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Abstract. The main purpose of this paper is to present in a unified approach
to see different results concerning group actions and integrable systems in
symplectic, Poisson and contact manifolds. Rigidity problems for integrable

systems in these manifolds will be explored from this perspective.
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1. Introduction

From the very beginning: symmetries, group actions and integrable systems
have been close allies. The study of symmetries of the differential systems given
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by Hamilton’s equation associated to an energy function H, led naturally to the
existence of Poisson commuting functions and the method of integration by quadra-
tures. When the number of commuting functions is maximal, the resolution by
quadratures is possible and the set of commuting functions defines an integrable
system on the phase space T ∗(Rn). The idea can be naturally exported to any
symplectic manifold and the reduction process can be seen as a reduction of the
dynamics in the manifolds given by a Marsden-Weinstein reduction associated to a
toric group.

One of the most striking and basic results in the theory of integrable systems on
symplectic manifolds is the theorem of Liouville-Mineur-Arnold [46],[47],[2] which
states that the foliation defined by a regular integrable system in the neighbourhood
of a compact fibre is a fibration by tori and that the symplectic form can be given
semilocally as a Darboux form. This theorem is achieved by constructing action-
angle coordinates in a neighbhourhood of a regular fibre and proving a Darboux
theorem in this coordinates. It is really enriching to understand and interpret the
difficulties in extending this theorem to a more general context. This is the case
of including singularities into the picture or trying to construct global action-angle
coordinates. The study of these problems concerning integrable systems is still a
challenging issue for symplectic topologists, geometers and dynamicists.

Experts working in dynamical systems are interested in the properties of the
Hamiltonian vector field and its flow. Topologists are interested in both construct-
ing global examples of integrable systems and studying obstruction theories. Ge-
ometers are interested in understanding the geometrical structure (symplectic) of
these objects and in proving classification theorems.

Symmetries are present in many physical problems and therefore they show up
in integrable systems theory as well. The ace in the hole in the study of integrable
systems is to look for symmetries. The very proof of Liouville-Mineur-Arnold uses
this strategy. It finds a toric Hamiltonian action tangent to the fibres of the moment
map. In this paper we will also consider additional symmetries showing up. We
will try to study which properties hold for these additional symmetries. Those
symmetries are encoded in actions of Lie groups.

Among all kind of symmetries the toric ones play a central rôle in this paper.
Hamiltonian actions of tori in symplectic geometry have attracted the attention
of many specialists. Along the way many results of symplectic uniqueness are ob-
tained. A good example of this is Delzant’s theorem [15] which enables to recover
information of a compact 2n-dimensional manifold by looking at the image of the
moment map of a Hamiltonian torus action which is a convex polytope in Rn. A
lot of contributions in the area of Hamiltonian actions of Lie groups have been
done ever since. Let us mention some of the references of the large list of results
in that direction: the works of Lerman and Tolman to extend those result to sym-
plectic orbifolds ([39]) and the works of Karshon and Tolman for complexity one
Hamiltonian group actions ([31]) among many others. One of the current topics of
interest are singularities of integrable systems. Besides the classical references on
the symplectic geometry and topology of these singularities [21], [20], [45], [6], [77],
and more recently the work in connection to (semi)-toric actions and singularities
([64], [65]).
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The notion of integrability and its connection to group actions can be naturally
studied in the contact context too. Toric contact manifolds have been largely stud-
ied by Banyaga and Molino [3, 4], Luzt [43] and Lerman [38]. In [49] the integrable
non-degenerate but not necessarily toric case is studied. More recently, integra-
bility in the contact context has been studied by Khesin and Tabaschnikov [16].
We will present classification results for integrable systems with non-degenerate
singularities in contact manifolds and give complete proofs.

Last but not least, Poisson manifolds constitute a natural scenario to study
Hamilton’s equations. As a first and basic example of Poisson manifolds, we have
the dual of a Lie algebra. Poisson manifolds are foliated by symplectic manifolds but
this foliation is not necessarily regular. When considering a Hamiltonian system in a
Poisson manifold we obtain families of Hamiltonian systems in the symplectic leaves
of this foliation but there are some additional “transversal” structures given by
extra symmetries (Casimir functions). We can therefore define integrable systems
on these manifolds too and study similar topological/geometrical and dynamical
properties.

Organization of this paper:

This paper is divided in three sections: The symplectic, contact and Poisson
section. In this paper we wanted to give a global perspective and underline a
common strategy in symplectic, contact and Poisson about the role of group actions
in studying integrable systems: their (equivariant) normal and also some rigidity
issues.

Section 2 is mainly a recompilation of results about symplectic linearization of
singular Lagrangian foliations defined by integrable systems contained in [49], [58].

We include here an outline of the proof of symplectic linearization. A more
detailed proof can be found in [49], [58], [54]. We also re-state Eliasson’s theorem
using the foliation defined by the Hamiltonian vector fields. This formulation is
necessary since the existence of hyperbolic singularities one cannot guarantee that
the moment map is a function of the elements in Williamson’s basis.

In this section we also describe some applications to action-angle coordinates to
the context of Geometric Quantization and we interconnect some results of rigid-
ity of group actions with the symplectic linearization results to obtain structural
stability of the foliation.

Section 3 contains result about equivalence with what we call “linear models” for
integrable systems in the contact case: We include here complete proofs of contact
equivalence with the contact models. This result was announced in a short note
before [50] but contained no proofs. We offer here an improved version of the proof
contained in [49] which makes special emphasis on the tools of group actions.

Section 4 contains results about action-angle coordinates for integrable systems
and rigidity for Hamiltonian actions on Poisson manifolds. Most of the results
contained in the Poisson case are joint results with other coauthors and the complete
proof of the statements is contained in [37] and [56]. The results are presented as
a summary of old results with a new perspective. We focus on the rôle of actions
and symmetries in the proofs. We also present new examples of integrable system
in the Poisson context. As a bonus we also prove that, unlike the symplectic and
contact case, integrable systems on Poisson manifolds are not rigid.
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2. The Symplectic case

In June 29th of 1853 Joseph Liouville presented a communication entitled “Sur
l’intégration des equations différentielles de la Dynamique” at the “Bureau des
longitudes”. In the resulting note [42] the notion of integrability of the system
is related to the existence of n integrals in involution with respect to the Poisson
bracket attached to the symplectic form. These systems come into the scene with
the classical denomination of “completely integrable systems”.

An integrable system on a symplectic manifold (M2n, ω) is given by a set of
generically independent functions F = (f1, . . . , fn) satisfying {fi, fj} = 0, ∀i, j.
The mapping F :M2n −→ Rn given by F = (f1, . . . , fn) is called moment map.

The distribution generated by the Hamiltonian vector fields Xfi is involutive. It
spans an integrable distribution which is of maximal rank at points where the func-
tions are functionally independent. In this case, the leaf of the foliation integrating
the distribution is Lagrangian since 0 = {f1, fj} = ω(Xfi , Xfj ) and tangent to the
fibers of F = (f1, . . . , fn). When we consider a point where the functions are not
functionally independent the leaf of the foliation is isotropic.

We are interested in understanding the geometry of integrable systems on sym-
plectic manifolds. On the one hand, we are interested in classifying the symplectic
structures which make a fixed integrable system into a Lagrangian foliation. On
the other hand we want to find “normal forms” for the fibration defined by F. In
this paper we address the generic case. Namely, we consider the regular and the
non-degenerate singular case.

2.1. Action-angle coordinates: Torus actions meet integrable systems. In
this section we will assume that the moment map is proper. Let L be a regular
orbit of this distribution then by the discussion above, this orbit is a Lagrangian
submanifold. It was Liouville [42] who first observed that these Lagrangian sub-
manifolds are indeed tori. Later, Mineur [46],[47] realized that the neighbouring
orbits are also tori and the fibration can be given via “action” coordinates in a
neighbhourhood of a regular fiber (callled Liouville tori). This is a topological con-
sequence of the theorem of Liouville-Mineur-Arnold 1 which we state below. The
geometrical contribution of the ensures the existence of symplectic normal forms in
the neighbourhood of a compact regular orbit.

Theorem 2.1. (Liouville-Mineur-Arnold Theorem)

Let (M2n, ω) be a symplectic manifold and let F : M2n −→ Rn be a proper
moment map. Assume that the components fi of F are pairwise in involution with
respect to the Poisson bracket associated to ω and that df1∧· · ·∧dfn ̸= 0 on a dense
set. Let N = F−1(c), c ∈ Rn be a connected regular levelset. Then there exists a
neighbourhood U(L) of L and a diffeomorphism ϕ : U(L) −→ Dn × Tn such that,

(1) ϕ(L) = {0} × Tn.
(2) A set of coordinates µi in D

n and a set of coordinates βi in Tn for which,
ϕ∗(

∑n
i=1 dµi ∧ dβi) = ω.

1This theorem is classically known as Arnold-liuville theorem. To the author’s knowledge,
the works of Henri Mineur [46, 47] already gave the a complete description of the Hamiltonian
system in a neighbourhood of a compact regular orbit. That is why we will refer to the classical

Arnold-Liouville theorem as Liouville-Mineur-Arnold theorem.
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(3) F depends only on ϕ∗(µi) = pi and it does not depend on ϕ∗(βi) = θi.

The new coordinates pi obtained are called action coordinates. The coordinates
θi are called angle coordinates. Mineur also showed that the action functions pi
can be defined via the period integrals. Let x be a point in a small neighbourhood
of L, the period integrals are defined as:

(2.1) pi(x) =

∫
Γi(x)

α

where α is a Liouville one-form (dα = ω), and Γi(x) is a closed curve which depends
smoothly on x and which lies on the Liouville torus containing x. The homology
classes of Γ1(x), ...,Γn(x) form a basis of the first homology group of the Liouville
torus.

The existence of action-angle coordinates in a neighbourhood of a compact orbit
provides a symplectic model for the Lagrangian foliation F determined by the
Hamiltonian vector fields of the n component functions fi of the moment map F .
As a matter of fact, Liouville-Mineur-Arnold theorem entails a “uniqueness” result
for the symplectic structures making the foliation F into a Lagrangian foliation.
Namely, if ω1 and ω2 are two symplectic structures defined in a neighbourhood of
L for which F is Lagrangian then there exists a symplectomorphism preserving the
foliation, fixing L and carrying ω1 to ω2. This is due to the following observation:
Let Xfi be the Hamiltonian vector fields associated to the functions fi for any
1 ≤ i ≤ n, then the Lagrangian condition implies that F =< Xf1 , . . . , Xfn >,
further {fj , fk}i = 0 where {., .}i stands for the Poisson bracket attached to ωi

, i = 1, 2 . Then by virtue of Liouville-Mineur-Arnold theorem there exists a
foliation-preserving symplectomorphism ϕi taking ωi to ω0 =

∑n
i=1 dpi ∧ dθi. In

all, the diffeomorphism ϕ−1
2 ◦ ϕ1 does the job. It takes ω1 to ω2, it fixes L and it is

foliation preserving.

So if the orbit is regular the existence of action-angle coordinates enables to
classify the symplectic germs, up to foliation-preserving symplectomorphism, for
which F is Lagrangian in a neighbourhood of a compact orbit. There is just one
class of symplectic germs for which the foliation is Lagrangian and the problem of
classification as Lagrangian fibrations or integrable systems is the same.

One could look at the problem from a global perspective. There are topological
obstructions to the existence of global action-angle coordinates as it was shown by
Duistermaat in [19].

Consequences:

Action-angle coordinates give:

• An action of a torus Tn tangent to the Liouville tori which is Hamiltonian.
• A normal form for the set of first integrals in involution (action coordinates).
In these coordinates, F = (p1, . . . , pn).

• A normal form for the symplectic structure: the symplectic structure is
Darboux ω =

∑n
i=1 dpi ∧ dθi.

Remark 2.2. Indeed one of the author’s favourite proof of the action-angle theorem
is in the paper of Duistermaat [19]. The theorem uses strongly the existence of a
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torus action tangent to the fibration given by the moment map to construct action-
angle coordinates. This idea can be exported to the regular Poisson case as we will
see later.

2.1.1. Applications of action-angle coordinates. The global problem of existence of
action-angle variables is related to Monodromy and the Chern class of the fibration
given by the fibers of the moment map.

In the case of generalized global action-angle coordinates on compact manifolds,
the semi-local torus action extend to a torus action Tn on the compact symplectic
manifolds (M2n, ω). We get global action-angle coordinates with singularities and
a toric manifold. Symplectic geometry can be read from the Delzant polytope [15].

The existence of action-angle coordinates has many implications in dynamics: for
instance the topological entropy of these systems is zero if there are no singularities
in the way [63] and [35].

Other applications of global action-angle coordinates show up (not so unexpect-
edly) in the context of geometric quantization using real polarizations. We include
here a short summary. A more extended version of these applications (with singu-
larities in the way) can be found in the short note [53].

Let (M2n, ω) be a symplectic manifold such that [ω] is integral. Under these
circumstances (see for instance [73] ), there exists a complex line bundle L with a
connection ∇ over M such that curv(∇) = ω. The symplectic manifold (M2n, ω)
is called prequantizable and the pair (L,∇) is called a prequantum line bundle of
(M2n, ω). In order to construct the geometric quantization of these objects, we need
to restrict the space of sections to a subspace of sections which are flat in “priv-
iledged” directions given by a polarization. A real polarization is a Lagrangian
foliation. In the case the polarizations are given by integrable systems, there is a
connection between well-defined flat sections and action-angle coordinates. Con-
sider the following:

Example 2.3. Consider M = S1 ×R and ω = dt ∧ dθ. Take as L the trivial bundle
with connection 1-form Θ = tdθ. Now, let P =< ∂

∂θ > then flat sections satisfy,

∇Xσ = X(σ) − i < θ,X > σ = 0 Thus flat sections σ(t, θ) = a(t).eitθ are defined
along leaves are given by the condition t = 2πk, k ∈ Z.

This example shows that flat sections are not globally defined but they exist along
a subset of leaves of the polarization. These are called Bohr-Sommerfeld leaves.
The characterization of Bohr-Sommerfeld leaves for regular fibrations under some
conditions is a well-known result by Guillemin and Sternberg ([27]). In particular
the set of Bohr-Sommerfeld leaves is discrete and is given by “action” coordinates.

Theorem 2.4 (Guillemin-Sternberg). If the polarization is a regular fibration with
compact leaves over a simply connected base B, then the Bohr-Sommerfeld set is
discrete and assuming that the zero-fiber is a Bohr-Sommerfeld leaf, the Bohr-
Sommerfeld set is given by, BS = {p ∈M, (f1(p), . . . , fn(p)) ∈ Zn} where f1, . . . , fn
are global action coordinates on B.

This result connects with Liouville-Mineur-Arnold theorem. When we consider
a toric manifolds the base B may be identified with the image of the moment map
by the toric action (Delzant polytope).
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In view of the previous theorem, when the polarization is given by an integrable
system with global action-angle coordinates it makes sense to “quantize” these
systems counting integral Liouville tori.

This can be formalized following the idea of Kostant [34], in the case there are
no global sections denote by J the sheaf of flat sections along the polarization, we
can then define the quantization as Q(M) =

⊕
k≥0H

k(M,J ). Then quantization

is given by precisely the following theorem of Sniatycki [66]:

Theorem 2.5 (Sniatycki). If the leaf space of the polarization Bn is a Hausdorff
manifold and the natural projection π : M2n → Bn is a fibration with compact
fibres, then all the cohomology groups vanish except for degree half of the dimension
of the manifold. Furthermore, Q(M2n) = Hn(M2n,J ), and the dimension of
Hn(M2n,J ) is the number of Bohr-Sommerfeld leaves.

2.2. Singular action-angle coordinates. In view of the “symplectic ”uniqueness
for the problem of classification in the case of regular compact orbits, we want to
try to extend this symplectic uniqueness also to fibrations which are not regular
but admit some “normal forms”.

What can be said about the corresponding classification problem for symplectic
germs if the completely integrable systems has singularities?

This question is quite natural because singularities are present in many well-
known examples of integrable systems. In fact, if the completely integrable system
is defined on a compact manifold then the singularities cannot be avoided.

If we forget for a while about the symplectic structure now and think about the
singularities that the moment map F can have. A good starting point is to consider
singularities which are non-degenerate (Morse-Bott) because for these singularities
such “normal forms” for the fibration do exist. We may wish to try to classify
symplectic germs in a neighbhourhood of a singular compact orbit as well. But
in this case because the moment map has singularities and there will be singular
orbits, this is why the foliation will not longer be Lagrangian but isotropic. Indeed
most of the leaves will be Lagrangian. This is why we talk about the “generically”
Lagrangian foliation. In this case we get a uniqueness of the symplectic structure
for each linear symplectic model and the result that we prove can be seen as a
“singular” Liouville-Mineur-Arnold theorem.

In [49] we proved that the uniqueness result for symplectic germs for which the
foliation determined by a completely integrable system is generically Lagrangian
holds when L is a singular compact orbit.

In the singular case, the problem can be posed at three different levels in the
neighbourhood of an orbit, levelset or globally. We will only address the first point
of view here.

In this paper we will sketch a different proof of Eliasson’s normal form [21], [20]
in the context of linearization of associated foliation (not moment map) for general
Williamson type. The proof that we will discuss here is essentially a slightly more
sophisticated proof that the one in the author’s thesis [49].

Observe that this normal form theorem can be seen as a symplectic linearization
result which ensures that the initial completely integrable system can be taken
to the linear system and that the symplectic form can be taken to the standard
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one. As a byproduct, we obtain a multiple differentiable linearization result for n
commuting vector fields with singularities of non-degenerate type.

The symplectic linearization in a neighbourhood of a singular non-degenerate
orbit L with dimL > 0 is due to Ito in the analytic case [33]. Partial results in
that direction (with dimL = 1 in a manifold of dimension 4) where obtained by
Currás-Bosch and the author in [10] and independently by Colin de Verdière and
San Vu Ngoc in [9]. The final result in any dimension was obtained by Nguyen
Tien Zung and the author in [58]. In [58] it is also included a G-equivariant version
of the symplectic linearization.

The problem of topological classification of integrable Hamiltonian systems be-
gan with Fomenko [22] in some particular cases. Nguyen Tien Zung [77] studied the
general case for the semi-local problem for non-degenerate singularities. It turns
out that from a topological point of view we have a product-like description of the
singularities in terms of the Williamson type. Nguyen Tien Zung also proved in [77]
the existence of partial action-angle coordinates. The symplectic classification in
the semi-local case for non-elliptic singularities has been studied in the hyperbolic
case by Dufour, Molino and Toulet in [17]. The focus-focus case has been studied
recently by San Vu Ngoc in [71]. In the hyperbolic and focus-focus case there are
more invariants attached to the singularity. The symplectic germ in the hyperbolic
case is determined by the jet of a function depending on a variable and in the
focus-focus case is determined by the jet of a function in two variables. The singu-
lar global case has been studied by Nguyen Tien Zung in the paper [79] where the
notion of Duistermaat-Chern class and monodromy (introduced by Duistermaat for
regular foliations) is extended in order to include the singularities into the picture.

The condition of non-degeneracy is always present in the works cited above.
There are also some contributions for degenerate singularities in the world of inte-
grable systems. A recent contribution in that direction is contained in the paper [7]
by Colin de Verdière. In that paper, among other things, the problem of classifica-
tion of germs of singular Lagrangian manifolds is posed for more general singularities
with a special emphasis on quasi-homogeneous singularities. For instance in this
paper an explicit classification is obtained in the case of the cusp.

The singular analogue of Liouville-Mineur-Arnold theorem was considered by
Eliasson in his thesis [20]. He constructed singular action coordinates for a special
type of non-degenerate singularities. This is a major breakthrough which uses a
clever combination of analysis and Moser’s path method. However, there were some
inaccuracies in some statements which lead to some confusion in the literature. We
will try to clarify those here.

The singular achievements formerly specified often have a semiclassical version.
Their semiclassical counterpart has been obtained by Colin de Verdière and San Vu
Ngoc in [9, 7].

2.2.1. Normal forms for non-degenerate singularities in a neigbourhood of a point.
The singularity of the orbit can be described in terms of the singularity of the
functions fi.

Assume first that the rank of the differential at the point is zero, since the
functions fi are in involution with respect to the Poisson bracket, the quadratic
parts of the functions fi commute defining in this way an abelian subalgebra of
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Q(2n,R) (the set of quadratic forms on 2n-variables). In the case the singularity
of the functions fi is of Morse type this subalgebra is indeed a Cartan subalgebra.
We call these singularities of non-degenerate type.

The problem of classification of singularities for the quadratic parts of the func-
tions fi can be therefore converted into the problem of classification of Cartan sub-
algebras of Q(2n,R). The singularities for the quadratic parts are well-understood
thanks to a result of Williamson [76] where Cartan subalgebras of Q(2n,R) are
classified. Let us recall its precise statement,

Theorem 2.6. (Williamson) For any Cartan subalgebra C of Q(2n,R) there
is a symplectic system of coordinates (x1, . . . , xn, y1, . . . , yn) in R2n and a basis
f1, . . . , fn of C such that each fi is one of the following:

(2.2)

fi = x2i + y2i for 1 ≤ i ≤ ke , (elliptic)
fi = xiyi for ke + 1 ≤ i ≤ ke + kh , (hyperbolic){
fi = xiyi+1 − xi+1yi, (focus-focus pair)

fi+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

The linear system given by the quadratic parts of the fi is called the linear model
for a singularity. We may attach a triple of natural numbers (ke, kh, kf ) to a non-
degenerate singularity p of F , where ke stand for the number of elliptic components
in the linear model, kh and kf the number of hyperbolic and focus-focus components
in the linear model respectively. By virtue of Williamson theorem this triple is an
invariant of the linear system. That is why this triple is often called the Williamson
type of the singularity. The linear model for fixed points is given by Williamson’s
theorem stated above. Now a natural question arises:

Can we linearize the completely integrable system symplectically in a neighbour-
hood of a point p?

We can reformulate the question as follows,

Problem 12

Consider a foliation F defined by a completely integrable system defined in a
neighbourhood of a non-degenerate singular 0-dimensional orbit of F of Williamson
type (ke, kh, kf ). Assume that we are given two symplectic forms ω1 and ω2 for
which the foliation F is Lagrangian. Does there exist a local diffeomorphism fixing
p preserving the foliation F and taking ω1 to ω2?

2This problem of symplectic linearization is closely related to another problem in the spirit

of Morse lemma which was solved succesfully by Vey for analytic systems [68]and by Vey and
Colin de Verdière [8] for smooth systems. Problem 2: Given a function f : Rn −→ R with
a non-degenerate singularity at the origin and let ω be a volume form on Rn and let Q be its
quadratic part at the origin. Does there exist a diffeomorphism ϕ : (Rn, 0) −→ (Rn, 0) such that

ϕ∗(f) = Q and such that ω is taken to the volume form ω0 = dx1 ∧ · · · ∧ dxn? In [8] Colin de
Verdière and Vey prove that there exists a smooth function χ such that ϕ∗(ω) = χ(Q) · ω0.In
that paper it is also proved that the function χ is characteristic of the pair (f, ω) if Q is definite,
otherwise only the jet is characteristic for the pair. As a consequence of this result we obtain

normal forms for foliations defined by the levelsets of f because we can find a foliation-preserving
diffeomorphism sending the volume form χ(Q) · ω0 to the volume form ω0. Notice as well that
this result provides an affirmative answer to Problem 1 in the case n = 2 because a volume form

on a 2-dimensional manifold is a symplectic form and the Lagrangian condition for a curve is
automatic in that dimension.
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The affirmative answer to Problem 1 in any dimension was provided in the elliptic
case by Eliasson in [21]. As a matter of fact the proof provided by Eliasson seems
complete just in the case the singularity is completely elliptic (of Williamson type
(ke, 0, 0)).

3

In this paragraph we state the analogue of Eliasson’s theorem for general sin-
gularities, using foliations. Other statements using moment maps and additional
hypotheses on the bifurcation diagrams have been provided by [45] and [6].

Assume that F is a linear foliation onM2n with a rank 0 singularity at the origin
p. Assume that the Williamson type of the singularity is (ke, kh, kf ). The linear
model for the foliation is then generated by the following vector fields,

Xi = −yi ∂
∂xi

+ xi
∂

∂yi
for 1 ≤ i ≤ ke ,

Xi = yi
∂

∂yi
− xi

∂
∂xi

for ke + 1 ≤ i ≤ ke + kh ,

Xi = xi
∂

∂xi+1
− yi+1

∂
∂yi

− xi+1
∂

∂xi
+ yi

∂
∂yi+1

and

Xi+1 = −xi ∂
∂xi

+ yi
∂

∂yi
− xi+1

∂
∂xi+1

+ yi+1
∂

∂yi+1
for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

We can prove the following symplectic linearization result [49],

Theorem 2.7. Let ω be a symplectic form defined in a neighbourhood of the origin
for which F is Lagrangian, then there exists a local diffeomorphism ϕ : (U, p) −→
(ϕ(U), p) such that ϕ preserves the foliation and ϕ∗(

∑
i dxi ∧ dyi) = ω, being xi, yi

local coordinates on (ϕ(U), p).

Remark 2.8. In the case the singularities are completely elliptic, this is equivalent
to Eliasson’s theorem [21].

2.2.2. Normal forms for non-degenerate singularities in a neigbourhood of an orbit.
Normal forms for higher rank have been obtained jointly with Nguyen Tien Zung
[58].

These normal form results can be seen as a symplectic Morse-Bott theorem for
integrable systems. The singular fibers can have non-compact symmetry group
associated to it. This is why in order to obtain a complete proof of the symplectic
equivalence problem, we need to consider the equivariant version of the statements
which we will see in the next subsection.

In the case the rank k of the differential of the moment map is greater than 0,
we may reduce the problem of classification to the fixed point case via a reduction
by a Hamiltonian action of Tk which preserves the foliation.

In [77] it is proved that,

Theorem 2.9. Let U(L) be a neighbourhood of a nondegenerate singular compact
orbit of an integrable system with n degrees of freedom. Assume the corank of the
orbit is n − k = ke + kh + 2kf . Let F be the singular Lagrangian foliation defined

by the integrable system. Then there exists a normal finite covering Ũ(L) of U(L)

such that the foliation can be lifted to F̃ and a free Hamiltonian action of the torus

Tk in the covering Ũ(L) which preserves the moment map.

3What is not true in general is that the moment map has component functions which are, in

turn, functions of the basis of the Cartan subalgebra. This fails essentially in the case the system
has hyperbolic components.
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Now we can use this normal finite covering and introduce the linear model asso-
ciated to the orbit L. Later, we will see that the invariants associated to the linear
model are the Williamson type of the orbit and a twisting group Γ attached to it.

Denote by (p1, ..., pk) a linear coordinate system of a small ball Dk of dimen-
sion k, (θ1, . . . , θk) is a standard periodic coordinate system of the torus Tk, and
(x1, y1, ..., xn−k, yn−k) a linear coordinate system of a small ball D2(n−k) of dimen-
sion 2(n− k). Now we consider the manifold

(2.3) V = Dk × Tk ×D2(n−k)

with the standard symplectic form
∑
dpi ∧ dθi +

∑
dxj ∧ dyj , and the following

moment map:

(2.4) F = (p1, ..., pk, f1, ..., fn−k) : V → Rn

where

(2.5)

fi = x2i + y2i for 1 ≤ i ≤ ke ,
fi = xiyi for ke + 1 ≤ i ≤ ke + kh ,
fi = xiyi+1 − xi+1yi and
fi+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

The linearized foliation in the covering is the foliation determined by the above
moment map. After performing a linear change of coordinates in such a way that
the hyperbolic functions can be written as fi = x2i − y2i , the following vector fields
form a basis of χ,

Yi =
∂
∂θi

for 1 ≤ i ≤ k ,

Xi = −yi ∂
∂xi

+ xi
∂

∂yi
for 1 ≤ i ≤ ke ,

Xi = yi
∂

∂xi
+ xi

∂
∂yi

for ke + 1 ≤ i ≤ ke + kh ,

Xi = xi
∂

∂xi+1
− yi+1

∂
∂yi

− xi+1
∂

∂xi
+ yi

∂
∂yi+1

and

Xi+1 = −xi ∂
∂xi

+ yi
∂

∂yi
− xi+1

∂
∂xi+1

+ yi+1
∂

∂yi+1
for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

In order to prove equivalence in a neighbourhood of an orbit we need to first
consider additional symmetries corresponding to the deck-transformations. We
prove it for general symplectic actions preserving the system.

2.2.3. Additional symmetries. We assume also that the group acts symplectically
and preserves the moment map which is underlying in the foliation.

We end up proving the equivariant version of the symplectic uniqueness result in
a neighbourhood of a singular compact orbit. This result is contained in [49] and
[58].

We are going to introduce the notion of linear action on the linear model associ-
ated to the orbit L for a given symplectic action preserving the system. Later, we
will see that the invariants associated to the linear model are the Williamson type
of the orbit and a twisting group Γ attached to it.

Let Γ be a group with a symplectic action ρ(Γ) on V , which preserves the moment
map F. We will say that the action of Γ on V is linear if it satisfies the following
property:

Γ acts on the product V = Dk × Tk ×D2(n−k) componentwise; the action of Γ
on Dk is trivial, its action on Tk is by translations (with respect to the coordinate
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system (θ1, ..., θk)), and its action on D2(n−k) is linear with respect to the coordinate
system (x1, y1, ..., xn−k, yn−k).

Suppose now that Γ is a finite group with a free symplectic action ρ(Γ) on
V , which preserves the moment map and which is linear. Then we can form the
quotient symplectic manifold V/Γ, with an integrable system on it given by the
induced moment map as above:

(2.6) F = (p1, ..., pk, fk+1, ..., fn) : V/Γ → Rn

The set {pi = xi = yi = 0} ⊂ V/Γ is a compact orbit of Williamson type (ke, kf , kh)
of the above system. We will call the above system on V/Γ, together with its
associated singular Lagrangian foliation, the linear system (or linear model) of
Williamson type (ke, kf , kh) and twisting group Γ (or more precisely, twisting action
ρ(Γ)). We will also say that it is a direct model if Γ is trivial, and a twisted model
if Γ is nontrivial.

A symplectic action of a compact group G on V/Γ which preserves the moment
map (p1, ..., pk, fk+1, ..., fn) will be called linear if it comes from a linear symplectic
action of G on V which commutes with the action of Γ. In our case, let G′ denote
the group of linear symplectic maps which preserve the moment map then this
group is abelian and therefore this last condition is always satisfied.

In [49] and [58] we prove the following:

Theorem 2.10 (Miranda-Zung). Consider F the foliation defined by a completely
integrable system and consider L, a compact orbit of dimension k and of Williamson
type (ke, kh, kf ). Let ω be a symplectic for which the foliation F is Lagrangian.
Then there exists a finite group Γ and a diffeomorphism taking the foliation to the
linear foliation on V/Γ given by the linear model above , and taking ω to ω0, which
sends L to the torus {pi = xi = yi = 0}. The smooth symplectomorphism ϕ can be
chosen so that via ϕ, the system-preserving action of the compact group G near L
becomes a linear system-preserving action of G on V/Γ. If the moment map F is
real analytic and the action of G near L is analytic, then the symplectomorphism
ϕ can also be chosen to be real analytic. If the system depends smoothly (resp.,
analytically) on a local parameter (i.e. we have a local family of systems), then ϕ
can also be chosen to depend smoothly (resp., analytically) on that parameter.

Remark 2.11. A nice consequence is the abelianity of the connected component of
the identity of the group of symplectomorphisms preserving the moment map.

Remark 2.12. This theorem has interesting applications to geometric quantization
of singular real polarizations (see [53] and [30]).

2.2.4. Some words about the proof of the singular counterpart to Liouville-Mineur-
Arnold. In this section we outline a proof for equivariant symplectic equivalence
with the linear models for non-degenerate orbits.

These results are contained in [49] and [58]. We distinguish in the proof the rank
0 case from the general rank case. The proof that we outline here for the rank
0 case is an improved version of the proof contained in the author’s thesis. This
complete proof which is based on Mather’s principle “infinitesimal rigidity implies
rigidity ”will be included in [54].

Reduction from the general rank case to the 0-rank case (theorem 2.7)
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In [58] and [49] we use the following strategy: There is a Hamiltonian Tk action
ρ tangent to the singular Lagrangian foliation. Compose now with the inverse
action in such a way that now points in the singular orbit become fixed points,
take a transversal to the orbit and use the 0-rank case (theorem 2.7). Pick a point
on the singular orbit. Now in this neighbourhood and because the point is fixed,
we can apply theorem 0-rank case to linearize the foliation. Use now the initial
Hamiltonian Tk action ρ to drag this linearization result along the orbit.

To conclude the case of additional symmetries, we just need the following result
contained in [58] (proposition 3.6), Denote by ρ the action of a compact group G
on (R2n,

∑n
i=1 dxi ∧ dyi,h) where h is the linear moment map of the model at a

fixed point.

Proposition 2.13. Then there exist a local symplectic variable transformation of
R2n which preserves the system (R2n,

∑n
i=1 dxi∧dyi,h) and under which the action

of G becomes linear.

The combination of theorem 2.7 with this proposition gives the proof of theorem
2.10.

Proof of the rank 0 case without additional symmetries: Theorem 2.7

Here we outline the proof of Theorem 2.7 which is included in [49]. We present
an improved version of this proof which uses infinitesimal rigidity and symplectic
orthogonal decomposition to conclude. Details about this proof will be included in
[54].

Steps of the proof:

(1) Step 1- Differentiable linearization. We prove that the foliation can be
assumed to be the one of the linear model. It is important to stress here
that there is no manipulation of the symplectic form at this stage.

(2) Step 2- Analytical tools. In order to work with the symplectic form and its
coeffients we need to introduce some analytical tools that concern special
decomposition of functions in basic and non-basic parts.

(3) Step 3- Infinitesimal rigidity. We prove a singular Poincaré lemma. This
was proved with San Vu Ngoc and the author in [57]. This singular Poincaré
lemma entails infinitesimal rigidity.

(4) Step 4- Infinitesimal rigidity implies rigidity. We use the singular Poincaré
lemma to solve a cohomological equation related to the symplectic structure
in a neighbourhood of the singular orbit. The solution of this cohomological
equation allows to deform the symplectic structure in a foliation preserving
way via Moser’s path method.

We can use these Moser type arguments to attain a symplectically or-
thogonal decomposition of our system in 2 dimensional and 4-dimensional
blocks. The 2-dimension blocks correspond to elliptic and hyperbolic sin-
gularities and the 4-dimensional blocks carry focus-focus singularities.

By means of this symplectically orthogonal decomposition we reduce our
problem of symplectic linearization to the study of symplectic linearization
in dimension 2 for elliptic and hyperbolic singularities and in dimension
4 for focus-focus singularities. It turns out that the proof of these cases
is already contained in the literature ([21] for the elliptic case, [8] for the
hyperbolic case and [71], [72], [11] and [20] for the focus-focus case).
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Remark 2.14. It is very important to stress out that the proof for the completely
elliptic case was completed before by Eliasson in [21]. In [20] one can find an
statement for the general case (including the focus-focus and hyperbolic case). This
statement seems is not accurate in the case there are hyperbolic singularities. The
main problem is that we cannot ensure that the moment map will be a function of
the basis of the Williamson basis. This inaccuracy has propagated somehow in the
literature of integrable systems and had already been detected by the author [49]
and other authors. A different approach and hypothesis are contained in the works
of Matveev and Bolsinov [6] and [45]).

We will know expand a little further Steps 2 and 3 of the proof.

Step 2 Analytical tools in the proof of Theorem 2.7

We start with two special decomposition for functions. Let g be a smooth func-
tion if X is a smooth vector field on a manifold M and p ∈M such that X(p) ̸= 0,
then it is a well-known result that g admits a local smooth decomposition of the
following type:

(2.7) g = g1 +X(g2) , X(g1) = 0

In order to do that just take local coordinates (x1, . . . , xn) centered at a point p
such that X = ∂

∂x1
and apply the classical integration trick. That is, if we consider

the smooth function g1(x1, . . . , xn) = g(0, x2, . . . , xn) and the smooth function

g2 =

∫ 1

0

g(tx1, . . . , xn)dt

we obtain the desired decomposition 2.7.

Now the question arises: Can we obtain similar local decomposition for singular
vector fields?

We can prove that similar decompositions can be obtained for the following
vector fields X = x1

∂
∂x2

− x2
∂

∂x1
or Y = −x1 ∂

∂x1
+ x2

∂
∂x2

.

These results are contained in Chapter 2 of the authors’ thesis [49]. We give here
statements and proofs which are included there and give a flavour of the analysis
involved in the proofs. In [57] a combined results of these decomposition with
additional crossed derivatives properties is included.

This first proposition is proved by Eliasson in [21] and [20] in any dimension
whereas a proof for the second proposition is proved by Eliasson when n = 2 in [20].
Let us point out that when the manifold is M = R2 a proof of this decomposition
had been formerly given by Guillemin and Schaeffer [26] and by Colin de Verdière
and Vey [8]. This generalization to any dimension seems to be new in the non-
elliptic case. In any case the techniques used here are fairly inspired in those of the
paper of Colin de Verdière and Vey.

Proposition 2.15. LetM be a differentiable manifold and let g be a germ of smooth
function in a neighbourhood of a point p. Consider X a vector field which in local
coordinates can be written as X = x1

∂
∂x2

− x2
∂

∂x1
then there exist differentiable

functions g1 and g2 such that:

g = g1(x
2
1 + x22, x3 . . . , xn) +X(g2)

For hyperbolic singularities we obtain the following
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Proposition 2.16. LetM be a differentiable manifold and let g be a germ of smooth
function in a neighbourhood of a point p. Consider X a vector field which in local
coordinates can be written as Y = −x1 ∂

∂x1
+ x2

∂
∂x2

then there exist differentiable
functions g1 and g2 such that

g = g1(x1x2, x3 . . . , xn) + Y (g2)

Before we will need some lemmas concerning the smooth resolution of the equa-
tion Y (f) = g for a given smooth g.

Lemma 2.17. Let g be a smooth function, the equation Y (f) = g admits a formal
solution along the subspace S = {(0, 0, x3, . . . , xn)} if and only if

∂2kg

∂xk1∂x
k
2

(0, 0, x3, . . . , xn) = 0.

Proof. Let us construct a solution considering the (x1, x2)-jets. That is, assume

the (x1, x2)-jet of f along S = {(0, 0, x3, . . . , xn)} is
∑

ij fijx
i
1x

j
2, the coefficients

fij being functions in the variables (x3, . . . , xn). Denote by
∑

ij gijx
i
1x

j
2 the (x1, x2)-

jet of g along S = {(0, 0, x3, . . . , xn)}. Then the condition X(f) = g implies the
following conditions for the coefficient functions

(−i+ j)fij = gij , ∀i, j

Particularizing i = j in this equation we obtain gii = 0; so in order to have a

solution by jets of the equation Y (f) = g, the terms ∂2kg
∂xk

1∂x
k
2
(0, 0, x3, . . . , xn) have

to vanish necessarily.

On the other hand if i ̸= j from the above relation, the following relation is met

fij =
gij

−i+j . Therefore, if the condition ∂2kg
∂xk

1∂x
k
2
(0, 0, x3, . . . , xn) = 0 is fulfilled this

gives a solution by jets to the equation Y (f) = g. �

According to Borel’s theorem there exists a smooth function f̂ with the (x1, x2)-
jets previously found. It remains to solve this equation for functions for which

∂i+jg

∂xi1∂x
j
2

(0, 0, x3, . . . , xn) = 0.

We will refer to this functions as (x1, x2)-flat functions along the subspace S =
{(0, 0, x3, . . . , xn)}.

Lemma 2.18. Let g be a (x1, x2)-flat function along the subspace S = {(0, 0, x3, . . . , xn)}
then there exists a smooth function f for which Y (f) = g.

Proof. Consider the function,

T (x1, . . . , xn) =

{
1
2 ln

x1

x2
x1x2 > 0

1
2 ln

−x1

x2
x1x2 < 0

Denote by ϕt(x1, . . . , xn) the flow of the vector field Y , being Y = −x1 ∂
∂x1

+

x2
∂

∂x2
. Observe that ϕt(x1, . . . , xn) = (e−tx1, e

ty1, . . . , xn).

Now we define
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(2.8) f(x1, . . . , xn) = −
∫ T (x1,...,xn)

0

g(ϕt(x1, . . . , xn))dt.

This function is defined outside the set Ω = Ω1∪Ω2 being Ω1 = {(x1, . . . , xn), x1 =
0} and Ω2 = {(x1, . . . , xn), x2 = 0}. We now prove that f admits a smooth con-
tinuation in the whole neighbourhood considered and that it is a solution to our
problem.

Formally differentiating under the integral sign, the computation of the first
derivatives reads,

(1) If i = 1, 2

(2.9)
∂

∂xi
f = −g(ϕT (x1,x2,...,xn))

∂

∂xi
T −

∫ T (x1,...,xn)

0

∂

∂xi
g(ϕt(x1, . . . , xn))dt

(2) When i ̸= 1 and i ̸= 2,

(2.10)
∂

∂xi
f = −

∫ T (x1,...,xn)

0

∂

∂xi
g(ϕt(x1, . . . , xn))dt

Observe that the set S equals S = Ω1 ∩ Ω2. Observe that f is smooth outside the
set Ω = Ω1 ∪ Ω2.

The first term in 2.9 is smooth outside the set Ω = Ω1 ∪ Ω2. And observe
that if p lies in Ω then from the definition of T , the point ϕT (p) lies in S. On
the other hand, the function g is flat along the subspace S. Thus the first term
in 2.9 −g(ϕT (x1,x2,...,xn))

∂
∂xi

T is smooth in the whole neighbourhood of the origin
considered.

As for the second term, we could reproduce word by word the proof supplied by
Eliasson in [20] in the two dimensional case. The proof can be adapted because
the function g is flat along S. In fact, it is just the parametric version of Eliasson’s
result. In the same way, Eliasson’s proof yields that the integral 2.10 is a smooth
function.

The same arguments applied to the successive derivatives prove that f admits a
C∞ continuation.

Now let us check that this is a solution to the equation.

First,

(2.11) f(ϕs(x1, . . . , xn)) = −
∫ T (ϕs(x1,...,xn))

0

g(ϕs(ϕt(x1, . . . , xn)))dt

The relations ln e−sx1

esx2
= ln x1

x2
− 2s when x1x2 ≥ 0 and ln −e−sx1

esx2
= ln −x1

x2
− 2s

when x1x2 ≤ 0 imply T (ϕs(x1, . . . , xn)) = T (x1, . . . , xn) − s. On the other hand,
since ϕs is a one-parameter subgroup. Equation 2.11 can be written as,

f(ϕs(x1, . . . , xn)) = −
∫ T (x1,...,xn)−s

0

g(ϕt+s(x1, . . . , xn))dt
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Now we perform the change of variable t = t+ s and this equation reads,

f(ϕs(x1, . . . , xn)) = −
∫ T (x1,...,xn)

s

g(ϕt(x1, . . . , xn))dt

Now after differentiating in s this equation yields,

df(ϕs(x1, . . . , xn))

ds
= g(ϕs(x1, . . . , xn))

Finally, put s = 0 to obtain Y (f) = g as we wanted. This ends the proof of the
lemma. �

Let us go back to the proof of proposition 2.16. Given a differentiable function
g, we want to find smooth functions g1 and g2 such that

g = g1(x1x2, x3 . . . , xn) + Y (g2).

The strategy for finding this decomposition is to find a solution by (x1, x2)-jets and
then apply the second lemma to gather all the remaining (x1, x2)-flat terms as Y (f)
for a certain smooth f .

So let
∑

ij gijx
i
1x

j
2 be the (x1, x2)-Taylor expand for g at a point (0, 0, x3, . . . , xn)

lying in the subspace S = {(0, 0, x3, . . . , xn)}.
Now we split this Taylor expand in two. The first one,

∑
ii gijx

i
1x

i
2, and the

second one
∑

i ̸=j gijx
i
1x

j
2. Denote by r̂1 and r̂2 two smooth functions with the

previous jets. Then we can assert that

r̂1 = g1(x1x2, x3, . . . , xn) + ϕ(x1, . . . , xn),

being ϕ(x1, . . . , xn) a (x1, x2)-flat function along S = {(0, 0, x3, . . . , xn)}. Fur-
ther, using the two above lemmas (2.17,2.18), the function r̂2 can be written as
r̂2 = Y (R2). Now since ϕ is (x1, y1)-flat, according to lemma 2.18 we can write
ϕ(x1, . . . , xn) = Y (R). Finally define g2 = R2 + R and g1 and g2 satisfy the de-
composition sought g = g1(x1x2, x3 . . . , xn) + Y (g2). And this completes the proof
of proposition 2.16.

Remark 2.19. Observe that the function defined by formula 2.8 is not smooth if
g is not flat along the subspace S. If g is only flat at the origin then we can find
examples which show that f does not admit a smooth continuation.

For instance consider n = 4, the function g = e−( 1
x3

)2 is flat at the origin but it
is not flat along the subspace S = {(0, 0, x3, x4)}. Observe that the integral does
not extend to a smooth function at points of the form (0, x02, x

0
3, x

0
4) with x02 ̸= 0

and x03 ̸= 0. This integral has been used by some authors without the condition
of flatness along the subspace and just the condition of flatness at the origin (see
proposition 2.13 in [70]). Thus, the functions defined by those integrals in [70] do
not always admit a smooth continuation unless the function g is flat along S.

Step 3 Infinitesimal rigidity in the proof of Theorem 2.7

One may think that a “key point” to obtain rigidity for integrable systems is the
existence of compact action (of Tn).

But, we also have normal forms and rigidity for some non-degenerate singular
integrable systems. Indeed we also have infinitesimal rigidity for a certain type of
singular integrable systems called non-degenerate.
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In the spirit of Thom and Mather we can study (infinitesimal) stability of an
integrable system F = (f1, . . . , fn) with additional constraints {fi, fj} = 0.

For non-degenerate singular integrable systems, we have proved in [57] that a sin-
gular Poincaré lemma holds. This results comes from a refinement of the analytical
tools explained before and taking into account crossed derivatives.

We denote by Xi the Hamiltonian vector fields of with respect to the Darboux
symplectic form

∑
dxi ∧ dyi of a Williamson basis. We then have,

Theorem 2.20 (Miranda-Vu Ngoc, [57]). Let g1, . . . gr, be a set of germs of smooth
functions on (R2n, 0) with r ≤ n fulfilling the following commutation relations

Xi(gj) = Xj(gi), ∀i, j ∈ {1, . . . , r}

where the Xi’s are the vector fields defined above. Then there exists a germ of
smooth function G and r germs of smooth functions hi such that,

(1) Xj(hi) = 0, ∀i, j ∈ {1, . . . , r}.
(2) gi = hi +Xi(G) ∀i ∈ {1, . . . , r}.

We want to stress out here that in [20] a similar statement was contained without
proof. The problem with the statement in [20] is that the condition Xj(fi) = 0 was
not stated as such but stating that the functions hi were functions of a Williamson
basis. There is a problem with this. Take for instance the function,

ψ(x, y) =

{
e
− 1

(xy)2 x ≥ 0

2e
− 1

(xy)2 x ≤ 0

It satisfiesXj(hi) = 0 for hyperbolicXj but it is not a function of the Williamson
basis. This distinction is very relevant in applications to Geometric Quantization
with singularities (in [30] an application is given to geometric quantization and the
distinction on flat functions not being functions of xy can be read off the formula
that counts contributions of hyperbolic singularities to sheaf cohomology).

We can restate this result in a different language.

Theorem 2.21 (Miranda-Vu Ngoc, [57]). Integrable systems are infinitesimally
stable in a neighbourhood of a non-degenerate fixed point.

But what do we mean by infinitesimally stable?

We can view an integrable system as a Rn action on C∞(M) and in the spirit
of Chevalley-Eilenberg [13] we can associate a complex taking into account this
action. We also introduced a similar complex in the non-abelian case in [56] to
prove infinitesimal rigidity of Hamiltonian actions of compact semisimple type in
Poisson manifolds.

Coming back to the integrable case: Let L ≃ Rn be the typical commutative Lie
algebra of dimension n. L acts on C by the adjoint representation:

L× C∞(M) ∋ (ℓ, g) 7→ {f(ℓ), g} ∈ C∞(M).

We can define a deformation complex using this action of Rn on C∞(M). We use
the recipe provided by Chevalley-Eilenberg [13] to define this complex.
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The set of cocycles is defined as follows for q ∈ N, Cq(L, C∞(M)) = Hom(L∧q, C∞(M))
is the space of alternating q-linear maps from L to C∞(M) and we assume that
C0(L, C∞(M)) = C∞(M).

The associated differential is denoted by df . For a 0-cochain g ∈ C∞(M), the
1-cochain df (g) is df (g)(l) = {f(l), g}, l ∈ L and more generally for a k-cochain ϕ
the k + 1 cochain df (ϕ) is

df (ϕ)(l1, . . . , lk+1) =
1

k + 1

k+1∑
i=1

(−1)i+1{f(li), ϕ(ľi)}, λi ∈ L,

where ľi = (l1, . . . , ľi, . . . , lk+1).

Now since L acts trivially on the set of basic functions with respect to the
foliation, we can quotient by these basic functions to define the deformation complex
(see [57] for more details).

The cocyles α of this deformation complex are defined via n functions g1 =
α(e1), . . . , gn = α(en) (mod. basic functions) such that

(2.12) ∀i, j {gi, fj} = {gj , fi}.

A cocycle defines an infinitesimal deformation of the system since mod ε2 we have

{fi + εgi, fj + εgj} ≡ 0.

The our singular Poincaré lemma above can be restated saying that every cocycle
is a coboundary and this is what we mean by infinitesimal stability.

Remark 2.22. This singular Poincaré lemma admits a parametrized version. This
parametrized version of the singular Poincaré lemma can be used to prove infinites-
imal rigidity not only of integrable systems in a neighbourhood of a fixed singular
non-degenerate point but also in the neighbourhood of a singular non-degenerate
orbit.

2.3. Action-angle coordinates, group actions and rigidity. As a general prin-
ciple normal forms for geometrical structures give structural stability. Sometimes
because of the type of singularities, this is not enough though (as we will see in the
Poisson section).

When we have additional symmetries, it is still possible to prove rigidity using
the averaging techniques. In this case, we would obtain the equivariant version.

As a first example of this, the equivariant version of Darboux theorem was stated
by Weinstein in [74] and was proved by Chaperon in [12] for smooth compact group
actions.

In the case the normal forms are given in a neighbhourhood of a fixed point
for the action, we may linearize this action in such a way that the normal forms
prevail. If the group is non-compact there is a hope to do it for analytic actions
of semisimple groups/algebras in the Hamiltonian setting [55]. In the smooth case
this is possible only for actions of semisimple actions of compact type [25].

We can also prove the following rigidity theorem for symplectic group actions on
a compact symplectic manifold (see [51] and [56]),
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Theorem 2.23. Let ρ0 and ρ1 be two C2-close symplectic actions of a compact
Lie group G on a compact symplectic manifold (M,ω). Then they can be made
equivalent by conjugation via a symplectomorphism.

In particular:

• Liouville-Mineur-Arnold theorem and its singular counterpart entails semi-
local rigidity for integrable systems in a neighbourhood of a regular compact
orbit.

• (equivariant) Darboux theorem gives (equivariant) local rigidity for sym-
plectic forms (for compact group actions).

• We can combine the former rigidity result for symplectic structures together
with the stability of the singularities (or regular points) to get an equivari-
ant rigidity result for integrable systems and group actions in symplectic
manifolds.

3. The Contact case

Consider a contact manifoldM2n+1 together with a contact form. In this section
we assume that the Reeb vector field associated to α coincides with the infinitesimal
generator of an S1 action. We assume further than there exists n-first integrals of
the Reeb vector field which commute with respect to the Jacobi bracket. Then
there are two foliations naturally attached to the situation. On the one hand, we
can consider the foliation associated to the distribution generated by the contact
vector fields. We call this foliation F ′. On the other hand we can consider a
foliation F given by the horizontal parts of the contact vector fields. The functions
determining the contact vector fields may have singularities. We will always assume
that those singularities are of non-degenerate type. Observe that F ′ is nothing but
the enlarged foliation determined by the foliation F and the Reeb vector field.

Let α′ be another contact form in a neighbourhood of a compact orbit O of F ′

for which F is Legendrian and such that the Reeb vector field with respect to α′

coincides with the Reeb vector field associated to α. In this section we prove that
then there exists a diffeomorphism from a neighbourhood of O to a model manifold
with a fixed rank and Williamson type taking the foliation F ′ to a linear foliation in
the model manifold with a finite group attached to it and taking the initial contact
form to the Darboux contact form. As it was done in the last section for Lagrangian
foliations determined by a completely integrable system, we can also prove the G-
equivariant version of this fact for Legendrian foliations. That is, we prove that
in the case there exists a compact Lie group preserving the first integrals of the
Legendrian foliation and preserving the contact form then the contactomorphism
can be chosen to be G-equivariant.

The problem of determining normal forms for foliations related to Legendrian
foliations has its own story. P. Libermann in [40] established a local equivalence
theorem for α-regular foliations. Loosely speaking, those foliations are regular fo-
liations containing the Reeb vector field and a Legendrian foliation. The problem
of classifying contact forms is different from the problem of classification of con-
tact structures. As a example of this, if M is a compact manifold then any two
contact structures are equivalent by deformation as Gray’s theorem asserts ([24]).
Whereas one can find examples of two contact forms which are not equivalent (see
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for example [23]). The problem of classifying contact structures which are invariant
under a Lie group was considered by Lutz in [43]. In particular he proves that two
contact structures in a compact manifold M2n+1 which are invariant by a locally
free action of Rn+1 are equivalent in the sense that there exists an equivariant
contactomorphism taking one to the other.

The foliations studied by Libermann and Lutz are regular. The singular counter-
part to the result of Lutz was proved by Banyaga and Molino in [4] but for contact
forms.

Namely, Banyaga and Molino study the problem of finding normal forms under
the additional assumption of transversal ellipticity. The assumption of transversal
ellipticity allows to relate the foliation F ′ of generic dimension (n + 1) with the
foliation given by the orbits of a torus action.

In this section we extend these results for foliations which are related in the
same sense to (n + 1)-foliations but which are not necessarily identified with the
orbits of a torus action. All our study of the problem is done in a neighbourhood
of a compact orbit. Global results for contact manifolds admiting torus action
have been obtained by Banyaga and Molino in [4] and recently by Lerman in [38].
Linearization results for contact vector fields in R2n with an hyperbolic zero were
considered by Guillemin and Schaeffer in [26].

The results contained in this section were announced (without proofs) in [50].
We include here an improved version of the proof included in the author’s thesis.

Our strategy for the proofs combines the idea of finding a “symplectic slice”which
indeed represents the symplectic reduction with respect to the S1-action given by
the Reeb vector field in the symplectization of the contact manifold. Sometimes, it
will be more appropriate to work in the symplectization and descend to the contact
manifolds. Others, it will be useful to work on the slice and try to extend results
in a neighbourhood of the orbit.

Let us introduce some basic definitions in contact geometry that will be needed
later,

Definition 3.1. Let M2n+1 be a 2n + 1-dimensional manifold. A 1-form on a
manifold M2n+1 is a contact form if the set E = {(p, u) ∈ T (M), αp(u) = 0}
is a smooth subbundle of T (M) and dα|E is a symplectic structure on the vector
bundle E −→M .

When we talk about a contact pair we consider a pair (M,α) where α is a contact
form on M .

Remark 3.2. The classical definition of contact manifold is the following. It is a pair
(M,α) where α satisfies the condition α∧(dα)np ̸= 0, ∀p ∈M . In turn, this condition
implies the nonintegrability of the subbundle E = {(p, u) ∈ T (M), αp(u) = 0}.
That is it is not possible to find a symplectic submanifold S such that T (S) = E.

Suppose that α is a contact form on a manifold M . Then if f is a positive
function the 1-form fα is also a contact form.

This motivates the definition of contact structure,
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Definition 3.3. A contact structure on a manifold M is a subbundle E of the
tangent bundle of the form E = {(p, u) ∈ T (M), αp(u) = 0} for some contact
form α.

In contrast to symplectic manifolds (M,ω) where the condition iX(ω) = 0 implies
X = 0, in a contact manifold we can find non-trivial solutions X to the equation
iX(ω) = 0. A privileged solution of this equation has the particular name of Reeb
vector field. It is a concept attached to the contact form rather than the contact
structure.

Definition 3.4. Given a contact pair (M,α), the Reeb vector field Z is the unique
vector field satisfying the following two conditions,

• iZdα = 0.
• α(Z) = 1.

The Reeb vector field is a particular case of what we call contact vector field.

Definition 3.5. Let f be a smooth function on the contact pair (M,α) the contact
vector field associated to f is the unique vector field Xf fulfilling the following two
conditions

• iXf
dα|E = −df|E .

• α(Xf ) = f.

Observe that the contact vector field associated to the function 1 is precisely the
Reeb vector field. As it is proved in [40], we can express any vector field X in T (M)
as a sum of two vector fields X1 and X2 where the vector field X1 belongs to the
subbundle E and its called the horizontal part of X and the vector field X2 is the
component in the direction of the Reeb vector field. The standard notation for the

horizontal vector field associated to X is X̂.

We can now define the notion of Jacobi bracket of two functions, which is the
contact counterpart to the Poisson bracket of two functions.

Definition 3.6. Let f, g be two smooth functions on a contact pair (M,α), we
define the Jacobi bracket as,

[f, g] = α([Xf , Xg]).

The following relations are proved in [40],

(3.1) X[f,g] = [Xf , Xg]

(3.2) [f, g] = dα(Xf , Xg) + f(Z(g))− g(Z(f))

Definition 3.7. A submanifold N ⊂ M2n+1 is Legendrian if dimN = n and
α(X) = 0 for any X ∈ T (N).

3.1. Contact manifolds and integrability. In this section we define the folia-
tions that we will work with throughout this section and we will also define the
linear model. Let (M2n+1, α) be a contact pair and let Z be its Reeb vector field.
We make the following assumptions,
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• We assume Z coincides with the infinitesimal generator of an S1 action.
Let S be one of its orbits.

• We assume that there are n first integrals f1, . . . , fn of Z (that is Z(fi) = 0)
which fulfil the following additional hypotheses:
(1) The first integrals are independent in an open dense set. That is,

df1 ∧ · · · ∧ dfn ̸= 0 in an open dense set.
(2) The n-first integrals are in involution with respect to the Jacobi bracket

associated to α. That is to say,

[fi, fj ] = 0 ,∀i, j.

(3) The minimum rank of the differential (df1, . . . , dfn) is k. Let p be a
point in M2n+1 such that the rank is exactly k. Let O be the orbit of
the contact vector fields through p. We will assume the following,
(a) O is diffeomorphic to a torus of dimension k + 1.
(b) The first integrals f1, . . . , fk are non-singular along O and the

first integrals fk+1, . . . , fn have a non-degenerate singularity in
the Morse-Bott sense along O.

Since [fi, fj ] = 0 then due to formula 3.1, [Xfi , Xfj ] = 0 and this implies that
the distribution < Z,Xf1 , . . . , Xfn > is involutive because the functions fi are first
integrals of the Reeb vector field. Thus, we can talk about the foliation generated
by the contact vector fields of the functions 1, f1, . . . , fn. This foliation will be
denoted by F ′.

On the other hand, consider the horizontal parts of the contact vector fields.

They have the form X̂f = Xf −fZ. Thus the distribution < X̂f1 , . . . X̂fn > defines
an involutive distribution. The foliation defined by this distribution will be denoted
by F . Observe that since α(Xf ) = f and α(Z) = 1 then the regular leaves of this
foliation are Legendrian submanifolds with respect to α.

That is why this foliation will be called the singular Legendrian foliation.

In fact we will work with germ-like foliations. That is, we will assume that the
foliation is defined in a neighbourhood of O. Now let p ∈ M be a singular point.
We will say that the point has rank r if the dimension of the orbit through p is r.

Once the two foliations F and F ′ are defined we are ready to pose the following
problem.

Problem

Study the contact forms α′ defined in a neighbourhood of O for which F is
Legendrian and such that the Reeb vector field with respect to α′ coincides with
the Reeb vector field with respect to α.

As far as this problem is concerned we will prove the following.

There exists a diffeomorphism ϕ defined in a neighbourhood of O such that
ϕ∗(α′) = α and ϕ preserves the foliations F and F ′.

In order to deal with this problem we will need to introduce coordinates in such
a way that the foliations F and F ′ are really simple. This judicious choice of
coordinates leads us to the linear model.
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3.1.1. Differentiable linearization. In this subsection we want to prove that under
the above assumptions there exist coordinates in a neighbourhood of an orbit of
fixed rank and Williamson type O such that the foliation can be linearized.

We prove the following,

Proposition 3.8. There exist coordinates (θ0, . . . , θk, p1, . . . , pk, x1, y1, . . . , xn−k, yn−k)
in a finite covering of a tubular neighbourhood of O such that

• The Reeb vector field is Z = ∂
∂θ0

.

• There exists a triple of natural numbers (ke, kh, kf ) with ke+kh+2kf = n−k
and such that the first integrals fi are of the following type, fi = pi, 1 ≤
i ≤ k and

fi+k = x2i + y2i for 1 ≤ i ≤ ke ,
fi+k = xiyi for ke + 1 ≤ i ≤ ke + kh ,
fi+k = xiyi+1 − xi+1yi and
fi+k+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

• The foliation F is given by the orbits of the distribution D =< Y1, . . . Yn >
where Yi = Xi − fiZ being Xi the contact vector field of fi with respect to

the contact form α = dθ0 +
∑n−k

i=1
1
2 (xidyi − yidxi) +

∑k
i=1 pidθi.

Proof. First of all, since Z is the infinitesimal generator of an S1-action, according
to the Slice Theorem [61] a neighbourhood of O in M2n+1 is diffeomorphic to the
bundle S1×S1

x
W where S1

x denotes the isotropy group at a point in the orbit. Thus
we can choose coordinates in a finite covering of a neighbourhood of O such that
the Reeb vector field has the form Z = ∂

∂θ0
. Now the 1-form α can be written as

α = dθ0 + α.

Observe that since Z is the Reeb vector field in particular we obtain

iZdα = 0

Using Cartan’s formula LZ(α) = diZ(α) + iZdα we deduce that α does not
depend on θ0.

We now consider the symplectization of neighbourhood of O which is of type
U(O)×(−ε, ε). The symplectization is endowed with symplectic form dt∧dθ0+dα.

We denote by Xs
fi

the n Hamiltonian vector fields of the functions fi with respect
to the symplectic structure dt∧ dθ+ dα on the symplectization. We denote by Xc

fi
the n contact vector fields of the functions fi with respect to the contact structure
α. A priori we could write in general

(3.3) Xc
fi = Xs

fi + giZ

for certain smooth functions gi.

We have {fi, fj} = [fi, fj ] = 0. So we can now consider and consider the
integrable system defined by (t, f1 . . . , fn) in this 2n+2 symplectic manifold. As a
particular consequence of theorem 2.10, we can assume that this foliation is given
by the linear model in this symplectic manifold. Observe that the Reeb vector field
is now a Hamiltonian vector field associated to the variable t in this symplectization
and it commutes with the other vector fields. Therefore this linearization descends
to the initial contact manifold U(O).
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In other words, we can assume that,

fi = pi, for 1 ≤ i ≤ k , fi+k = x2i + y2i for 1 ≤ i ≤ ke ,
fi+k = xiyi for ke + 1 ≤ i ≤ ke + kh ,
fi+k = xiyi+1 − xi+1yi and
fi+k+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

By taking into account how the symplectization is and how the linear model in
the symplectic case is. This yields to the notion of model manifold is the manifold
M2n+1

0 = Tk+1 × Uk × V 2(n−k), where Uk and V 2(n−k) are k-dimensional and
2(n − k) dimensional disks respectively. Because in the linear model the vector
fields are the Hamiltonian vector fields with respect to the functions fi with respect

to the symplectic form dt∧dθ0+
∑k

i=1 dpi∧dθi+
∑n−k

i=1 dxi∧dyi) and those vector
fields coincide with the Hamiltonian vector fields with respect to the contact form

α0 = dθ0+
∑k

i=1 pidθi+
∑(n−k)

i=1
1
2 (xidyi− yidxi), we can assume that the conctact

form in the model manifold is this one.

The pair (M2n+1
0 , α0) is called the contact model manifold. The Reeb vector

field in the contact model manifold is the vector field ∂
∂θ0

.

Now consider functions of the following type, fi = pi, 1 ≤ i ≤ k and

fi+k = x2i + y2i for 1 ≤ i ≤ ke ,
fi+k = xiyi for ke + 1 ≤ i ≤ ke + kh ,
fi+k = xiyi+1 − xi+1yi and
fi+k+1 = xiyi + xi+1yi+1 for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

The linear foliation is the foliation given by the orbits of the distribution D =<
Y1, . . . Yn > where Yi = Xi − fiZ being Xi the contact vector field of fi in the
contact model manifold.

In all, we have proved that there exists a finite covering of a neighbourhood
U(O) of the compact orbit considered such that the lifted foliation in the covering
is differentially equivalent to the linear foliation in the contact model manifold.

�

The linear model for the foliation F ′ is the foliation expressed in the coordinates
provided by the theorem together with a finite group attached to the finite covering.

The different smooth submodels corresponding to the model manifold are labeled
by a finite group which acts in a contact fashion and preserves the foliation in the
model manifold. This is the only differentiable invariant. Therefore, our problem
of contact equivalence will be studied in this model manifold and the equivalence
will be established via the equivariant version equivalence which will be considered
later in this section.

3.1.2. Contact linearization. For the proof of the contact linearization we need to
recall the following relative Poincaré lemma. A proof can be found in [74]

Theorem 3.9 (Relative Poincaré lemma). Let L ⊂ M a closed submanifold and
let ω be a closed p-form whose pull-back to L is zero. Then there exists a p−1 form
α in a neighbourhood of L such dα = ω and α vanishes on N . If ω vanishes on L
then ϕ can be chosen so that its first derivatives vanish on L.
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We now prove the following theorem,

Theorem 3.10. Let α be a contact form on the model manifold M2n+1
0 for which

F is a Legendrian foliation and such that the Reeb vector field is ∂
∂θ0

. Then there
exists a diffeomorphism ϕ defined in a neighbourhood of the singular orbit of fixed
rank and Williamson type O = (θ0, . . . , θk, 0, . . . , 0) preserving F ′ and taking α to
α0.

Proof. We are going to solve the problem by adjusting the contact form to a point
where we can apply our symplectic linearization result.

Let us start by considering the contact 1-form α,

α = Adθ0 +
∑

Bidpi +
∑

Cidθi +
∑

Didxi +
∑

Eidyi

Observe that the fact that the Reeb vector field is ∂
∂θ0

imposes the following two
conditions on α,

• α( ∂
∂θ0

) = 1, that is to say A = 1.

So far we can write α = dθ0 + α′, being α′ =
∑
Bidpi +

∑
Cidθi +∑

Didxi +
∑
Eidyi.

• i ∂
∂θ0

dα = 0,

Since dα = dα′ the condition becomes, i ∂
∂θ0

dα′ = 0.

Now Cartan’s formula yields,

0 = i ∂
∂θ0

dα′ = L ∂
∂θ0

α′ − di ∂
∂θ0

α′

Since the last term vanishes this chain of equalities give the condition L ∂
∂θ0

α′ = 0.

Therefore, the coefficient functions do not depend on θ0. Let us see that the
submanifold θ0 = 0 equipped with the form dα′ is a symplectic submanifold of the
model contact manifold. We denote this submanifold by N .

Since α is a contact form dα has to be symplectic in the vector bundle E defined
by E = {(p, u) ∈ T (M), αp(u) = 0} and dα = dα′ then dα′ defines a symplectic
structure on N . 4

Observe that the vector fields Xi = Xfi are tangent to the submanifold N . Next
step, we check that the vector fields Xi are define a Lagrangian foliation on N ,
observe that α(Xi) = fi.

Now since, dα′(Xi, Xj) = Xiα(Xj)−Xjα(Xi)− α([Xi, Xj ])

According to the computation above Xiα(Xj) = Xi(fj) but fi are first integrals
for the foliation and therefore this term vanishes. Symmetrically, the second term
vanishes. And since the Lie bracket of the vector fields are zero we obtain,

dα′(Xi, Xj) = 0

Therefore, the foliation F is Lagrangian for dα′ and we may apply the symplectic
linearization result in a neighbourhood of L = Tk (theorem 2.10) to find a local
diffeomorphism φ : U(L) −→ φ(U(L)) in a neighbourhood of the leaf L, preserving

4Observe that N is indeed a “symplectic slice” which can be identified with the symplectic
reduction by the S1-action given by the Reeb vector field on the symplectization.
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the foliation F and satisfying φ∗(ω0) = dα′, where ω0 =
∑

i dpi∧dθi+
∑
dxi∧dyi.

After shrinking the initial neighbourhood if necessary, the neighbourhood of Tk+1

in the initial manifold M can be decomposed as a product, S1 × U(L). The S1
corresponds to an orbit of the Reeb vector field. We denote by z a point in U(L).
Now we define a diffeomorphism in the following way,

ϕ : S1 × U(L) −→ ϕ(S1 × U(L))
(θ0, z) −→ (θ0, φ(z))

Since φ preserves F it is clear that this diffeomorphism is foliation-preserving.

Now consider ϕ(S1 × U(L)) endowed with the Darboux contact form. That is

with the contact form α0 = dθ0+
∑k

i=1 pidθi+
∑(n−k)

i=1
1
2 (xidyi−yidxi). It remains

to check that the diffeomorphism above is indeed a contactomorphism.

First observe that since
φ∗(ω0) = dα′

and ω0 = d(β), being β = (
∑k

i=1 pidθi +
∑(n−k)

i=1
1
2 (xidyi − yidxi)) we can assert

that φ∗(β) = α′ + dH +
∑

iHi(0)dθi for a set of smooth functions H and Hi(θi).

We can decompose the functions Hi(θ) = H(0) + ∂Mi

∂θ for certain functions Mi

depending on θi so we may gather these terms into dH and therefore we can write,

φ∗(β) = α′ + dH +
∑
i

Hi(θi)dθi.

Now because of relative Poincaré lemma 3.9, we can assume that the one form
dH +

∑
iHi(0)dθi vanishes on L and thus Hi(0) = 0.

Now consider the path αt = α0 + tdH being α0 the contact form α0 = dθ0 + α′.
Consider

ψ1(θ0, θ1, . . . , θk, p1, . . . , pk, x1, . . . , yn−k) = (θ0−H, θ1, . . . , θk, p1, . . . , pk, x1, . . . , yn−k),
we obtain ψ∗

1(α1) = α0.

Therefore ϕ is a contactomorphism and clearly it preserves the foliation.

�

Remark 3.11. The proof we have included here is the one provided in the author’s
thesis [49]. There is another way to go which is to consider the reduction via the
Hamiltonian S1-action that the Reeb vector field determines in its symplectization
as we did to prove differentiable linearization. In the next section we use this idea to
prove an equivariant statement of the theorem above. Observe that the symplectic
manifold N in this proof can be indeed identified with a symplectic reduction of
the S1 action in the symplectization.

3.2. Additional symmetries and rigidity. In this subsection we consider a com-
pact Lie group G acting on a contact model manifold in such a way that preserves
the n first integrals of the Reeb vector field and preserves the contact form as well.
We want to prove that there exists a diffeomorphism in a neighbourhood of O pre-
serving the n first integrals , preserving the contact form and linearizing the action
of the group. This result is a consequence of the equivariant symplectic linearization
theorem.
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The notion of linear action of a Lie group on the contact model manifold is
analogous to the equivalent notion for the symplectic model manifold.

Let G be a group defining a smooth action ρ : G × M2n+1
0 −→ M2n+1

0 on
M2n+1

0 . We assume that this action preserves the contact form α0 of the contact
model manifold. That is to say ρ∗g(α0) = α0. Assume further that it preserves the
n-first integrals (f1, . . . , fn), where fi = pi, 1 ≤ i ≤ k. For the sake of simplicity
we denote by F the collective mapping F = (p1, . . . , pk, fk+1, . . . , fn). We will say
that the action of G on M2n+1

0 is linear if it satisfies the following property:

G acts on the product M2n+1
0 = Dk×Tk+1×D2(n−k) componentwise; the action

of G on Dk is trivial, its action on Tk+1 is by translations (with respect to the
coordinate system (θ0, . . . , θk)), and its action on D2(n−k) is linear with respect to
the coordinate system (x1, y1, ..., xn−k, yn−k).

Under the above notations and assumptions. Now we can state and prove the
following theorem,

Theorem 3.12. There exists a diffeomorphism ϕ defined in a tubular neighbour-
hood of O such that,

• it preserves the contact form α0 i.e ϕ∗(α0) = α0.
• it preserves F .

• it linearizes the action of G. That is to say ϕ ◦ ρg = ρ
(1)
g ◦ ϕ.

Proof. Recall that α0 = dθ0+α0 being α0 the 1-form (
∑k

i=1 pidθi+
∑(n−k)

i=1
1
2 (xidyi−

yidxi)). Consider the symplectic manifold S =M2n+1
0 × (−ε, ε) endowed with the

symplectic form ω0 = dt ∧ dθ0 + dα0, where t stands for a coordinate function on
(−ε, ε). An action of G on M2n+1

0 can be extended in a natural way to an action
of G on S as follows,

ρ̂ : G×M2n+1
0 × (−ε, ε)+ −→ M2n+1

0 × (−ε, ε)
(g, z, t) −→ (ρg(z), t)

On S we consider the moment mapping F̂ = (F, t). We can apply the equi-

variant linearization theorem to obtain a symplectomorphism φ̂ preserving F̂ and

linearizing the action ρ̂. From the definition of the action ρ̂ and the definition of F̂ ,
this symplectomorphism clearly descends to a diffeomorphism φ on M2n+1

0 which
linearizes the action ρ and which satisfies φ∗(dα0) = dα0.

Therefore we may assume φ∗(α0) = αO + df +
∑

iHi(θi)dθi for a set of smooth
functions f and Hi(θi).

We can decompose the functions Hi(θ) = H(0) + ∂Mi

∂θ for certain functions Mi

depending on θi so we may gather these terms into dH and therefore we can write,

φ∗(α0) = α0 + dH +
∑
i

Hi(θi)dθi.

Now because of relative Poincaré lemma 3.9, we can assume that the one form
α0 + dH +

∑
iHi(0)dθi vanishes on L an therefore Hi(0) = 0.

Giving,
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φ∗(α0) = α0 + dH

Finally the diffeomorphism,

ϕ(θ0, . . . , θk, p1, . . . , pk, x1, . . . , yn−k) = (θ0 −H, . . . , θk, p1, . . . , pk, x1, . . . , yn−k)

takes the form α0 + dh to α0 and provides new coordinates for which the action is
linear.

�

In the previous section we have attained the contact linearization in the cover-
ing. Now applying the theorem of equivariant linearization to the group of deck
transformations we obtain as a corollary the following theorem,

Theorem 3.13. Let F be a foliation fulfilling the hypotheses specified in section
3.1, let F ′ be the enlarged foliation with the Reeb vector field Z and let α be a
contact form for which F is Legendrian and such that Z is the Reeb vector field
then there exists a diffeomorphism defined in a neighbourhood of fixed rank and
Williamson type, O taking F ′ to the linear foliation, the orbit O to the torus {xi =
0, yi = 0, pi = 0} and taking the contact form to the Darboux contact form α0.

3.2.1. Another approach to the equivariant case: The rigidity problem. In the same
sense, that the rigidity problem was approached in the symplectic case, we can also
prove that close contact structures are equivalent at the local, semilocal and global
case in the

The local case a linearization result for compact contact group actions was al-
ready established by Marc Chaperon [12].

In the global case, we can use the path method in the contact setting due to [24]
and reproduce the same ideas of the proof of the symplectic case.

This statement is implicit in [56],

Theorem 3.14 (Miranda-Monnier-Zung). Let ρ0 and ρ1 be two C2-close contact
actions of a compact Lie group G on a compact contact manifold (M,α). Then
they can be made equivalent by conjugation via a contactomorphism.

4. The Poisson case

In this section we are going to provide some normal form results for integrable
systems in the Poisson setting. We start by defining what is a Poisson structure.

When working with Poisson structure we need to work with bivector fields in-
stead of using forms.

Definition 4.1. A Poisson structure on a smooth manifold M is given by a smooth
antisymmetric bivector field Π satisfying [Π,Π] = 0.

This defines a Poisson bracket on C∞(M),

{f, g} := Π(df, dg)
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Hamiltonian vector fields are defined by the formula Xf := Π(df, ·) and the man-
ifold M is endowed with a smooth foliation (in the Sussmann sense) whose leaves
are symplectic manifolds. This symplectic foliation integrates the distribution of
Hamiltonian vector fields.

There is no Darboux theorem for Poisson manifolds. The best “normal form”
that we can get is the following result due to Weinstein [75]

Theorem 4.1 (Weinstein). Let (Mn,Π) be a smooth Poisson manifold and let
p be a point of M of rank 2k, then there is a smooth local coordinate system
(x1, y1, . . . , x2k, y2k, z1, . . . , zn−2k) near p, in which the Poisson structure Π can
be written as

Π =
k∑

i=1

∂

∂xi
∧ ∂

∂yi
+
∑
ij

fij(z)
∂

∂zi
∧ ∂

∂zj
,

where fij vanish at the origin.

In other words, the Poisson manifold is locally a product of a symplectic manifold
with a Poisson manifold with vanishing Poisson structure at the point.

(Mn,Π, p) ≈ (N2k, ω, p1)× (Mn−2k
0 ,Π0, p2)

The symplectic foliation on the manifold is locally a product of the induced
symplectic foliation on M0 with the symplectic leaf through x.

Let us start by defining what is an integrable system on a Poisson manifold.

Definition 4.2. Let (M,Π) be a Poisson manifold of (maximal) rank 2r and of
dimension n. An s-tuplet of functions F = (f1, . . . , fs) on M is said to define a
Liouville integrable system on (M,Π) if

(1) f1, . . . , fs are independent
(2) f1, . . . , fs are pairwise in involution
(3) r + s = n

Viewed as a map, F : M → Rs is called the momentum map of (M,Π,F).

There are several problems analogous to the symplectic case that we could con-
sider in the Poisson setting: local normal forms and action-angle coordinates.

We start this section by providing some natural examples of Hamiltonian and
integrable systems in Poisson manifolds.

4.1. Motivating examples.

4.1.1. Example 1: Newton systems. This example was found together with Alain
Albouy. We thank him for explaining Projective Dynamics.

Consider a system of the form:

q̈ = f(q)

These kind of systems are called Newton systems. It is a Hamiltonian system
in moment and position coordinates.Appell discovered that such systems can be
projectivised. Appell’s transformation (central projection) allows to change the



INTEGRABLE SYSTEMS AND GROUP ACTIONS 31

“screen” of projection (change of affine coordinates). Two such systems and their
solutions are equivalent. This is the principle of “Projective Dynamics” (Appell,
Killing, Albouy [1]...).

The study of projective dynamics allows to:

• Solve some problems by separation of variables.
• Simplify the solution of those systems by finding an appropriate screen. For
instance the Neumann problem on the ellipsoid becomes a Newton System
(Knoerrer).

By means of Appell’s transformation we transform both the dynamics and the initial
symplectic structure. We are including singularities into the picture (coming from
projectivisation). It motivates to look at the integrable system from the Poisson
point of view.

An example of Newton system is the two fixed-center problem (Euler, 1760). A
particle in the plane moves under the gravitational attraction of two fixed points A
and B with masses mA and mB .

This system reads:

q̈ = −mA
qA

∥qA∥3
−mB

qB
∥qB∥3

(qA = q −A, qB = q −B.) Two first integrals are:

H =
1

2
∥q̇∥2 − mA

∥qA∥
−mB

mB

∥qB∥

G = ⟨qA ∧ q̇, qB ∧ q̇⟩ − mA

∥qA∥
⟨qA, u⟩ −mB

mB

∥qB∥
⟨qB , u⟩

where u = qA − qB

They satisfy {H,G} = 0. We can now perform central projection for the two-
center problem:

We start from the cotangent bundle in T ∗(R2) . Consider the “position” homo-
geneous coordinates [q0 : q1 : q2]. (the initial affine chart is q0 = 1).

We now perform central projection to the screen q2 = 1. After this, we change
the momenta accordingly and we obtain an integrable system on the new screen.

The new “symplectic”structure (it is not symplectic we added “singularities” in
the procedure) reads:

dv1 ∧ dq1 +
q1
q2

(dq1 ∧ dv2 + dq2 ∧ dv1) +
(v2q1 − v1q2)

q22
dq1 ∧ dq2 + (

q21
q22

− 1)dv2 ∧ dq2

It makes sense to dualize the 2-form to get the hyperplane q2 = 0 into the
picture. By doing so, we can associate a bivector field which is a Poisson structure
on a dense set together with an integrable system on it.

4.1.2. Example 2: Integrable systems on b-symplectic manifolds. There is a special
class of Poisson structure which share many particularities with the symplectic case.
These are called b-symplectic or b-Poisson structure.
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Definition 4.2. Let (M2n,Π) be an oriented Poisson manifold such that the map

p ∈M 7→ (Π(p))n ∈ Λ2n(TM)

is transverse to the zero section, then Z = {p ∈ M |(Π(p))n = 0} is a hypersurface
and we say that Π is a b-Poisson structure on (M,Z) and (M,Z) is a b-Poisson
manifold. The hypersurface Z is called critical set.

These manifolds have a symplectic foliation which consists on a dense symplectic
leaf and the rest of the symplectic leaves are of codimension 2 and lie on the critical
subset Z (indeed these codimension 2 leaves define the (codimension 1) symplectic
foliation of the induced Poisson structure ΠZ .

The study of the geometry of b-symplectic manifolds started with the works of
Nest and Tsygan on deformation quantization of symplectic manifolds with bound-
ary [60]. We have recently studied the symplectic and Poisson geometry of these
manifolds in [28], [29] together with Victor Guillemin and Ana Rita Pires.

The following is an example of integrable system on b-Poisson manifold. Con-
sider as b-Poisson manifold R2n with coordinates (x1, y1, . . . , xn−1, yn−1, z, t) Π =∑n−1

i=1
∂

∂xi
∧ ∂

∂yi
+ z ∂

∂z ∧ ∂
∂t .

Observe that the functions fi = xi ∀i ≤ n − 1 and fn = z are pairwise in
involution. Thus, these functions define an integrable system F = (x1, . . . , xn−1, z).

As it is seen in [29], the Poisson geometry of the manifold can be reconstructed
semilocally from the critical hypersurface Z (a codimension one symplectic foliation
admitting a transverse Poisson vector field). We can use a similar strategy to give
natural global examples of integrable systems on b-Poisson manifold (which includes
the compact case).

For instance, consider the following construction: Take an integrable system on
a symplectic manifold (M,ω,F) and consider a symplectomorphism ϕ preserving
the integrable system. We may consider the symplectic mapping torus associated
to this symplectomorphism

N2n+1 =
M × [0, 1]

(x, 0) ∼ (ϕ(x), 1)
.

This produces a family of integrable systems on the fibers of the symplectic mapping
torus which has naturally the structure of a Poisson structure π. There is a vector
field X transverse to the symplectic manifold M and which preserve the integrable
system and this Poisson structure.

Let f : S1 → R a smooth function. The bivector field

Π = f(θ)
∂

∂θ
∧X + π

is a b-symplectic structure on S1×N if the function f vanishes linearly (the manifold
has as many critical components as the number of zeroes of the function f). Also
the new system H = (f,F) is an integrable system on the b-symplectic manifold.

As a particular example, take (M,ω) = (R2n−2,
∑n−1

i=1 dxi∧dyi) and consider the
integrable system defined by the moment map F = (x1, . . . , xn−1). Now consider
the direct product of R2n−2 with T ∗(S1) with parallelization given by (θ, z) and
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consider the function f(θ) = sin(θ). The system defined by

F = (z, x1, . . . , xn−1)

on the product

T ∗(S1)× R2n−2

endowed with the b-Poisson structure,

Π = sin(θ)
∂

∂θ
∧ ∂

∂z
+

n−1∑
i=1

∂

∂xi
∧ ∂

∂yi

is an integrable system of this type with a trivial mapping torus given by a product
also observe that ∂

∂z leaves the integrable system and is transverse to the symplectic
foliation defined by z = ct. Observe that for sin(θ) vanishes for θ = 0 and θ = π.
That is to say, the critical manifold of the b-Poisson manifold in this example has
two connected components.

More generally, we could replace symplectic mapping torus construction by a
(N2n+1, π) be a regular corank-1 Poisson manifold and consider X to be a Poisson
vector field.

As we will see in a future work, this example is indeed a “canonical”model
because we have Moser normal forms for these manifolds.

4.1.3. Example 3: Gelfand-Cetlin system. One of the most basic examples of Pois-
son manifolds is that of dual of Lie algebras g∗. The symplectic foliation is given by
its coadjoint orbits which are endowed with the Kostant-Kirillov-Souriau symplectic
form.

The Gelfand-Cetlin system has been classically (Guillemin-Sternberg) considered
as an integrable system on a coadjoint orbit O of u(n)∗. A good reference for this
system is [27].

The dual of a Lie algebra constitute a simple example of linear Poisson structure
with Poisson brackets defined via the structure constants. The Gelfand-Cetlin
system can be seen as a system on the dual of a Lie algebra, as follows. We dualize
the increasing sequence of Lie algebra inclusions:

u(1) ⊂ · · · ⊂ u(n− 1) ⊂ u(n)

where u(k) is considered as the left-upper diagonal block of u(k+1) for k = 1, . . . , n−
1), we get a sequence of surjective Poisson maps:

u(n)∗ 7−→ u(n− 1)∗ 7−→ · · · 7−→ u(1)∗

The family of functions on u(n)∗ obtained by pulling-back generators of the
Casimir algebras of all the u(k)∗ for k = 1, . . . , n yields an integrable system on
u(n)∗. The complete integrability of this system is a consequence of the method of
Thim.

For particular generators, its restriction to an open subset ofO gives the Gelfand-
Cetlin system (a commendable reference for this paper is [27]).

This system is defined not only when restricted to the coadjoint orbit with the
Kirillov-Kostant-Souriau symplectic structure but on u(n)∗.
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4.1.4. Example 4: Magnetic Flows on Homogeneous Spaces and coadjoint orbits.
Let G be a compact Lie group and H a closed subgroup. Let a ∈ h be H-adjoint
invariant. This implies that H is contained in the isotropy group Ga. Denote
by O(a) the adjoint orbit. We then have a submersion of homogeneous spaces
σ : G/H −→ G/Ga

∼= O(a) and ω = σ∗(ΩKKS) (with ΩKKS the Kostant-Kirillov-
Souriau symplectic form) is a closed 2-forms and gives a magnetic field on G/H.

We then have [5]:

Theorem 4.3 (Bolsinov, Jovanovich). The magnetic geodesic flows of normal met-
ric ds20 in G/H with respect to the magnetic form ω is completely integrable in the
non-commutative sense.

By using a Theorem of Mischenko-Fomenko which states that non-commutative
integrable Hamiltonian systems are also commutatively integrable we obtain an
example of integrable system: The magnetic geodesic flow on G/H. This system
can be viewed in the Poisson manifold T ∗(G)/H.

4.2. A Darboux-Carathéodory theorem in the Poisson context. We start
by stating the local normal theorem that we have for Poisson structures contained
in [37]:

Theorem 4.4 (Laurent, Miranda, Vanhaecke [37]). Let m be a point of a Poisson
manifold (M,Π) of dimension n. Let p1, . . . , pr be r functions in involution, defined
on a neighborhood of m, which vanish at m and whose Hamiltonian vector fields
are linearly independent at m. There exist, on a neighborhood U of m, functions
q1, . . . , qr, z1, . . . , zn−2r, such that

(1) The n functions (p1, q1, . . . , pr, qr, z1, . . . , zn−2r) form a system of coordi-
nates on U , centered at m;

(2) The Poisson structure Π is given on U by

(4.1) Π =
r∑

i=1

∂

∂qi
∧ ∂

∂pi
+

n−2r∑
i,j=1

gij(z)
∂

∂zi
∧ ∂

∂zj
,

where each function gij(z) is a smooth function on U and is independent
of p1, . . . , pr, q1, . . . , qr.

Observe that in this theorem we have adapted Weinstein’s splitting theorem to
some of the first integrals of the integrable system but not all of them.

4.3. Split systems and rigidity. As we explained in [37], not every integrable
system on a Poisson manifold can be split (in a compatible way with Weinstein’s
theorem).

The following family of counter-examples is contained in [37]:

On R4, with coordinates f1, f2, g1, g2, consider the Poisson structure:

(4.2) Π =
∂

∂f1
∧ ∂

∂g1
+ F (g2)

∂

∂f2
∧ ∂

∂g2
+G(g2)

∂

∂g1
∧ ∂

∂f2
,

with vanishing F and G at the origin g2 = 0.
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The pair of functions F = (f1, f2) define an integrable system on R4 endowed
with this Poisson structure.

As we proved in [37] whenever the expression F (z)
G(z) does not admit a smooth

continuation at 0. the system defined by F is not split. A system is not split when-
ever we cannot find coordinates in which we have Weinstein’s splitting coordinates
adapted to the integrable system.

In particular, for the choices if F (z) = g22 and Gε(z) = εg2, the system defined
by F = (f1, f2) is not split.

Indeed the fact, that these systems cannot be split is closely related to the non-
rigidity of integrable systems in the Poisson context. That is to say, we can find
close integrable systems which are not equivalent. The key point in this proof is
the non-stability phenomena present in Poisson geometry.

In order to do this observe consider the family of Poisson structures:

(4.3) Πε =
∂

∂f1
∧ ∂

∂g1
+ g22

∂

∂f2
∧ ∂

∂g2
+ εg2

∂

∂g1
∧ ∂

∂f2
,

For ε = 0 the system defined by F = (f1, f2) is clearly split with respect to the
Poisson structure Π0 (the system splits in Weinstein coordinates) but for ε ̸= 0
the system F = (f1, f2) is not split with respect to the Poisson structure Πεas
guaranteed from the conditions specified above on F and G.

Now consider the local diffeomorphism ϕε(f1, f2, g1, g2) = (f1, f2+ εg2f1, g1, g2).
This diffeomorphism satisfies ϕε,∗(Π0) = Πε but the diffeomorphism does not pre-
serve the integrable system defined by (f1, f2). Now consider a new integrable
system defined via,

Fε = ϕ∗(f1, f2) = (f1, f2 + εg2f1)

This integrable system (which is close to the initial one) is clearly not equivalent
to it because it is split with respect to Πε (since F = (f1, f2) is split with respect
to Π0).

Remark 4.5. In general we can formulate the condition of an integrable system to
be split via the Vorobjev data (ΠV ert,Γ,F) associated to the Poisson structure.
These data are determined in terms of the Poisson fibration over a symplectic leaf.
This is the content of a common project with Camille Laurent-Gengoux [36].

4.4. An action-angle theorem for Poisson manifolds. In this section we in-
clude an action-angle theorem in the Poisson context. The contents of this sub-
section are joint work with Camille Laurent-Gengoux and Pol Vanhaecke and are
included in [37].

In this subsection we will impose the following assumptions on our integrable
system:

(1) The mapping F = (f1, . . . , fs) defines an integrable system on the Poisson
manifold (M,Π) of dimension n and (maximal) rank 2r.

(2) Suppose that m ∈ M is a point such that it is regular for the integrable
system and the Poisson structure.
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(3) Assume further than the integral manifold Fm of the foliation Xf1 , . . . Xfs

through m is compact (Liouville torus).

Under these conditions we can prove,

Theorem 4.6 (Laurent, Miranda, Vanhaecke). Then there exists R-valued smooth
functions (σ1, . . . , σs) and R/Z-valued smooth functions (θ1, . . . , θr), defined in a
neighborhood U of Fm such that

(1) The functions (θ1, . . . , θr, σ1, . . . , σs) define a diffeomorphism U ≃ Tr×Bs;
(2) The Poisson structure can be written in terms of these coordinates as

Π =
r∑

i=1

∂

∂θi
∧ ∂

∂σi
,

in particular the functions σr+1, . . . , σs are Casimirs of Π (restricted to U);
(3) The leaves of the surjective submersion F = (f1, . . . , fs) are given by the

projection onto the second component Tr ×Bs, in particular, the functions
σ1, . . . , σs depend only on the functions f1, . . . , fs.

The proof follows the spirit of Duistermaat in the symplectic case. The steps of
the proof are the following:

(1) Topology of the foliation. We first study the topology of the fibration:
The fibration in a neighbourhood of a compact connected fiber is a trivial
fibration by compact fibers.

(2) These compact fibers are tori: We can recover a Tn-action tangent to the
leaves of the foliation. This implies a process of uniformization of periods.

(4.4)
Φ : Rr × (Tr ×Bs) → Tr ×Bs

((t1, . . . , tr),m) 7→ Φ
(1)
t1 ◦ · · · ◦ Φ(r)

tr (m).

(3) We prove that this action is Poisson (we use the fact that if Y is a complete
vector field of period 1 and P is a bivector field for which L2

Y P = 0, then
LY P = 0).

(4) Finally we use the Poisson cohomology of the manifold and averaging with
respect to this action to check that the action is indeed Hamiltonian.

(5) To construct action-angle coordinates we use Darboux-Carathéodory and
the constructed Hamiltonian action of Tn in order to drag normal forms
from a neighbourhood of a point to a neighbourhood of a fiber.

In [37] we also give a version for the non-commutative case.

4.5. Equivariant theorems for Poisson manifolds and rigidity phenomena.
Integrable systems give examples of abelian group actions on Poisson manifolds. In
this short paragraph we recall very quickly some equivariant results for compact
group actions on Poisson manifolds which preserve the Poisson structure.

For a special kind of Poisson structures called tame, we have the following the-
orem (see [59]) which is an equivariant version of Weinstein’s splitting theorem
[75].

Theorem 4.7 (Miranda-Zung [59]). Let (Pn,Π) be a smooth Poisson manifold, p
a point of P , 2k = rankΠ(p), and G a compact Lie group which acts on P in such
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a way that the action preserves Π and fixes the point p. Assume that the Poisson
structure Π is tame at p. Then there is a smooth canonical local coordinate system
(x1, y1, . . . , xk, yk, z1, . . . , zn−2k) near p, in which the Poisson structure Π can be
written as

(4.5) Π =

k∑
i=1

∂

∂xi
∧ ∂

∂yi
+
∑
ij

fij(z)
∂

∂zi
∧ ∂

∂zj
,

with fij(0) = 0, and in which the action of G is linear and preserves the subspaces
{x1 = y1 = . . . xk = yk = 0} and {z1 = . . . = zn−2k = 0}.

This result implies local rigidity for compact Poisson group actions.

By using Conn’s linearization theorem [14] for semisimple Lie algebra’s of com-
pact type, we can also prove an equivariant linearization theorem which can be
found in [59].

Among the set of Poisson actions there is a particular class of Poisson actions
which deserves a special attention: The class of Hamiltonian actions.

Recently we have proved a rigidity result for Poisson actions with Philippe Mon-
nier and Nguyen Tien Zung.

Not to distract the reader with many technical details, we give a “sloppy” state-
ment here. The exact statement can be found in [56].

Theorem 4.8 (Miranda-Monnier-Zung [56]). Let ρ0 and ρ1 two close Hamiltonian
actions of compact semisimple type on a compact Poisson manifold, then they are
equivalent.

In this paper, we also find an application to prove an equivariant normal form
result for Poisson structures without assuming that the Poisson structure is tame.
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