
Simulation of L

Jordi Garcia Amoró
1 Depart

Avi

2 GAECE. G
De
Ví

Abstract 
This paper presents a simulation

environment coupled with finite 
simulation results for a double sid
verify the simulation model. 

Keywords 
 
«Electrical machine», «Switched r

 

Introduction 
Linear motors are direct elec

intermediary mechanical gearbox
reluctance motors (LSRMs) are a
concentrated windings on the stato
costs, and have fault tolerance cap
found in propulsion systems for ra
packaging machines or material h
between the position of the plane
they are longitudinal flux LSRMs 
Longitudinal LSRMs may be tub
simplest is the single-sided flat L
double-sided flat LSRM and the m

Fig. 1. Main d

(a)    
Fig. 2. Other types o

inear Switched Reluctance Moto
 

ós 1 , Balduí Banqué Molina 2, Pere Andrad
tament d’Enginyeria Electrònica, Eléctrica i Automàtica 

E.T.S.E., Universitat Rovira i Virgili 
nguda Països Catalans, 26, 43007 Tarragona, Spain 

Tel.:+34 977 559695, fax:+34 977559605 
E-mail: jordi.garcia-amoros@urv.cat 

URL: http://sauron.etse.urv.es/DEEEA/ 
 

Grup d’Accionamients Elèctrics amb Commutació Electrònic
epartament d’Enginyeria Elèctrica, EPSEVG-UPC 
ctor Balaguer 1, 08800 Vilanova i la Geltrú, Spain 

Tel.:+34 938967732; fax: +34 938967700 
E-mail: blanque@ee.upc.edu 

E-mail: pere.andrada@ upc.edu 

n model of linear switched reluctance motor dri
element analysis is used to perform the simula
ded linear switched motor drive prototype are re

reluctance drive», «Linear drive», «Modelling» 

tromagnetic drives in which the linear motio
es or belts. Despite their lower force/weight ra
an attractive alternative to other linear motors 
or or translator, they are ruggedly built, have low 
ability. There are many applications that require L

ailway vehicles or vertical elevators [2,3] or in pr
handling equipment [4,5]. LSRMs are classified a
e that contains the flux lines and the direction of

if they are parallel and transverse flux LSRMs i
bular or flat. There are different types of longit
LSRM shown in Fig.1, whereas others are mor

modified doubled-sided SRM that are depicted in F

 
dimensions of a single-sided longitudinal flat LSR

         
                                                                 (b) 
of longitudinal flat LSRMs: a) Conventional doub

b) Modified double-sided 

or Drives 

da Gascón 2 

ca 

ives. A Matlab-Simulink 
ations. Experimental and 
eported and compared to 

on is generated without 
atio [1], linear switched 
because they only have 
expected manufacturing 
LSRMs, and they can be 
recise motion control for 
according to the relation 
f the movement; that is, 
f they are perpendicular. 
tudinal flat LSRMs: the 
re complex, such as the 
Fig.2 

RM  

 

ble-sided,  

Simulation of Linear Switched Reluctance Motor Drives BLANQUE Baldui

EPE 2011 - Birmingham ISBN: 9789075815153 P.1



Many papers have dealt with modeling and simulation switched reluctance motor drives [6-8] but, until 
now, little work has been done in their linear counterpart. This paper is devoted to the simulation of the 
whole LSRM drive, including the linear motor, the power converter and the control. The proposed 
simulation model is intended as a useful and reliable tool for the computer-aided design of any reluctance 
linear motor. A Matlab-Simulink environment coupled with finite element analysis is used to perform the 
simulations. Experimental and simulation results for a double sided linear switched motor drive prototype 
are reported and compared in order to verify the simulation model. 
 

Non-linear mathematical model of LSRM  
The voltage equation of a stator phase of an m-phases LSRM is: 

 

( , ) ( , ) ( , )· · · ·x i x i d i x iu R i R i v
t i d t x

ψ ψ ψ∂ ∂ ∂= + = + +
∂ ∂ ∂  

(1) 

Figure 3 shows the electrical equivalent circuit of a stator phase of an LSRM, in which u is the DC bus 
voltage, i is the phase current, R is the phase resistance, LINC is the incremental inductance and em is the 
back electromotive force to the translator movement at velocity v. 

 

 
Fig. 3. Single phase equivalent electric circuit of an LSRM 

 
Thus equation (1) can be rewritten in the form: 

 
· ·INC m

d iu R i L e
d t

= + +
 

(2) 

The instantaneous electromagnetic force of one phase is computed in terms of the differential change of 
co-energy with respect to position, which is evaluated at a constant phase current. The total electromagnetic 
force, neglecting mutual inductance effects, is obtained by: 

 1 0

( , )
Im

e
i i ctn

F x i d i
x

ψ
= =

⎛ ⎞⎛ ⎞∂⎜ ⎟= ⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠
∑ ∫

 

(3) 

The coupling force equation between motor and load is given by: 

 
· ·e L
d vF m B v F
d t

= + +  (4) 

Where mt is the mass, B is the viscous friction coefficient and FL is the external load force. Rearranging 
equations (2), (3) and (4), the state-space equations are described by (5) and (6). 

 

1
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d t i x
ψ ψ

−
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 (5) 
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d v F F B v
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(6) 

 

Matlab/Simulink® simulation model  
The simulation model of the LSRM drive consists of three modules: the LSRM module, the power 
converter module and the controller module (see Figure 4). The LSRM module models the electrical and 
mechanical equations of the LSRM. The power converter module models the power converter logic 
switching. The controller module generates the drive signals according to the reference signals, translator 
position and phase currents depending on external load force. 
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Fig. 4. Block diagram (above in grey). Simulink complete block model (below) 
 

1. LSRM module 
The LSRM module shown in Fig. 5 simulates the system of equations (5)-(6).  

 
Fig. 5. LSRM module 

 
The flux linked–current characteristics, or magnetization curves, ψ= ψ(x,i) and the electromagnetic force 

Fe = F(x,i) are obtained by two-dimensional finite element analysis in order to reduce the computing time, 
and corrected using the end-effects coefficient, Kee to account for the end effects, depending on the current 
density (J) and position (x) given by [9] [10]: 

 3 2·D ee DKψ ψ=  (7) 

Gup

Gdwn

V+

V-

A +

A -

B +

B -

C +

C -

D +

D -

POWER
CONVERTER 

pos (mm)

optoD
optoC
optoB
optoA

POSITION

pos (mm)

Ia

Ib

Ic

Id

A +

A -

B +

B -

C +

C -

D +

D -

LSRM MODEL

25
Iref

Opto A

Opto B

Opto C

Opto D

Iref

Ihp A

Ihp B

Ihp C

Ihp D

Gup

Gdwn

CONTROLLER

12V

Rph
5
Id

4
Ic

3
Ib

2
Ia 1

pos (mm)

8
D -

7
D +

6
C -

5
C +

4
B -

3
B +

2
A -

1
A +

v+
-

measure
inductor voltage D

v+
-

measure
inductor voltage C

v+
-

measure
inductor voltage B

v+
-

measure
inductor voltage A

dFlux/dx (x,i)

dFlux/dI (x,i )

Sum of
Elements

v (mm/s)x(mm)

Sensor
internal loop

Fx

FL
v (mm/s)

Mechanic
Loop

10

Load

s -
+

Inject 
 Inductance 

current D 

s -
+

Inject 
 Inductance 

current C 

s -
+

Inject 
 Inductance 

current B 

s -
+

Inject 
 Inductance 

current A 

0.025

Fx (x,i )

K Ts

z-1

F(x)

VphA

VphB

VphC

VphD

iph

iph

iph

iph

Simulation of Linear Switched Reluctance Motor Drives BLANQUE Baldui

EPE 2011 - Birmingham ISBN: 9789075815153 P.3



 3 2·D ee DL K L=  (8) 
Where Ψ2D and L2D are the flux linkage and the inductance obtained in 2D FEA and where Ψ3D and L3D 

are the 3D flux linkage and the inductance approaches that account for the end effects and are most similar 
to the measured values. The correction factor Kee is defined as: [11]  

 2

1 ·end
ee f

D

L
K K

L
= +
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (9) 

Where Lend is the end-winding inductance and Kf is the axial fringing factor. End-winding inductance, 
Lend, can be analytically deduced from end-winding geometry or can be computed by means of an axis-
symmetrical 2D finite element model. 

Given (Ψ3D), the co-energy (W’3D) is calculated using the well-known expression:  
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(10) 

Then, the translation force, including the end effects, is obtained by: 
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For small intervals of position (Δx) and current (ΔI) a practical expression of (11) can be given by: 
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(12) 

Once the magnetization curves have been obtained using the aforementioned procedure, the partial 
derivatives ( , ) /x i iψ∂ ∂  and ( , ) /x i xψ∂ ∂  are determined numerically.  

 
2. Power converter module 
This module models the power converter, in this case a four phase asymmetric half-bridge or classical 
converter (Fig. 6). The converter is modeled using the available power semiconductor devices from the 
SimPowerSystems toolbox (IGBT and diode). Some of the critical settings for IGBTs, such as the falling 
time (tf) and the tail time (tt), are taken into account because a failure to properly select these parameters 
would produce a high peak voltage, especially for high switching frequencies. The module also includes 
the model of the snubber which is required for the power converter to behave correctly.  
 
 

 
 

 
Fig. 6. Power converter module (left). Power converter detail (center). Phase detail (right) 
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3. Controller module  
Depending on the external load force, this module generates the drive signals according to the reference 
signals, translator position and phase currents (Fig. 7). This module performs two main functions. The first 
is to implement the adopted control strategy which can range from a simple sequential control of the 
different phases to a sophisticated control that uses force distribution functions to reduce propulsion force 
pulsations. The second is to generate the drive signals according to the control strategy and to decide which 
current regulator is to be employed (single pulse, or soft chopping and hard chopping hysteresis). 

  

Fig. 7. Controller module (left), controller module detail (right) 
 

Simulation and experimental results 
In order to verify the proposed procedure a four phase double-sided LSRM drive prototype has been 
designed, built and tested (Fig. 8). The power converter is a four phase classic converter (Fig 9). The 
control is a sequential phase control designed to apply a precision linear motion using a soft chopping 
current regulator. 

 
Fig. 8. LSRM prototype 

 

 
Fig. 9. Block diagram of the four phase classic converter 
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Fig. 10. Firing angle module for the application case  
 

In this case, the firing angle generator (Fig.10) is implemented by a truth table and a counter. In the truth 
table, the switching sequences of the motor phases have been programmed taking into account the position 
of the translator, which is obtained by means of four optoelectronic switches. It is possible to choose the 
direction of the movement and the number of steps (variable Step 5, which includes 5 steps with a 
resolution of 4mm). The truth table also generates 4mm pulses which are obtained by combining the 
optoelectronic switch signals. The counter counts these pulses when “Enable” is activated, thus generating 
"1" in the output, and "0" as soon as the count has finished because the outputs remain at "0" when 
“START / STOP” is set to "0". 

 
1. Finite element simulation.  

 
The prototype has been analysed using the finite element method (FEM) and taking into account the end 

effects. Flux and density plots for the aligned and unaligned positions are shown in Figs.11 and 12 
respectively. The analysis has been carried out between two unaligned positions x=-S and x=S, where S is 
the distance between the aligned and unaligned positions given by S = (cs+bs)/2 (see Fig. 1). 

 
 

 
    (a)                                                                   (b)  

 
Fig. 11. Flux plots from 2D FEA of the LSRM a) aligned x = S.  b) unaligned x = 0. 
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    (a)                                                                  (b)   

 
Fig. 12. Flux density plots from 2D FEA of the LSRM a) aligned x = S. b) unaligned x = 0. 

 
The magnetization curve (ψ3D) shown in Fig. 13a has been obtained from 2D-FEM analysis and corrected 

by (7) to account for end-effects. The force is obtained by taking ψ3D and applying (12) (Fig. 13b). The 
partial derivatives ( , ) /x i iψ∂ ∂  and ( , ) /x i xψ∂ ∂  are shown in Fig 12c and 12d respectively 

 

 
    (a)                                                                                      (b)   

  
    (c)                                                                                      (d)   

 
Fig. 13. FEM results plots for position x∈[-S,S]=[-8,8] and current I∈[0,69]. 

 
 
 
 

2. Simulation and measurement: comparison results 
 
The simulation results of the proposed model are compared with waveforms measured from experiments. 
Fig 14 shows the measured and simulated position and phase currents. Fig 15 shows the measured and 
simulated phase current and phase voltage. 
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Fig. 14. Position and phase current obtained by simulation (left) and by measurement (right) 

 

 
Fig. 15. Phase current and phase voltage obtained by simulation (left) and by measurement (right) 

 

Conclusions 

This paper presents a new LSRM simulation model. This model has three independent modules: the 
controller module, the power converter module and the LSRM module. This enables it to be used in other 
types of reluctance motors and for different control strategies. The paper also presents a particular 
application for an LSRM. The experimental results obtained agree with the simulation results, which in 
turn validate the LSRM model. 
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Annex  
Table I. LSRM prototype main parameters 

Primary pole width  bp 6 mm 

Primary slot width  cp 6 mm 

Primary pole pitch Tp 12 mm 

Number of active poles per side Np 8 

Primary pole length lp 30 mm 

Secondary pole width bs 7 mm 

Secondary slot width cs 9 mm 

Secondary pole pitch Ts 16 mm 

Number of passive poles per side Ns 6 

Secondary pole length ls 7 mm 

Yoke length hy 8 mm 

Stack length LW 30 mm 

Number of turns per pole N1 11 

Wire diameter dc 2.1 mm 

 
The viscous friction coefficient, B, can be evaluated by B=ν·ρ·A/y, where ν is the kinematic viscosity (m2·s-1), ρ is the 
hydraulic fluid density (kg·m-3), A is the contact surface (m2) and y is the clearance occupied by the hydraulic fluid 
(m). Usually, for hydraulic fluids, ν = 64·10-6 m2·s-1 and ρ = 800 kg·m-3. When linear bearings are used, friction force 
becomes Fr=g·ms·μ, where g is the standard gravity constant (9.80665m·s-2), ms is the mass supported by the bearings 
(kg) and μ is the non dimensional rolling friction coefficient. For linear bearings with recirculating balls μ = 0.005. 
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