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We present some results attained with two variants of Bounded Dynamic Programming algorithm to

solve the Fm9block9Cmax problem using as an experimental data the well-known Taillard instances. We

have improved the best known solutions for 17 of Taillard’s instances, including the 10 instances from

set 12.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The flowshop scheduling problem (FSP) is one of the problems
which has received most attention over the last fifty years and
which continues to receive the attention of professionals and
researchers due to the huge variety of productive contexts it
makes it possible to model. In the FSP, a set of n jobs must be
processed in a set of m machines. All the jobs must be processed
in all the machines following the same order, starting in machine
1 and finishing in machine m. Each job, iAI, requires a processing
time, pi,k40, in each of the machines, kAK. The aim is to find a job
processing sequence, which optimizes a given criterion.

In the most popular version of the problem, known as
permutation flowshop scheduling problem (PFSP), the storage capa-
city between two consecutive phases of the process, where the
jobs can wait until they can be processed by the following
machine, is assumed to be unlimited. However, there are many
productive systems, in diverse sectors, such as fine chemicals,
pharmaceuticals, plastic molding, electronics, steel, food, etc.; in
general, all those systems in which there is a production line with
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no mechanical drag and therefore a cyclical repetition of opera-
tions, in which storage capacity is limited. If we assume there to
be no possibility of storage between two successive phases of the
process, a major structural change takes place in the behavior of
the system, since a part cannot leave the machine which is
processing it until the following machine is free. If this is not
the case, the part is forced to stay in the previous machine,
blocking it and preventing it from performing operations on other
parts. This variant is known as blocking flowshop scheduling

problem (BFSP) and is the one we are going to consider in this
article. If the intermediate storage capacity is limited, the problem
can also be reduced to a BFSP in which each storage space is
treated as a dummy machine with a processing time equal to zero
(McCormick et al., 1989).

In this article, we discuss the BFSP with the aim of minimizing
the maximum completion time of jobs or makespan. Making use
of the notation proposed by Graham et al. (1979), the problem
considered is denoted by Fm9block9Cmax (and the PFSP by
Fm9prmu9Cmax). The research carried out on this problem is not
very extensive. A good review of flowshop with blocking and no
waits in the process can be found in Hall and Sriskandarajah
(1996), where they also demonstrated, using a result from
Papadimitriou and Kanellakis (1980), that the problem
Fm9block9Cmax for mZ3 machines is strongly NP-hard. However,
for m¼2, Reddi and Ramamoorthy (1972) demonstrated the
existence of a polynomial algorithm which reaches the optimal
solution to the Fm9block9Cmax problem. The reason lies in the fact
that the F29block9Cmax problem can be reduced to a traveling

salesman problem (TSP) with nþ1 cities (0,1,2,yn). The sequence
ax problem using Bounded Dynamic Programming. Engineering
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of cities in an optimal circuit is associated with an optimal
permutation of the parts in the original problem. Gilmore and
Gomory (1964) proposed a polynomial algorithm to solve the
TSP; this algorithm has a time complexity of Oðn lognÞ (Gilmore
et al., 1991).

Given the NP-hard nature of the problem, few exact proce-
dures have been proposed to solve it. Levner (1969) presented
one of the first works on this problem. Levner proposed a branch-
and-bound algorithm, associating to each instance and permuta-
tion a graph, and obtaining lower bounds of the branch-and-
bound tree nodes from the length of paths on this graph. Other
branch-and-bound algorithms were presented by Suhami and
Mah (1981), Ronconi and Armentano (2001) and Ronconi (2005).
Companys and Mateo (2007) presented the LOMPEN algorithm,
another branch-and-bound type approach, in which they used the
reversibility property of the problems Fm9prmu9Cmax and
Fm9block9Cmax. Both in Ronconi (2005) and in Companys and
Mateo (2007), the Taillard instances were used, being considered
as instances of the Fm9block9Cmax problem, to assess the efficiency
of the procedure.

On the other hand, more effort has been made in the devel-
opment of heuristic procedures for finding quality solutions in a
timely fashion. McCormick et al. (1989) studied a special cyclical
case and presented the constructive heuristic, profile fitting.
Leisten (1990) adapted certain procedures used in the PFSP and
concluded that the NEH heuristic, proposed by Nawaz et al.
(1983), suitably adapted to the problem, was the one which
obtained the best results. Abadi et al. (2000) presented an
improvement heuristic to minimize cycle time in a flowshop
with blocking, which can also be used in the Fm9block9Cmax

problem. Using the aforementioned idea, Caraffa et al. (2001)
developed a genetic algorithm (GA) to solve high dimension
flowshop problems, among which the Fm9block9Cmax problem
was a special case, and obtained better results than with the
heuristic of Abadi et al. (2000). Ronconi (2004) proposed two
variants of the NEH heuristic, which he called MME and PFE, in
which he proposed replacing the LPT ordination for the MM or PF
ordination. Ribas et al. (2011) took up the constructive algorithm
MME again and showed that, combined with the reversibility
property, it was more efficient than other procedures based on
the NEH scheme. Grabowski and Pempera (2007) presented two
algorithms based on tabu search (TS) (TS and TSþM). Wang et al.
(2006) proposed an hybrid genetic algorithm (HGA), Liu et al.
(2008) an algorithm based on particle swarm optimization (HPSO),
Qian et al. (2009) proposed an algorithm based on differential

optimization (DE) and Wang et al. (2010) an hybrid discrete

differential evolution (HDDEA) algorithm, which exceeded the
efficiency of the TSþM algorithm of Grabowski and Pempera
(2007). Finally, Ribas et al. (2011) presented an iterated greedy

algorithm (IGA) more efficient than the HDDEA and an updated
list of the best solutions for the Taillard instances.

For this manuscript, we used a procedure based on Bounded

Dynamic Programming (BDP). This procedure combines features of
dynamic programming (determination of extreme paths in graphs)
with features of branch and bound algorithms. The principles of
Bounded Dynamic Programming have been described by Bautista
et al. (1996). Previous work on similar approaches has been done
by Morin and Marsten (1976) and Marsten and Morin (1978), and
extended by Carraway and Schmidt (1991).

In the present manuscript, our proposals are:
1.
P
A

A dynamic programming based procedure to solve the
Fm9block9Cmax problem.
2.
 General bounds for Cmax for this problem. These general
bounds take into account machines and jobs and also may
depend on a partial subsequence of jobs already sequenced.
lease cite this article as: Bautista, J., et al., Solving the FmjblockjCm
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3.
 An application of the proposed procedure to the 12 sets of
instances from the literature (Taillard’s benchmark instances).

As results, we have improved the best known solutions in 17
instances from a total of 120. In particular, we have obtained
better solutions in the 10 instances of the set 12 from Taillard,
with 500 jobs and 20 machines.

This manuscript is organized as follows. Section 2 presents the
problem description. Section 3 describes the graph associated
with the problem under consideration and establishes dominance
properties between their vertices. Section 4 proposes general and
partial bounds on the Cmax value shown by the sequences. Section
5 introduces a procedure based on BDP to solve the problem
under consideration and an example. Section 6 describes the
computational experiments performed and presents the results.
Finally, Section 7 shows the conclusions of the study.
2. Problem description

At time zero, n jobs must be processed, in the same order, on
each of m machines. Each job goes from machine 1 to machine m.
The processing time for each operation is pi,k, where
kAK¼{1,2,y,m} denotes a machine and iAI¼{1,2,y,n} a job.
Setup times are included in processing times. These times are
fixed, known in advance and positive. The objective function
considered is the minimization of the makespan (Cmax).

Given a permutation, p, of the n jobs, [t] indicates the job that
occupies position t in the sequence. For example, in p¼(3, 1, 2)
[1]¼3, [2]¼1, [3]¼2. For this permutation, in every machine, job
2 occupies position 3. In a feasible schedule associated to a
permutation, let sk,t be the beginning of the time destined in
machine k to job that occupies position t and ek,t the time of the
job that occupies position t releases machine k. The Fm9prmu9Cmax

problem can be formalized as follows:

sk,tþp½t�,krek,t k¼ 1,2,. . .,m; t¼ 1,2,. . .,n ð1Þ

sk,t Zek,t�1 k¼ 1,2,. . .,m; t¼ 1,2,. . .,n ð2Þ

sk,t Zek�1,t k¼ 1,2,. . .,m; t¼ 1,2,. . .,n ð3Þ

Cmax ¼ em,n ð4Þ

Being ek,0¼0 8k, e0,t¼0 8t, the initial conditions.
The schedule is semi-active if Eq. (1) is written as

sk,tþp[t],k¼ek,t and Eqs. (2) and (3) are summarized as
sk,t ¼maxfek,t�1,ek�1,tg.

When there is no storage space between stages, Fm9block9Cmax

problem, if a job i finishes its operation on a machine k and if the
next machine, kþ1, is still busy on the previous job, the
completed job i has to remain on the machine k blocking it. This
condition requires an additional Eq. (5) in the formulation of the
problem

ek,t Zekþ1,t�1 k¼ 1,2,. . .,m; t¼ 1,2,. . .,n ð5Þ

The initial condition emþ1,t¼0 t¼1,2,y,n must be added.
The schedule obtained is semi-active if Eqs. (1) and (5) are

summarized as (6):

ek,t ¼maxfsk,tþp½t�,k,ekþ1,t�1g 8k,8t ð6Þ

Consequently, the Fm9prmu9Cmax problem can be seen as a
relaxation of the Fm9block9Cmax problem.

3. Graph associated with the problem

Similar to Bautista et al. (1996) and Bautista and Cano (2011),
we can build a linked graph without loops or direct cycles of Tþ1
ax problem using Bounded Dynamic Programming. Engineering
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levels. At level 0 of the graph, there is only one vertex J(0). The set
of vertices in level t (t¼0,...,T) will be noted as J(t), and are
associated to the partial sequences of t jobs. Let J(t,j) (j¼1,...,9J(t)9)
a vertex j of level t, which is represented by the triad
ð q
!
ðt,jÞ, e
!
ðt,jÞ, Cmaxðt,jÞÞ, where:
�

P
A

q
!
ðt,jÞ ¼ ðq1ðt,jÞ,. . .,qnðt,jÞÞ is the vector of scheduled jobs (or

not) in the jth vertex of the level t, where qi(t,j), 8iAI (i¼1,...,n)
is the ith component of the vector q

!
ðt,jÞ that takes the value

1 if the job i has been completed, and the value 0 otherwise.

�
 e
!
ðt,jÞ ¼ ðe1ðt,jÞ,. . .,emðt,jÞÞ is the vector of completion times of

the last scheduled job in each machine.

�
 Cmaxðt,jÞ is the completion time of the last scheduled job in

vertex j of level t.

The vertex J(t,j) has the following properties:

Xn

i ¼ 1

qiðt,jÞ ¼ t ð7Þ

qiðt,jÞAf0,1g8i ð8Þ

Cmaxðt,jÞ ¼ emðt,jÞ ð9Þ

In short, a vertex J(t,j) will be represented as follows:

Jðt,jÞ ¼ fðt,jÞ, q
!
ðt,jÞ, e
!
ðt,jÞg ð10Þ

Initially, we may consider that at level t, J(t) contains the
vertices associated with all of the sub-sequences that can be built
with t jobs that satisfy properties (7) and (8). However, it is easy
to reduce the cardinal that J(t) may present a priori, establishing
the following dominance and equivalence rules:

Jðt,jÞ!Jðt,j0Þ3½ q
!
ðt,jÞ ¼ q

!
ðt,j0Þ�4½ e!ðt,jÞo e

!
ðt,j0Þ� ð11Þ

Jðt,jÞ � Jðt,j0Þ3½ q
!
ðt,jÞ ¼ q

!
ðt,j0Þ�4½ e!ðt,jÞ ¼ e

!
ðt,j0Þ� ð12Þ

With these rules, we can reduce the search space for solutions in
the graph. Therefore, at level t of the graph, J(t) will contain the
vertices associated with non-dominated and non-equivalent sub-
sequences, and at level T, J(T) will contain all the vertices
associated with non-equivalent and non-dominated completed
sequences.

A transition arc through the type of job i exists between
vertices J(t,j) of level t and vertex J(tþ1,ji) of level tþ1
Fig. 1. Scheme of transitions through the

lease cite this article as: Bautista, J., et al., Solving the FmjblockjCm
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(J(t,j)-
i

J(tþ1,ji)) in the following case:

q
!
ðt,jÞ! q

!
ðtþ1,jiÞ ð13Þ

For vertex J(tþ1,ji) to be completely defined through the
transition from J(t,j), it is necessary to determine:

Jðtþ1,jiÞ ¼ fðtþ1,jiÞ, q
!
ðtþ1,jiÞ, e

!
ðtþ1,jiÞg ð14Þ

as follows:

qiðtþ1,jiÞ ¼ 1 ð15Þ

qhðtþ1,jiÞ ¼ qhðt,jÞ 8h : ha iA I ð16Þ

ekðtþ1,jiÞ ¼maxfekðt,jÞþpi,k,ek�1ðtþ1,jiÞ,ekþ1ðt,jÞg 8kAK ð17Þ

where e0(tþ1,ji)¼0.
Fig. 1 illustrates a scheme of the state graph associated to the

BFSP. The initial vertices J(t,j) and J(t,j0) of stage t are developed by
scheduling the jobs i and i0, respectively. This development results
in a unique vertex, J(tþ1,ji), using the dominance and equivalence
rules (11) and (12); then, the properties of the vertex J(tþ1,ji) of
stage tþ1 can be determined; finally, this vertex can be devel-
oped by scheduling a job i00, giving as a result the vertex Jðtþ2,jii00 Þ

of the stage tþ2.
Indirectly, contribution to the partial Cmax generated in the

transition from J(t,j) to J(tþ1,ji) may be calculated by incorporat-
ing the job i to the latter vertex, as follows:

aððt,jÞ-ðtþ1,jiÞÞ ¼ emðtþ1,jiÞ�emðt,jÞ ð18Þ

Under these conditions, finding a sequence that optimizes the
total Cmax is equivalent to finding an optimum path from vertex
J(0) to the set of vertices J(T) of level T.

Therefore, any algorithm of extreme paths in the graphs is
valid for finding solutions to the proposed problem. However,
realistic industrial problems where n and m are large give rise to
graphs with a large number of vertices. Therefore, we recommend
resorting to procedures that do not explicitly require the presence
of all of the vertices for calculation.
4. Bounding the values of the sequences

First, we establish general bounds for Cmax, and then we
establish the bounds associated with the path for building
(complement) when a segment or subsequence of t members
has already been built.
state graph associated to the BFSP.

ax problem using Bounded Dynamic Programming. Engineering
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In this paper, we use the bounds proposed by Lageweg et al.
(1978) for the PFSP. These bounds have been adapted as general
and partial bounds for the BFSP, considering that the PFSP is a
relaxation of the BFSP.

4.1. General bounds for Cmax

If we account for the machines independently, then we can
write the following:

LB1ðkÞ ¼
Xn

i ¼ 1

pi,kþ min
ði,hÞA I:iah

Xk�1

k0 ¼ 1

pi,k0 þ
Xm

k0 ¼ kþ1

ph,k0

( )
8kAK ð19Þ

which is a bound of Cmax, through the machine k.
Therefore, considering all machines, we have the following:

LB1¼max
kAK
fLB1ðkÞg ð20Þ

In the same manner, we can also consider a bound for Cmax

through the job i:

LB2ðiÞ ¼
Xm
k ¼ 1

pi,kþ
X

hA I:ha i

min
kAK
fph,kg 8iA I ð21Þ

Considering all the jobs, then we have

LB2¼max
iA I
fLB2ðiÞg ð22Þ

4.2. Bound of Cmax through a given segment

Let us assume that we have built a path from J(0) to vertex
J(t,j), and thus we have the information q

!
ðt,jÞ and e

!
ðt,jÞ.

To complete a sequence up to level T, we will need to link with
J(t,j), T�t vertices, associated each of them with a different
unscheduled job.

Under these conditions, we can delimit Cmax through the
vertex J(t,j) adapting the overall bound LB1.

LB1ðt,jÞ ¼max
kAK

ekðt,jÞþ
X
iA I :

qiðt,jÞ ¼ 0

pi,kþ min
iA I :

qiðt,jÞ ¼ 0

Xm

k0 ¼ kþ1

pi,k0

( )8>>>><
>>>>:

9>>>>=
>>>>;
ð23Þ

If we focus on the jobs, we will have

LB2ðt,jÞ ¼ e1ðt,jÞþ max
iA I :

qiðt,jÞ ¼ 0

Xm

k ¼ 1

pi,kþ
X

hA I�fig :

qhðt,jÞ ¼ 0

min
kAK
fph,kgg

8>>>><
>>>>:

ð24Þ
5. The use of Bounded Dynamic Programming

The procedure we propose (from Bautista et al., 1996; Bautista
and Pereira, 2009; Bautista and Cano, 2011) is called Bounded
Dynamic Programming (BDP) and consists of generating a part of
the graph described in Section 3 from level 0 to level T, one level
at a time.

The generated vertices may potentially form a part of an
optimum path (from 0 to T) that is based on the construction of
an optimum segment of t levels, from J(0) to J(t,j), and on the
evaluation of the bound of Cmax to reach level T, for example
LB1(t,j).
Please cite this article as: Bautista, J., et al., Solving the FmjblockjCm
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The procedure only keeps the information of two consecutive
levels in memory, t and tþ1 (t¼0,y,T�1), for which it uses the
following lists L(t) and L(tþ1), respectively:
�

ax

.20
List L(t) contains information about the vertices consolidated
in level t that can potentially form part of an optimum or good
quality path.

�
 List L(tþ1) contains the vertices that are tentatively gener-

ated one-by-one from each vertex of list through the possible
transitions between levels t and tþ1.

A record l(J(t,j)) of list L(t), l(J(t,j))AL(t), is composed of three
elements:

lðJðt,jÞÞ ¼ fJðt,jÞ,LB1ðt,jÞ,G�ðJðt,jÞÞg ð25Þ

where G�(J(t,j)) is the vertex of level t�1 ancestor of J(t,j).
Although the use of L(t) and L(tþ1) notably reduces memory

needs, the number of vertices that can be generated for a level can
be very large. Therefore, we impose a limitation on the number of
H(t) vertices stored in level t. This limitation, called window
width, is represented as H, H(t)rH (t¼1,y,T). In addition, we set
the maximum number of transitions from a vertex in level t to the
value n�t.

To obtain an initial solution with value Z0 (the upper bound of
the value of Cmax), it is sufficient to use a Greedy procedure, a local
search, or BDP with a small window width, e.g., H¼1.

We have developed two variants based on BDP:
1.
 The ordered pair of values (LB1(t,j),em(t,j)) is used as priority
rule or guide (GZ) to obtain solutions: a partial solution is more
promising than another when it has the best bound for Cmax

(LB1(t,j)). In case of tie between two partial solutions (equal
LB1(t,j)), the partial solution with less em(t,j) will be considered
the best.
2.
 In the Variant 2, the ordered pair of values (em(t,j),LB1(t,j)) is
used as priority rule or guide (GZ): a partial solution is more
promising than another when it has less value for his partial
Cmax (i.e. em(t,j)). In case of tie between two partial solutions
(equal em(t,j)), the partial solution with less LB1(t,j) will be
considered the best.

Evidently, some vertices tentatively generated in level t will
not be recorded in list L(tþ1).

In effect, we use the following rules:
1.
 We ‘‘remove’’ an J(tþ1,ji) vertex generated when the value of
its lower bound, LBZ¼LB1(tþ1,ji), is greater than or equal to
the value of a known solution Z0 (upper bound for Cmax),
because it is not possible to obtain a solution with a better
value than Z0 through J(tþ1,ji).
2.
 We ‘‘reject’’ an J(tþ1,ji) vertex generated when there is a
record l(J(tþ1,h))AL(tþ1) with a vertex that dominates or is
equivalent to J(tþ1,ji): Jðtþ1,hÞð!3� ÞJðtþ1,jiÞ.
3.
 We ‘‘discard’’ the placement of an J(tþ1,ji) vertex generated on
the list L(tþ1) when the list is full (H(tþ1)¼H) and J(tþ1,ji)
has a GZ (Variant 1: GZ¼(LB1(tþ1,ji),em(tþ1,ji)) or Variant 2:
GZ¼(em(tþ1,ji),LB1(tþ1,ji))) that is greater than or equal to the
largest value of the priority rule or guide ðVariant 1 : GZmax ¼

ðLB1ðtþ1,hmaxÞ,emðtþ1,hmaxÞÞ or Variant 2 : GZmax ¼ ðemðtþ1,
hmaxÞ,LB1ðtþ1,hmaxÞÞÞ of the vertices already recorded in
L(tþ1), although an optimum path may pass through J(tþ1,ji).
4.
 The J(tþ1,ji) vertex generated ‘‘replaces’’ a vertex J(tþ1,h)
recorded on list L(tþ1), when J(tþ1,ji) dominates J(tþ1,h),
or when J(tþ1,ji) has a GZ that is lower than J(tþ1,h) and
H(tþ1)¼H, although the optimum path may pass through the
moved vertex.
problem using Bounded Dynamic Programming. Engineering
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Under these conditions, we can write the following algorithm
(Variants 1 and 2):
BDP–Fm9block9Cmax

Input: T, 9I9, 9K9,di(8iAI),pi,k(8iAI,8kAK), Z0, H

Output: list of sequences obtained by BDP (L(T))

0

Pl
Ap
Initialization: t¼ 0; LBZmin ¼1
1
 while (toT) do

2
 t¼tþ1

3
 While (list of consolidated vertices in level t�1

(L(t�1)) not empty) do
4
 Select_vertex (t)

5
 Develop_vertex (t)

6
 L(t)’Filter_vertices ðZ0, H, LBZminÞ
7
 end while
8
 End_level()

9
 end while

end BDP–Fm9block9Cmax

As can be seen in the pseudocode of the procedure, The BDP
algorithm uses the following functions:
�
 Select_vertex (t): a vertex of level t�1 is selected in the order
established in the consolidated list L(t�1). This order depends
on the variant of the algorithm used. The Variant 1 sorts the
vertices according to a non-decreasing order of LB1 and, to
break ties, according to a non-decreasing order of the partial
Cmax of the subsequence associated to the selected vertex.
Instead, in the Variant 2, vertices are sorted according to a
non-decreasing order of the partial Cmax and, in case of ties,
according to a non-decreasing order of LB1.

�
 Develop_vertex (t): the vertex selected by the function Select_

vertex (t) is developed by adding an unscheduled job in the
associated subsequence of the selected vertex. During this
development LB1, the partial Cmax and the completion times of
the added job, in all machines, are determined, taking into
account the original subsequence. Logically, the development
of a vertex implies to evaluate all the possible extensions of
the subsequence associated with the selected vertex, by
considering, one by one, all the unscheduled jobs.

�
 Filter_vertices ðZ0,H,LBZminÞ: a maximum number (H) of exten-

sions are selected between all the extensions resulting by the
function Develop_vertex (t). The extensions selected are those
that have a better value of partial Cmax or LB1 according to the
variant of the algorithm used for the list L(t). Moreover, some
vertices may be discarded on the selection process for the
following reasons: (1) the vertex is dominated by a more
promising one or is equivalent to another one; and (2) the
extension has a value of LB1 greater than or equal that the best
known solution Z0. Throughout the process, the lower value of
LB1, between all the extensions that have not been selected, is
kept: LBZmin.

�

Table 1
End_level (): the selected extensions by the function Filter_
vertices ðZ0,H,LBZminÞ are consolidated at the level t, confirm-
ing the list L(t) (a maximum of H vertices).

When the procedure ends, we can initially find two possible
situations:
Processing times (pi,k); where A, B, C and D corresponds to i¼1 to 4 (n¼4) and m1,

m2 and m3 correspond to k¼1 to 3 (m¼3)

�

A B C D
List L(T) is empty, which means that we are unable to find a
solution with a value less than Z0.

�

m1 4 6 5 4

m2 3 3 3 4

m3 2 1 3 2
List L(T) is not empty, which means that the records contained
in L(T), l(T,h)AL(T), are associated with vertices, J(T,h), whose
Cmax is em(T,h)oZ0. In this case, we can regressively recon-
struct a sequence from any of these vertices with a better
ease cite this article as: Bautista, J., et al., Solving the FmjblockjCm

plications of Artificial Intelligence (2011), doi:10.1016/j.engappai
value than Z0 using the L(t) list and the ancestors of the
vertices.

In addition, we can guarantee that we are able to build an
optimum sequence from the l(T,h)AL(T)a{|} records in any of
the following cases:

Case 1 : max
0r trT

fHðtÞgoH ð26Þ

Case 2 : ð max
0r trT

fHðtÞg ¼HÞ4ðemðT ,hÞrLBZminÞ ð27Þ

LBZmin corresponds to the value of the ‘‘discarded’’ or ‘‘replaced’’
vertex during the procedure with lower bound LBZ.

In any other case, the procedure is heuristic.
Consider the following example to illustrate the use of the BDP

procedure: there are four jobs (n¼4: A, B, C, D). The jobs are
processed in three machines (m¼3: m1, m2 and m3), and the
processing times, pi,k, of each job (i¼1,y,4) at each machine
(k¼1,y,3), are indicated in Table 1.

The objective is to obtain an optimal sequence under the
conditions of the Fm9block9Cmax problem.

Fig. 2 illustrates an application of the proposed procedure
(Variant 1) to the example using an initial solution Z0¼25 and a
window width H¼8. In the graph associated with Fig. 2 we can
see the following:
(1)
ax p
.201
At level t¼2, the vertices (A–B) and (B–A) are removed
because both presents a lower bound for Cmax (LB) greater
than or equal to Z0¼25.
(2)
 At level t¼2, the vertices (A–C), (A–D), (B–C), (B–D) and (C–D)
are dominated by vertices (C–A), (D–A), (C–B), (D–B) and
(D–C), respectively. For example, the vertex (A–C) is domi-
nated by vertex (C–A), because all the completion instants of
job C (second job in A–C) in all the machines are greater than
or equal than the completion instants of the job A (second job
in C–A). (vertex (A–C): e1,2¼9, e2,2¼12, e3,2¼15; dominated
by vertex (C–A): e1,2¼9, e2,2¼12, e3,2¼14).
(3)
 At level t¼3, the vertices (C–A–B), (C–B–A), (D–A–B) and
(D–B–A) are removed, because all of them presents a LB
greater than or equal to Z0¼25.
(4)
 At level t¼3, the vertices (C–A–D), (C–B–D), (D–A–C) and
(D–B–C) are dominated by vertices (D–A–C), (D–C–B), (D–C–A)
and (D–C–B), respectively.
(5)
 At level t¼4, the vertex (D–C–B–A) with LB¼24 is dominated
by vertex (D–C–A–B) with LB¼23, because all the completion
instants of job A (fourth job in D–C–B–A) in all the machines
are greater than or equal than the completion instants of the
job B (fourth job in D–C–A–B). (vertex (D–C–B–A): e1,2¼19,
e2,2¼22, e3,2¼24; dominated by vertex (D–C–A–B): e1,2¼19,
e2,2¼22, e3,2¼23).
(6)
 At level t¼4, the vertex (D–C–A–B) represents an optimal
sequence with value Cmax¼23. The shortest path in the graph
in Fig. 2 shows highlighting in black, the arcs between the
vertices.
roblem using Bounded Dynamic Programming. Engineering
1.09.001
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Fig. 2. Graph for the example. In each vertex, the following quantities can be found: the subsequence of jobs, the value of partial Cmax associated with the subsequence

(Cmax) and the lower bound of the total Cmax (LB). The abbreviations ‘‘d’’ and ‘‘r’’ symbolize ‘‘dominated’’ and ‘‘removed’’, respectively.
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6. Computational experiment

We have performed an operation test with the 12 sets from
Taillard’s benchmark instances (Taillard, 1993). Taillard’s benchmark
instances consist in 120 instances, grouped in 12 sets. Each set has
10 instances, each of them with the same number of jobs and
Please cite this article as: Bautista, J., et al., Solving the FmjblockjCm

Applications of Artificial Intelligence (2011), doi:10.1016/j.engappai
machines. The number of jobs goes from 20 (set 1) to 500 (set 12)
and the number of machines goes from 5 (set 1) to 20 (set 12).

To obtain solutions, we have used two variants of BDP
programmed in Cþþ, compiled with gcc v. 4.01, running on an
Apple Macintosh iMac computer with an Intel Core i7 2.93 GHz
processor and 8 GB RAM using MAC OS X 10.6.4. Neither the
ax problem using Bounded Dynamic Programming. Engineering
.2011.09.001
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Table 2
Solutions offered by BDP for each window width (from H1 to H8). Best values for RPD obtained.

Ins. Best lit. H¼1 H¼10 H¼50 H¼100 H¼250 H¼500 H¼750 H¼1000 Best found Best RPD

Cmax Cmax Cmax Cmax Cmax Cmax Cmax Cmax

Set 1 1 1374 1640 1513 1441 1423 1390 1380 1380 1380 1380þ 0.44

2 1408 1725 1549 1474 1459 1450 1442 1432 1431 1431þ 1.63

3 1280 1667 1471 1353 1330 1326 1314 1302 1302 1302þ 1.72

n¼20 4 1448 1563 1562 1543 1466 1456 1456 1456 1456 1456 0.55

m¼5 5 1341 1512 1424 1400 1369 1367 1357 1350 1350 1350 0.67

6 1363 1515 1470 1395 1393 1393 1385 1385 1385 1385 1.61

7 1381 1467 1407 1407 1396 1396 1396 1395 1393 1393 0.87

8 1379 1608 1524 1392 1392 1386 1386 1386 1386 1386 0.51

9 1373 1461 1432 1410 1410 1403 1403 1389 1389 1389 1.17

10 1283 1421 1311 1307 1307 1293 1293 1293 1293 1293 0.78

Set 2 11 1698 2006 1807 1768 1762 1741 1741 1731 1731 1731 1.94

12 1833 2116 1974 1974 1909 1909 1897 1895 1883 1883 2.73

13 1659 1781 1728 1695 1687 1687 1684 1684 1683 1683 1.45

n¼20 14 1535 1791 1714 1640 1587 1587 1579 1579 1576 1576 2.67

m¼10 15 1617 1978 1780 1738 1707 1707 1667 1667 1667 1667 3.09

16 1590 1830 1710 1611 1611 1610 1610 1610 1610 1610 1.26

17 1622 1818 1740 1725 1722 1691 1691 1681 1681 1681 3.64

18 1731 2133 1859 1796 1777 1761 1760 1752 1749 1749þ 1.04

19 1747 1962 1854 1854 1768 1755 1755 1755 1755 1755 0.46

20 1782 2100 1933 1922 1890 1829 1829 1829 1829 1829 2.64

Set 3 21 2436 2772 2644 2640 2622 2567 2551 2551 2551 2551 4.72

22 2234 2760 2544 2429 2367 2350 2326 2315 2315 2315 3.63

23 2479 2813 2730 2705 2665 2663 2651 2644 2627 2627 5.97

n¼20 24 2348 2733 2480 2440 2429 2419 2403 2388 2388 2388 1.70

m¼20 25 2435 2886 2740 2621 2602 2553 2534 2534 2534 2534 4.07

26 2383 2744 2532 2492 2492 2492 2461 2461 2461 2461 3.27

27 2390 2956 2715 2672 2603 2603 2550 2518 2497 2497þ 4.48

28 2328 2792 2596 2574 2543 2522 2522 2522 2522 2522 8.33

29 2363 3036 2570 2545 2494 2494 2483 2483 2483 2483 5.08

30 2323 2698 2561 2442 2404 2404 2367 2367 2360 2360 1.59

Set 4 31 3002 3276 3146 3124 3096 3078 3066 3066 3066 3066 2.13

32 3201 3481 3341 3267 3267 3253 3253 3253 3251 3251 1.56

33 3011 3235 3146 3108 3081 3081 3081 3081 3077 3077 2.19

n¼50 34 3128 3554 3261 3261 3215 3187 3181 3181 3181 3181 1.69

m¼5 35 3166 3471 3257 3226 3226 3226 3226 3216 3216 3216 1.58

36 3169 3530 3365 3360 3317 3317 3284 3284 3279 3279 3.47

37 3013 3383 3188 3124 3098 3096 3096 3096 3090 3090 2.56

38 3073 3480 3180 3125 3125 3125 3125 3125 3125 3125 1.69

39 2908 3256 3107 3076 3005 3004 2986 2971 2971 2971 2.17

40 3120 3434 3277 3217 3182 3171 3171 3163 3163 3163 1.38

Set 5 41 3638 4139 3911 3837 3744 3744 3730 3730 3730 3730 2.53

42 3507 3914 3701 3701 3647 3624 3624 3585 3571 3571 1.82

43 3488 3982 3848 3754 3754 3672 3642 3623 3623 3623 3.87
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Table 2 (continued )

Ins. Best lit. H¼1 H¼10 H¼50 H¼100 H¼250 H¼500 H¼750 H¼1000 Best found Best RPD

Cmax Cmax Cmax Cmax Cmax Cmax Cmax Cmax

n¼50 44 3656 4050 4024 3869 3869 3869 3869 3869 3840 3840 5.03

m¼10 45 3629 4109 3836 3761 3761 3761 3720 3712 3706 3706 2.12

46 3621 3997 3845 3743 3743 3743 3692 3692 3692 3692 1.96

47 3696 4204 3940 3890 3814 3814 3814 3814 3814 3814 3.19

48 3572 4113 3986 3867 3718 3718 3718 3718 3709 3709 3.84

49 3532 3871 3742 3682 3660 3660 3636 3619 3619 3619 2.46

50 3624 4455 4011 3940 3883 3859 3811 3796 3780 3780þ 4.30

Set 6 51 4500 5213 4899 4844 4753 4753 4741 4705 4705 4705 4.56

52 4276 5163 4960 4811 4720 4700 4700 4668 4658 4658 8.93

53 4289 5258 4879 4553 4553 4553 4553 4553 4553 4553 6.16

n¼50 54 4377 5010 4663 4649 4643 4615 4572 4572 4572 4572 4.46

m¼20 55 4268 5291 4888 4669 4669 4624 4594 4542 4542 4542 6.42

56 4280 5039 4876 4689 4651 4628 4596 4596 4594 4594 7.34

57 4308 5110 4853 4636 4636 4573 4505 4505 4505 4505 4.57

58 4326 5395 4836 4689 4627 4590 4544 4494 4494 4494 3.88

59 4316 5261 5044 4780 4780 4780 4732 4687 4680 4680 8.43

60 4428 5160 4887 4831 4719 4719 4663 4663 4639 4639 4.77

Set 7 61 6151 6764 6417 6329 6270 6230 6225 6225 6225 6225 1.20

62 6022 6537 6236 6113 6113 6108 6108 6034 6034 6034 0.20

63 5927 6368 6207 5975 5975 5975 5942 5942 5928 5928 0.02

n¼100 64 5772 6190 5926 5808 5805 5782 5782 5782 5755 5755 �0.29
m¼5 65 5960 6453 6089 6070 6050 6050 6050 6016 5979 5979 0.32

66 5852 6471 6034 5945 5945 5876 5876 5876 5876 5876 0.41

67 6004 6471 6220 6111 6081 6056 6056 6050 6046 6046 0.70

68 5915 6397 6056 6002 5916 5916 5882 5882 5879 5879 �0.61
69 6123 6647 6255 6255 6255 6201 6201 6172 6164 6164 0.67

70 6159 6741 6274 6274 6244 6180 6154 6154 6154 6154 �0.08

Set 8 71 7042 7790 7404 7374 7283 7246 7231 7231 7103 7103 0.87

72 6791 7547 7097 6957 6895 6866 6814 6814 6814 6814 0.34

73 6936 7728 7293 7165 7157 7065 7050 7050 7050 7050 1.64

n¼100 74 7187 7925 7701 7553 7521 7482 7466 7405 7405 7405 3.03

m¼10 75 6810 7424 7110 7008 6962 6932 6932 6932 6932 6932 1.79

76 6666 7427 7046 6971 6971 6934 6878 6855 6855 6855 2.84

77 6801 7681 7322 7117 7117 7071 6983 6983 6983 6983 2.68

78 6874 7415 7257 6998 6998 6998 6998 6972 6965 6965 1.32

79 7055 7955 7453 7344 7281 7216 7216 7216 7216 7216 2.28

80 6965 7705 7344 7225 7129 7129 7125 7123 7058 7058 1.34

Set 9 81 7844 9309 8982 8673 8560 8551 8479 8395 8395 8395 7.02

82 7894 9234 8540 8380 8309 8248 8232 8232 8232 8232 4.28

83 7794 9016 8664 8434 8434 8382 8334 8334 8303 8303 6.53

n¼100 84 7899 8891 8609 8604 8416 8244 8244 8240 8225 8225 4.13

m¼20 85 7901 9024 8378 8378 8225 8225 8203 8203 8185 8185 3.59

86 7888 9241 8765 8553 8340 8340 8318 8318 8318 8318 5.45

87 7930 8936 8620 8457 8457 8364 8364 8364 8241 8241 3.92

88 8022 9386 8794 8681 8577 8534 8487 8449 8268 8268 3.07

89 7969 8995 8626 8525 8357 8357 8205 8205 8205 8205 2.96

90 7993 9275 8886 8771 8655 8655 8564 8432 8432 8432 5.49

Set 10 91 13,406 14,678 14,089 13,674 13,674 13,674 13,557 13,537 13,468 13,468 0.46

92 13,313 14,472 13,832 13,592 13,537 13,311 13,287 13,287 13,263 13,263 �0.38
93 13,416 14,463 13,944 13,727 13,691 13,615 13,503 13,475 13,475 13,475 0.44

n¼200 94 13,344 14,641 13,981 13,662 13,644 13,618 13,550 13,435 13,435 13,435 0.68
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implementation nor the compiler used threads or any type of
parallel code; therefore, the computer can be considered a single
2.93 GHz processor. The 12 sets were solved using eight correla-
tive window widths, from H1 to H8 with values 1, 10, 50, 100, 250,
500, 750 and 1000, respectively.

For the initial solution Z0, we used the value of the solution
obtained with the previous width Ha�1 for each window width Ha
(a¼1,y,8), except for the case with width H1¼1 in which Z0 was
fixed at N.

To analyze the experimental results, we used the relative
percentage deviation (RPD) calculated as follows:

RPD¼
BDPBest�Bestsolution

Bestsolution
� 100 ð28Þ

Table 2 shows:
(1)
ax p
.201
Column ‘‘Best lit’’, shows, for each instance (Ins. from 1 to 120)
in sets from 1 to 12 from Taillard, the best results reported in
the literature (see Ribas et al., 2011).
(2)
 Column ‘‘Best found’’ shows the best solutions found for each
instance using Variants 1 and 2. For most instances, Variant
1 offered the best solution and only in exceptional cases
(marked with the symbol þ), the Variant 2 offered the best
solution between them.
(3)
 Columns headed from H¼1 to H¼1000 show the solutions for
Cmax obtained for each window width.
(4)
 Finally, column ‘‘Best RPD’’ shows the best RPD value obtained
by BDP for each instance.
In Table 2 we can observe that values of RPD are between
–1.49% (instance 119) and 8.93% (instance 52) in all the instances,
considering the best value between the two BDP variants. RPD

negative values (marked in italics and bold face) indicate an
improvement to the best solution reported in the literature; these
improvements occur in 17 instances: instance 70 (with a window
width H¼500), instance 95 (with a window width H¼750) and
instances 64, 68, 92, 96, 99, 111, 112, 113, 114, 115, 116, 117, 118,
119 and 120 (with a window width H¼1000, although some of
these instances improved less in previous windows widths).

The average RPD for the 120 instances is 2.18%. The average
RPD for each set (from 1 to 12) and variant (1 and 2) are reported
in Table 3. Table 3 also shows average CPU time (in s) for both
variants of the BDP and windows widths H¼500, H¼750 and
H¼1000 (for the 12 sets). The CPU times related to Hr250 have
been removed from Table 3 because that can be considered
negligible compared to the CPU times exposed.

Table 3 shows that the CPU times grow if we increase the
window width and the dimension of the sets. Regarding to times
according to the variant used, in sets from 1 to 4 the times are
similar for both variants. However, from sets 5 to 12, the Variant
1 is faster.

In order to study the impact of increase the window width H to
improve the solutions found, we have performed an additional
computational experiment using the window widths H¼1250,
2500, 5000 and 10,000 in the instances corresponding to the sets
from 1 to 4 from Taillard.

The results of this experiment are shown in Tables 4 and 5. The
solutions have been improved in 38 instances of 40 (except for
instances 2 and 19), comparing the values for RPD of column ‘‘Best

RPD’’ and column ‘‘RPD H¼1000’’, or alternatively, comparing
the values for Cmax of columns ‘‘Cmax H¼1000’’ and ‘‘Best found’’.
The optimal solution is reached in the instances 4, 5, 9 and 10. The
average CPU times for each window width (H¼1250 to 10,000)
are shown in Table 5, in addition to ‘‘% average RPD’’, which
improve over the values obtained for H¼1000, in 0.64%, 0.98%,
1.2% and 0.63% for sets from 1 to 4, respectively.
roblem using Bounded Dynamic Programming. Engineering
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Table 3
Average RPD and CPU times (in s) for the 12 sets.

Sets 1 2 3 4 5 6 7 8 9 10 11 12

% Average RPD 1 1.20 2.13 4.42 2.04 3.20 5.95 0.25 1.81 4.65 0.21 1.88 �1.11

% Average RPD 2 2.03 4.30 5.80 3.25 5.24 9.59 3.42 4.22 8.66 4.31 6.61 6.20

% Average RPD (both) 0.99 2.09 4.28 2.04 3.11 5.95 0.25 1.81 4.65 0.21 1.88 �1.11

Average CPU 1/500 3.2 3.6 4.6 36.3 44.2 62.7 191.7 249.0 378.3 1625.2 2630.1 37,046.8

Average CPU 2/500 2.4 3.2 4.4 39.8 46.8 63.9 251.8 299.3 425.2 2156.9 2989.2 43,280.7

Average CPU 1/750 6.9 7.6 9.2 79.1 92.8 128.1 420.3 509.1 719.1 3190.0 4793.4 64,481.6

Average CPU 2/750 4.9 6.3 8.4 83.5 98.6 129.7 545.0 619.7 823.6 4415.5 5554.8 �

Average CPU 1/1000 12.1 12.6 14.8 134.6 159.2 209.4 743.9 888.3 1147.0 5150.9 7389.7 97,577.4

Average CPU 2/1000 8.0 10.6 13.7 146.6 171.3 215.6 935.1 1061.8 1345.5 7219.8 8780.3 �

Table 4
Solutions offered by BDP for the sets from 1 to 4 and window width H¼1250, 2500, 5000 and 10,000, for each instance.

Ins. Best lit. Cmax RPD H¼1250 H¼2500 H¼5000 H¼10,000 Best found Best RPD

H¼1000 H¼1000 Cmax Cmax Cmax Cmax

Set 1 1 1374 1380þ 0.44 1379 1379 1379 1379 1379þ 0.36

2 1408 1431þ 1.63 1431 1431 1431 1431 1431þ 1.63

3 1280 1302þ 1.72 1302 1302 1290 1284 1284þ 0.31

n¼20 4 1448 1456 0.55 1456 1456 1448 1448 1448 0.00

m¼5 5 1341 1350 0.67 1350 1349 1341 1341 1341 0.00

6 1363 1385 1.61 1385 1371 1371 1371 1371 0.59

7 1381 1393 0.87 1393 1393 1391 1386 1386 0.36

8 1379 1386 0.51 1386 1386 1386 1382 1382 0.22

9 1373 1389 1.17 1389 1378 1378 1373 1373 0.00

10 1283 1293 0.78 1293 1283 1283 1283 1283 0.00

Set 2 11 1698 1731 1.94 1730 1730 1730 1712 1712 0.82

12 1833 1883 2.73 1879 1860 1852 1847 1847 0.76

13 1659 1683 1.45 1683 1682 1682 1678 1678 1.15

n¼20 14 1535 1576 2.67 1572 1567 1557 1557 1557 1.43

m¼10 15 1617 1667 3.09 1667 1667 1664 1652 1652 2.16

16 1590 1610 1.26 1610 1610 1606 1606 1606 1.01

17 1622 1681 3.64 1654 1654 1651 1636 1636 0.86

18 1731 1749þ 1.04 1749 1749 1743 1740 1740þ 0.52

19 1747 1755 0.46 1755 1755 1755 1755 1755 0.46

20 1782 1829 2.64 1829 1829 1817 1817 1817 1.96

Set 3 21 2436 2551 4.72 2551 2537 2537 2537 2537 4.15

22 2234 2315 3.63 2306 2284 2284 2270 2270 1.61

23 2479 2627 5.97 2598 2598 2598 2592 2592 4.56

n¼20 24 2348 2388 1.70 2388 2388 2388 2386 2386 1.62

m¼20 25 2435 2534 4.07 2534 2515 2508 2486 2486 2.09

26 2383 2461 3.27 2458 2444 2444 2438 2438 2.31

27 2390 2497þ 4.48 2497 2485 2479 2471 2471þ 3.39

28 2328 2522 8.33 2521 2512 2508 2502 2502 7.47

29 2363 2483 5.08 2476 2458 2443 2432 2432 2.92

30 2323 2360 1.59 2360 2360 2338 2338 2338 0.65

Set 4 31 3002 3066 2.13 3066 3064 3063 3044 3044 1.40

32 3201 3251 1.56 3251 3251 3251 3247 3247 1.44

33 3011 3077 2.19 3077 3072 3047 3047 3047 1.20

n¼50 34 3128 3181 1.69 3181 3181 3181 3168 3168 1.28

m¼5 35 3166 3216 1.58 3216 3212 3205 3204 3204 1.20

36 3169 3279 3.47 3269 3266 3254 3252 3252 2.62

37 3013 3090 2.56 3090 3077 3077 3061 3061 1.59

38 3073 3125 1.69 3125 3122 3098 3098 3098 0.81

39 2908 2971 2.17 2971 2958 2958 2956 2956 1.65

40 3120 3163 1.38 3163 3150 3150 3148 3148 0.90

Table 5
Average RPD and CPU times (in s) for the sets from 1 to 4 and window width

H¼1250, 2500, 5000 and 10,000.

Sets 1 2 3 4

% Average RPD 0.35 1.11 3.08 1.41

Average CPU H¼1250 17.17 19.92 23.56 231.62

Average CPU H¼2500 70.24 88.28 100.74 1094.28

Average CPU H¼5000 274.58 350.21 408.39 4484.20

Average CPU H¼10,000 1058.99 1395.36 1590.45 19,074.25
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7. Conclusions

In this paper a Bounded Dynamic Programming (BDP) procedure
has been proposed for solving the permutation flow shop problem
with blocking (Fm9block9Cmax). This type of procedure has been
used to solve sequencing in mixed assembly lines and assembly
line balancing problems but, to the best of our knowledge, it has
not been used to solve the problem here considered.

The BDP combines features of dynamic programming with
features of branch and bound algorithms. The main elements that
define the efficiency of the BDP procedure are the graph
ax problem using Bounded Dynamic Programming. Engineering
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associated to the problem, the initial solution, the bounding
scheme used to prune the graph and the window width used.
The window width limits the maximum number of partial
solutions retained in each level, therefore it is also necessary to
define the rules to decide which vertices are pruned. In our
implementation two different variants has been used. The best
behavior has been obtained with BDP Variant 1, when the priority
rule keeps those vertices with a best bound of Cmax (i.e. LB1(t,j))
and in case of ties those with the best partial Cmax (i.e. em(t,j)) of a
built subsequence. Even though we have set the initial solution
(Z0) to infinite and we have used a simple bounding scheme, we
have improved the best known solutions for 17 of Taillard’s
benchmark instances. Improved instances are: instance 70 with
a window width of 500, instance 95 with a window width of 750
and instances 64, 68, 92, 96, 99, 111, 112, 113, 114, 115, 116, 117,
118, 119 and 120 with a window width of 1000 (although some of
these instances improved less in previous windows widths), in a
competitive time.

Future research will focus on using an improved bounding
scheme more adapted to the characteristics of the problem which,
combined with a better initial solution as the MME2 proposed in
Ribas et al. (2011), could help to improve the efficiency of the
procedure. The procedure will include a dynamic rule, which has
the ability to widen or to shrink the window width based on the
potential for improvement of the solution.
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