paper. Note that according to Cervin et al. (2010)
the most successful approaches for allocating idle times to
controllers is to apply policies based on metrics that use
predictions of the expected plant dynamics rather than
instantaneous metrics. In a parallel track, other works such
as the approach presented by Dac̆ić et al. (2007) focus
on relaxing stability analysis conservativeness of previous
works. The stability guarantees of the presented approach
are given by the guaranteed periodic operation of each
control loop, while the main goal is to improve aggregated
control performance, while guaranteeing stability.

This paper is organized as follows. First, the formalization
of the NCS model and the allocation problem is addressed
in Section II. Section III defines the optimization problem
to be solved. Section IV reformulates this problem in
order to allow its solving in a distributed manner. Section
V analyzes the computational and memory demands at
sensor nodes for implementing the allocation policy. Fi-
nally, simulation results showing the effectiveness of the
proposed approach are described in Section VI.

2. PROBLEM FORMULATION

2.1 Networked Control System Model

The networked control system considered in this paper
consists of i = 1 . . . n control loops, each one formed
by a sensor, a controller and an actuator implemented
in physically separated nodes and sharing a single CAN
bus (single broadcast domain) to exchange the control
data required for each control loop operation or job. In
terms of bandwidth utilization, each control job requires
transmitting the sample in the sensor message and the
control signal in the control message. In addition, other
nodes, also use the CAN network to exchange other non-
control data.

Henceforth, to keep the notation simple, the loop index
i is dropped in the plant, controller, and cost whenever
not required. Each plant is described by a continuous-time
linear system

ẋ(t) = Ax(t) + B u(t),
y(t) = C x(t),

(1)

where A ∈ Rr×r, B ∈ Rr×1 and C ∈ R1×r are the system,
input and output matrices, respectively, and where x ∈
Rr×1 is the plant state, u ∈ R the system input (control
signal), and y ∈ R the system output (plant response).
Each control loop performance is measured by an infinite-
horizon continuous-time quadratic cost function

Jc =

∫ ∞

0

x(t)T Qc1x(t) + u(t)T Qc2u(t)dt, (2)

where Qc1 ∈ Rr×r and Qc2 ∈ R are constant weighting
matrices over the integration time. As an example of
notation, for a ith control loop, cost (2) is referred as Jc,i.

2.2 Mandatory and Optional Control Jobs

Within each control loop, two types of control jobs can be
distinguished depending on whether they are guaranteed
or not. Each ith control loop has a guaranteed constant
sampling period hi, which means that at least, with a
given periodicity, the plant is sampled and the control
signal is computed and updated (and held constant until
a next control job executes). These control jobs are called
mandatory control jobs. Note that mandatory control jobs
of different control loops can have different guaranteed
sampling periods.

In addition, each control loop can make use of additional
samples between mandatory control jobs to further update
the control signal. These samples are taken at a given
(fast) rate, that for simplification purposes, is specified

by a short sampling period hs common to all networked
control loops and specified in such a way that ∀i = 1 . . . n,
hi = aihs with ai ∈ N − {0}. Each control job using
an additional sample is called an optional control job
because its execution depends on the available bandwidth.
If executed, a new control signal is computed and updated
(and held constant until a next control job executes).

The controller gain of mandatory control jobs is designed
using periodic linear quadratic (LQR) control theory for
the given hi period, which ensures stability and minimal
acceptable performance. The design of gains for optional
control jobs is performed borrowing the accelerable control
design approach presented in Ben Gaid et al. (2008),
which ensures that the more executions of additional
optional control jobs within mandatory control jobs, the
better will be the control performance (note that using
constant feedback gains (or the same as those of the
mandatory jobs) does not necessarily ensure this property,
as illustrated in Ben Gaid et al. (2008)). Let k denote
a control job execution and let tk denote the time at
which the k-control job executes, that is, it samples the
state, x(tk), and computes and updates the control signal,
u(t). For any k-optional control job executing at time tk,
and taking into account that the next mandatory job will
execute at tkm

, with tk < tkm
, the control signal is given

by

u(t) = u(tk) = −L(tk, tkm
)x(tk) t ∈ [tk, tk+1), (3)

where L(·) is designed using 1) equations (22) and (23)
in Ben Gaid et al. (2008), and 2) considering that the
control signal should be held from tk to tkm

. However, as
explicitly expressed in (3), the control signal for the k-
job is held constant until the next control job executes
at time tk+1, which can be the next mandatory job or
an additional optional control job executing after the k-
job. Note that one or more optional jobs can be executed
between consecutive mandatory control jobs.

2.3 Discrete Cost and Notation

Consider the continuous cost function (2). The equivalent
cost Jd at discrete time instants, given by the execution
time of control jobs of interest, is obtained by integrating
(2) over intervals given by every two consecutive control
jobs. Jd is defined as

Jd =

∞
∑

k=0

J |
tk+1

tk
(x(tk), u(tk)), (4)

where k and k + 1 denote two consecutive control
jobs, J |

tk+1

tk
(·) denotes the cost during the time interval

[tk, tk+1), x(tk) denotes the sampled state, and u(tk) the
updated control signal generated by the k job, and where

J |
tk+1

tk
(x(tk), u(tk)) = (5)

∫ tk+1

tk

xT (t)Qc1x(t) + uT (t)Qc2u(t)dt.

Noting that, as shown in (Åström et al., 1997)

x(tk + τ) = Φ(τ)x(tk) + Γ(τ)u(tk),

where

τ ∈ [tk, tk+1) , Φ(τ) = eAτ , Γ(τ) =

∫ τ

0

eAsdsB ,

and reminding that the control signal is held constant
over consecutive control jobs, the cost over two consecutive
control jobs (5) in discrete form is (Åström et al., 1997)

J |
tk+1

tk
(x(tk), u(tk)) = xT (tk)Q1|

tk+1

tk
x(tk) +

2xT (tk)Q12|
tk+1

tk
u(tk) +

uT (tk)Q2|
tk+1

tk
u(tk) (6)

where

Q1|
tk+1

tk
=

∫ tk+1

tk

(ΦT (τ)Qc1Φ(τ))dτ, (7)

Q12|
tk+1

tk
=

∫ tk+1

tk

(ΦT (τ)Qc1Γ(τ))dτ, (8)

Q2|
tk+1

tk
=

∫ tk+1

tk

(ΓT (τ)Qc1Γ(τ) + Qc2)dτ. (9)

Cost (6) can be written in compact form as

J |
tk+1

tk
(x(tk), u(tk)) =

[

x(tk)
u(tk)

]T

Q|
tk+1

tk

[

x(tk)
u(tk)

]

, (10)

where

Q|
tk+1

tk
=

[

Q1 Q12

QT
12 Q2

]∣

∣

∣

∣

tk+1

tk

. (11)

Again, as an example of notation, for the ith control
loop, cost (4) can be referred as Jd,i. To improve paper
readability, a short notation is introduced. First of all, for
a given ith control loop, costs between consecutive control

jobs k and k+1 as in (6) or (10) will be denoted by J |
tk+1

tk
.

Hence,

Ji|
tk+1

tk
≡ Ji|

tk+1

tk
(x(tk), u(tk)). (12)

Second, for a given ith control loop, considering the time
interval [tkm

,∞), the cost achieved by executing only
mandatory jobs starting to execute at tkm

is denoted by

Jman
d,i |∞tkm

(tp) =
∞
∑

j=km

Ji|
tj+hi

tj
(x(tj), u(tj)), (13)

where tp denotes the time when the previous job execution
took place (if any) before the execution time of the first
mandatory job under evaluation, tkm

. Hence, 1) it may
indicate that no job executed previously, tp = −, or 2)
it may correspond to the execution time of the previous
mandatory control job, tp = tkm

− h, or 3) it may
correspond to the execution time of a previous kth optional
control job, tp = tk. The tp parameter will determine which
state x(tkm

) for the first term of the summand (when
tj = tkm

) has to be considered.

2.4 Problem to Be Solved

The NCS model assumed in this paper considers n control
loops, each one with a plant in the form of (1) whose
control signal is given by (3) for both mandatory and
optional control jobs (if possible), and whose control
performance is evaluated via (4)-(6). For the n control
loops, at any time different than mandatory control jobs
execution times, provided that bandwidth is available
for executing an optional control job, the problem to

be solved, namely decision, is to which control loop the
optional control job should be allocated to, such that the
overall accumulated cost

Jd,total =

n
∑

i=1

Jd,i (14)

is minimized. Note that (14) accounts for both mandatory
and optional control jobs.

The desired solution to the decision problem should have
the form of a max or min problem. This would facilitate
its implementation in CAN. This requires addressing three
sub-problems:

(1) As stressed in the introduction, successful approaches
for allocating idle times to controllers demand defin-
ing policies based on metrics that use predictions of
the expected plant dynamics (rather than instanta-
neous metrics such as a function of the current plants
error). However, such policies require knowing the
activation pattern of all future control jobs, which
can not be known in the scenario considered in this
paper. Therefore, a first problem to be solved, namely
definition, is to define a suitable policy/metric in the
form of a max or min problem for deciding which
optional control job must be executed any time such
that (14) is minimized.

(2) The allocation policy must be defined considering
that its implementation will be performed distribut-
edly, using the bitwise arbitration phase of CAN.
Hence, the quantities encoded in the message identi-
fiers participating in the policy implementation must
be computed using local parameters to the sending
node. Therefore, the second problem to be solved,
namely distribution, is to redefine the allocation pol-
icy in such a way that this restriction is fulfilled.

(3) The computation of the quantities to be encoded in
messages identifiers must be easy to implement in the
sense of reducing the memory/processor requirements
as much as possible. Therefore, the third problem to
be solved, namely feasibility, is to provide a feasible
method for computing the required quantities mini-
mizing resource demands within the sample time.

3. MINIMUM COST POLICY

This section addresses the definition problem. Since the
times at which optional control jobs will execute is not
known a priori (because their possible execution depends
on the run-time available bandwidth), the policy for allo-
cating bus idle times to control loops is defined in terms
of what can be known when the bus is idle: the future
execution times of mandatory jobs (the periodic ones)
plus the possible benefit of executing an additional control
job. Specifically, from the current time to ∞, n costs are
evaluated. Each one corresponds to the total aggregated
cost that would be achieved if the optional control job
would be allocated to a particular ith control loop while
considering all mandatory control jobs. From the n costs,
the minimum indicates to which control loop is more
beneficial the optional control job allocation in terms of
decreasing aggregated cost. This is formalized next.

Definition 1. [Cost with optional control job] For a given
ith control loop, at any given current time tk such that

tk−1 < tk < tkm
, where tk−1 denotes the previous

(mandatory or optional) job execution time, and tkm

denotes the next mandatory job execution time, the cost
that would be achieved in the time interval [tk−1,∞) by
executing an additional k-optional control job at tk is

copt
i (tk) = Ji|

tk

tk−1
+ Ji|

tkm

tk
+ Jman

d,i |∞tkm
(tk). (15)

Definition 2. [Cost without optional control job] Under
the same conditions given in definition 1, the cost that
would be achieved in the time interval [tk−1,∞) by not
executing an additional k-optional control job at tk is

cNopt
i (tk) = Ji|

tkm

tk−1
+ Jman

d,i |∞tkm
(tk−1). (16)

Definition 3. [Total cost with 1 optional control job] For a
set of n control loops, the total aggregated cost as in (14)
that would be achieved in the time interval [tk−1,∞) by
executing in the ith control loop an additional k-optional
control job at time tk such that tk−1 < tk < tkm

is

ctotal
i (tk) = copt

i (tk) +

n
∑

j=1,j 6=i

cNopt
j (tk), (17)

where tk−1 and tkm
are defined as in Definition 1.

Definition 4. [Minimum Cost policy - MC] Considering n
control loops, each one with a plant in the form of (1)
whose control signal is given by (3) for both mandatory
and optional control jobs, and whose control performance
is evaluated via (4)-(6), provided that each optional control
job can be only allocated to one control loop at a time
if bandwidth is available, at any given current time tk
such that tk−1 < tk < tkm

, the kth-optional control job
is allocated to the ith-control loop given by

arg min
i
{ctotal

i (tk) | i = 1, . . . , n}, (18)

where tk−1 and tkm
are defined as in Definition 1.

By encoding in each sensor message identifier each argu-
ment ctotal

i (tk) of the min function in (18), in bus con-
tention, the bitwise arbitration of CAN would produce
the desired result: give access to the message encoding
the minimum cost. However for each ith control loop, each
argument depends on local parameters such as copt

i (tk) but

also on non-local parameters such as all cNopt
j (tk), j 6= i. In

other words, the ith sensor would require to have available
all other sensor readings in order to compute its argument.

4. MAXIMUM DIFFERENCE POLICY

This section shows that the MC policy can be transformed
into an equivalent policy that preserves the same logics,
i.e., it identifies the same ith control loop, and each
quantity encoded in each sensor message priority depends
only on local parameters to the sensor, thus solving the
distribution problem. The idea is to assess which control
loop provides the maximum difference between the total
aggregated cost without optional control job and each of
the aggregated costs achieved when allocating the optional
control job to a particular ith control loop. In this case,
from the n cost differences, the maximum indicates to
which control loop is more beneficial the optional control
job allocation. This idea is formalized next.

Definition 5. In the time interval [tk−1,∞), the cost differ-
ence that for the ith control loop would suppose to execute
the k-optional control job is defined from (15) and (16) as

di(tk) = cNopt
i (tk) − copt

i (tk). (19)

Theorem 6. Under the assumptions taken in the MC pol-
icy (definition 4), it holds that

arg min
i
{ctotal

i (tk) | i = 1, . . . , n} =

arg max
i

{di(tk) | i = 1, . . . , n}. (20)

Proof. Starting with the right hand side term of the
equality (20), and considering that

arg max
i

{di(tk) | i = 1, . . . , n} =

arg min
i
{−di(tk) | i = 1, . . . , n}

holds, the definition of di(tk) given in (19) can be placed
into the right hand side of the previous equality and
rearranged as

arg min
i
{copt

i (tk) − cNopt
i (tk) | i = 1, . . . , n}. (21)

Observing that adding a constant to the arguments of a
arg min function does not alter its result, the expression
∑n

j=1
cNopt
j (tk) is added to the arguments of the min

function in (21), which results in

arg min
i
{copt

i (tk)− cNopt
i (tk)+

n
∑

j=1

cNopt
j (tk) | i = 1, . . . , n}.

Finally, it can be observed that by simplifying in the

previous equation the term cNopt
i (tk) from the summand,

the arguments of the min function reduces to the definition
of ctotal

i (tk) given in (17). Therefore, the left hand side of
(20) is obtained.

Corollary 7. [Maximum Difference policy - MD] It follows
that the MC policy given in definition 4 can be rephrased
by changing equation (18) to

arg max
i

{di(tk) | i = 1, . . . , n}. (22)

In this case, the policy is named MD policy.

It can be observed that the arguments of the max function
in (22), di(tk), are much simpler that the arguments of
the min function in (18), ctotal

i (tk). But more important,
it can also be observed that each cost difference di(tk)
can be computed at run-time by each ith closed-loop
sensor node without requiring data from the other sensor
nodes. Therefore, for the MD policy, if all sensor nodes
encode in their optional sensor messages’ identifiers the
1’s complement of their specific di(tk), in bus contention,
the bitwise arbitration phase will allow bus access to
the control loop providing the maximum difference, that
is, providing the minimum aggregated cost. Hence, the
appropriate optional control job will start executing.

5. MEMORY/PROCESSOR REQUIREMENTS

The implementation of the MD policy requires computing
the cost difference di(tk) (19) at each sensor node. This
section presents a method for computing di(tk) efficiently
in terms of both computational and memory demands,
thus solving the feasibility problem.

The cost difference di(tk) (19) is the difference between

sub-costs cNopt
i (tk) (16) and copt

i (tk) (15), where each one
has a term which is an infinite summand of the form
Jman

d,i |∞tkm
(tp) as defined in (13). This infinite summand

reflects the cost achieved by executing, from a given time
tkm

, only mandatory control jobs. Noting that the gain for
mandatory control jobs are designed using standard LQR
control theory, and noting also that mandatory control
jobs execute periodically with a sampling interval given
by h, terms Jman

d,i |∞tkm
(tp) can be computed as (Åström

et al., 1997)

Jman
d,i |∞tkm

(tp) = xT
tp

(tkm
)Si(h)xtp

(tkm
), (23)

where Si(h) is the solution to the algebraic Riccati equa-
tion, and xtp

(tkm
) in (23) varies depending on the previous

job execution time with respect to the first mandatory job
executing at tkm

. Hence, xtp
(tkm

) can be computed as

xtp(tkm
) = Φcl|

tkm

tp
(tkm

− tp)x(tp), (24)

where

Φcl|
tb

ta
= Φ(tb − ta) − Γ(tb − ta)L(ta, tkm

). (25)

Using this simplification, it can be easily counted that at
each sensor node, and for each optional control job, a total
of 24 matrix operations have to be performed to compute
di(tk) while requiring to have stored in sensor memory a
number of 4(h

hs
− 1) + 1 matrices (h

hs
− 1 is the number

of optional control jobs between mandatory control jobs),
which may still not be feasible.

The computation of di(tk) (19) can be further simplified
if it is computed over [tk,∞) rather than [tk−1,∞). This
can be done because the plant evolution over the time

interval [tk−1, tk) is identical when computing cNopt
i (tk)

and copt
i (tk). In addition, each sensor node can memorize

the last updated control input, namely u(t−k) (regardless
of whether it was updated by a mandatory or an optional
control job) from the previous control message. Hence,
u(t−k) can be used instead of requiring keeping track of
tp in (23). This is formalized as follows.

Proposition 8. With u(t−k) being the value of the previ-
ous control update for a given optional instant tk, the
maximum difference di(tk) in (19) can be alternatively
computed as

di(tk) =

[

x(tk)
u(t−k)

]T

Q(tk, tkm
)

[

x(tk)
u(t−k)

]

, (26)

where

Q(tk, tkm
) = QNopt(tk, tkm

) −

[

Qopt(tk, tkm
) 0

0 0

]

(27)

with

QNopt(tk, tkm
) = Q|

tkm

tk
+

[Φ(tk, tkm
),Γ(tk, tkm

)]
T

Si(h) [Φ(tk, tkm
),Γ(tk, tkm

)]

and

Qopt(tk, tkm
) =

[

I
−L(tk, tkm

)

]T

Q|
tkm

tk

[

I
−L(tk, tkm

)

]

+

Φcl|
tkm

tk
(tkm

− tk)T Si(h)Φcl|
tkm

tk
(tkm

− tk). (28)

Proof. By noting that the term Ji|
tkm

tk−1
for computing

cNopt
i (tk) (16) can be rewritten as follows

Ji|
tkm

tk−1
(x(tk−1), u(tk−1)) = (29)

Ji|
tk

tk−1
(x(tk−1), u(tk−1)) + Ji|

tkm

tk
(x(tk), u(tk−1)),

the cost difference (19) directly transforms to

di(tk) =cNopt
i (tk) − copt

i (tk) (30)

=Ji|
tkm

tk
(x(tk), u(tk−1)) + Jman

d,i |∞tkm
(tk−1) (31)

− (Ji|
tkm

tk
(x(tk), u(tk)) + Jman

d,i |∞tkm
(tk)). (32)

In the previous equation, (31) corresponds to cNopt
i (tk) and

(32) corresponds to copt
i (tk).

Focusing in (31), the term Ji|
tkm

tk
(x(tk), u(tk−1)) can be

also written as Ji|
tkm

tk
(x(tk), u(t−k)) using the known value

u(t−k). In addition, by using (23), its right summand is
defined as

Jman
d,i |∞tkm

(tk−1) = xT
tk−1

(tkm
)Si(h)xtk−1

(tkm
) (33)

where xtk−1
(tkm

) can be computed based only on x(tk)

and u(t−k) as

xtk−1
(tkm

) = Φ(tk, tkm
)x(k) + Γ(tk, tkm

)u(t−k)

= [Φ(tk, tkm
),Γ(tk, tkm

)]

[

x(tk)
u(t−k)

]

. (34)

By considering (33) and (34), and by noting that using the
compact notation (10) the left summand of (31) is defined
as

Ji|
tkm

tk
=

[

x(tk)
u(t−k)

]T

Q|
tkm

tk

[

x(tk)
u(t−k)

]

, (35)

expression (31) can be computed as
[

x(tk)
u(t−k)

]T

QNopt(tk, tkm
)

[

x(tk)
u(t−k)

]

, (36)

where QNopt(tk, tkm
) is given in (28).

Focusing in (32), its left summand using the compact
notation (10) is defined as

Ji|
tkm

tk
=

[

x(tk)
u(tk)

]T

Q|
tkm

tk

[

x(tk)
u(tk)

]

, (37)

which can be rewritten using u(tk) = −L(tk, tkm
)x(tk) as

Ji|
tkm

tk
= (38)

x(tk)T

[

I
−L(tk, tkm

)

]T

Q|
tkm

tk

[

I
−L(tk, tkm

)

]

x(tk).

Considering (23) and (24) with tp = tk, the right summand
of (32) is

Jman
d,i |∞tkm

(tk) = xT
tk

(tkm
)Si(h)xtk

(tkm
), (39)

where xtk
(tkm

) can be computed as

xtk
(tkm

) = Φcl|
tkm

tk
(tkm

− tk)x(tk). (40)

Hence, using (38), (39) and (40), expression (32) can be
computed as

x(tk)T Qopt(tk, tkm
)x(tk) (41)

or alternatively as
[

x(tk)
u(t−k)

]T [

Qopt(tk, tkm
) 0

0 0

] [

x(tk)
u(t−k)

]

, (42)

0 60 120 180 240 300
0

200

400

600

800

1000

t(s)

C
os

t

Static
Random
LEF
MD

Fig. 1. Performance evaluation

where Qopt(tk, tkm
) is given in (28).

Substituting (36) and (42) into (30), the definition of di(tk)
given in (26) and (27) is obtained.

By simple inspection of (26), the required number of
matrix operations at each sensor node for each optional
control job reduces to 3. And the number of matrices to
be stored in memory reduces to h

hs
− 1, which correspond

to the matrices Q(tk, tkm
) to be precomputed for all tk

than can occur between two consecutive mandatory jobs.

6. SIMULATIONS

Three networked control loops, each one controlling a
double integrator system

ẋ(t) =

[

0 1
0 0

]

x(t) +

[

0
1

]

u(t),

y(t) = [1 0]x(t),
(43)

have been simulated under different policies using the
TrueTime simulator presented by Henriksson et al. (2002).
Each plant is subject to random set-point changes of
±1 that occur every 10s (in average) in a run of 300s.
The sampling period for mandatory control jobs for the
three loops is the same and equal to h = 1s, and the
sampling period for optional control jobs is hs = h/3. For
each loop under the MD policy, controller gains for both
types of control jobs have been designed as indicated in
Section 2.2 where the weighting matrices Qc1 and Qc2 of
the continuous cost function given in (2) are the identity.

The MD policy has been compared to three different poli-
cies. The first one, named static, corresponds to the case
where the three control loops only run mandatory control
jobs, which represents the standard periodic approach.
Since any execution of an optional control job is able to
decrease the cost, the MD policy is also compared to a
random policy that corresponds to the case where optional
control jobs are randomly allocated to control loops. The
third one in the performance evaluation is the Largest
Error First (LEF) policy presented by Yépez et al. (2003).
In LEF, control gains for both mandatory and optional
control jobs are constant and designed using LQR design
for a sampling period of h = 1s, and bus idle times are
always assigned to the plant with largest error.

Figure 1 shows the simulation results where the x-axis is
simulation time and the y-axis is the accumulated cost

of the three plants calculated as Jeval =
∑3

i=1
Jc,i.As

can be seen in Figure 1, the MD policy provides the
best cost (lowest curve). The static policy gives the worst
cost because it only executes mandatory control jobs. The
curve of the random policy is always above the curve
of the MD policy. This indicates that the MD policy
developed in this paper is effective in terms of allocating
bus idle times to control loops. And finally, the better
performance numbers of the MD policy with respect to
the LEF policy shows that increased performance can be
achieved by allocating bus idle times using a metric based
on predictions of the plants’ dynamics rather than using
an instantaneous metric as in the case of LEF. Future work
will also consider computational complexity and its effect
on the performance numbers.

7. CONCLUSIONS

For a set of networked control loops, this paper has
presented the MD policy that permits to chose at run time
which loop should execute an additional control job each
time the bus is idle. It has been shown that the policy can
be efficiently implemented in CAN, and its feasibility in
terms of resource demands has been discussed. Simulations
showed that the MD policy provides the best performance
compared to previous and/or alternative policies.

REFERENCES

B. Andersson, N. Pereira, W. Elmenreich, E. Tovar, F.
Pacheco, and N. Cruz. A Scalable and efficient approach
for obtaining measurements in CAN-based control sys-
tems. IEEE Transactions on Industrial Informatics,
vol.4, no.2, pp.80-91, May 2008.

A. Anta and P. Tabuada. On the benefits of relaxing the
periodicity assumption for networked control systems
over CAN. Real Time Systems Symposium, Dec. 2009.

K.J. Åström, and B. Wittenmark. Computer-controlled
systems. Third Edition, Prentice-Hall, 1997.

M. Ben Gaid, D. Simon, and O. Sename. A Design
methodology for weakly-hard real-time control 17th
IFAC World Congress on Automatic Control, Seoul,
Korea, July 2008.

A. Cervin, M. Velasco, P. Mart́ı, and A. Camacho. Op-
timal on-line sampling period assignment: theory and
experiments. IEEE Transactions on Control Systems
Technology, accepted for publication, June 2010.

D. B. Dac̆ić and D. Nes̆ić. Quadratic stabilization of linear
networked control systems via simultaneous protocol
and controller design. Automatica, v. 43, n.7, pp. 1145-
1155, Jul. 2007.

D. Henriksson, A. Cervin, and K.-E. Årzén. TrueTime:
Simulation of control loops under shared computer re-
sources. 15th IFAC World Congress, 2002.

D. Hristu-Varsakelis and W. S. Levine. Handbook of
networked and embedded control systems Birkhäuser
Boston, June, 2008.

G.C. Walsh, and Y. Hong. Scheduling of networked control
systems. IEEE Control Systems Magazine, vol. 21, n. 1,
pp. 57-65, Feb. 2001

J. Yépez, P. Mart́ı and J.M. Fuertes. Control loop schedul-
ing paradigm in distributed control systems. 29th An-
nual Conference of the IEEE Industrial Electronics So-
ciety, Roanoke, USA, November, 2003.

