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ABSTRACT

In the present work, the fluid flow and heat trans-
fer inside an integrated solar collector installed on
an advanced fagade are investigated. According to
Gray and Giorgini [1], the use of the Boussinesq ap-
proximation can be considered valid for variations of
thermosphysical properties up to 10 % with respect
to the mean value. In the configuration under study,
there is a variation of about 20 % in the dynamic vis-
cosity and 15 % in the thermal expansion coefficient.
Thus, the main objective of this work is to analyse
the validity of the Boussinesq approximation for the
turbulent natural convection flow of water in a rect-
angular parallelepiped tank. The significance of the
Boussinesq effects is studied comparatively by means
of detailed DNS simulations.

INTRODUCTION

The natural convection flow within enclosures has at-
tracted the attention of many researchers due to its
potential to model numerous applications of engineer-
ing interest, such as cooling of electronic devices,
air flow in buildings, heat transfer in solar collectors,
among others. The natural convection studies corre-
sponding to the parallelepipedic enclosures can be
classified into two elementary classes: i) heating from
a horizontal wall (heating from below); ii) heating
from a vertical wall. The characteristic example of
the former case is the Rayleigh-Bénard flow, however
this work will only focus on the cavities heated from
the side. This configuration is referred commonly as
the differentially heated cavity.

Although the differentially heated cavity configuration
represents a simple geometry, the flow gets complex
for sufficiently large Rayleigh numbers [2]. The flow
undergoes a gradual transition to a chaotic state as the
Rayleigh number reaches a critical value. For the situ-
ation studied in this work, both laminar, transitional,
and turbulent zones are expected to coexist within the
domain. Generally the core of the cavity together with
the upstream part of the vertical boundary layers re-
main laminar while at some point in the downstream
part of the vertical boundary layers, turbulent fluc-
tuations become significant. It is a challenging task
to detect this phenomenon [3]. Another important
issue is the stratification phenomenon taking place
in the core of the cavity. It is one of the basic open
problems of this configuration. Comparisons between
numerical and experimental studies give quite differ-
ent results, which may be justified by the thermal
radiation effects [4].

The vast majority of the performed work in this field
corresponds to air-filled cavities (see [3] for a detailed
preview). If the working fluid is water, obtaining solu-
tions for the governing equations gets even more com-
plicated, as the boundary layer becomes thinner than
for air at the same conditions. As a consequence, there
is an increasing demand for excessively fine grids in
space and time for solving the three-dimensional and
time dependent flow, in order to capture the smallest
scales of the turbulent flow.

Additional to the issues explained above, when inves-
tigating the fluid behaviour in real working conditions,
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the validity of the Boussinesq approximation has to be
questioned. According to Gray and Giorgini [1], the
use of the Boussinesq approximation can be consid-
ered valid for variations of thermosphysical properties
up to 10% with respect to the mean value.

The main objective of this work is to analyze the turbu-
lent natural convection flow of water in a rectangular
parallelepiped tank. This configuration corresponds to
an integrated solar collector installed on an advanced
facade. The aspect ratio is I' = 6.68. The working
conditions of the particular design yield a Rayleigh
number of Ra = 2.2 x 10'! and a Prandtl number of
Pr =3.44. Long-term accurate statistical data by
means of a DNS simulation is presented, investigat-
ing the characteristics of the turbulent flow within the
differentially heated cavity. Some results of first and
second order turbulent statistics are also presented.
Based on a previous work [5] this works aims at ob-
taining more details about the Boussinesq effects in
turbulent natural convection flow. The actual working
conditions of the prototype point out a variation of
about 20 % in the dynamic viscosity and 15 % in the
thermal expansion coefficient. Thus, it is of interest to
analyze some features of turbulent natural convection
flow including Boussinesq effects.

Figure 1: Geometry of the differentially heated cavity

CASE UNDER STUDY

The adopted geometry considered in this work is
shown in Figure 1. This geometry models the par-
allelepiped tank of an integrated solar collector. The
height of the tank (H), and the width (W) are 0.735m
and 0.11m respectively, resulting in an aspect ratio of
I'=6.68.

Taking into consideration the real working conditions
of the studied prototype, the temperatures at the hot
and cold vertical isothermal walls are set to 57 °C and
47 °C respectively.

DESCRIPTION OF THE MATHEMATI-
CAL AND NUMERICAL METHOD

The Navier-Stokes and continuity equations can be
written as

Mu = 0 (1)
d

£+C(u)u+vDu+p_le—l-f = 0 (2
§+C(M)T+p—1cp—1kD(T) =0 (3

where u € R and p € R™ are the velocity vector
and pressure, respectively (here m applies for the total
number of control volumes (CV) of the discretised do-
main), v is the kinematic viscosity and p the density.
f is the body force f = B(Ty — T,,)g. Convective and
diffusive operators in the momentum equation for the
velocity field are given by C (1) = (u-V) € R¥™3m,
D = V2 € R¥>*3" respectively. Gradient and diver-
gence (of a vector) operators are given by G =V €
R¥m33m and M = V. € R™*3 respectively.

In bouyancy driven flows a common approach is to
consider constant thermophysical properties of the
fluid, with the exception of the density variations that
are only taken into account in the bouyancy forces,
1.e., the so-called Oberbeck-Boussinesq approxima-
tion. Thus, the temperature dependency of density is
linearized in the bouyancy force as:

p(T) =Pm— pmﬁm(T - Tm) 4

Here T,, = (T;,+T) /2 is the mean value of the temper-
atures of the cold and hot walls. Those assumptions
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have its own implications. First, continuity equation is
treated in its incompressible form, neglecting acoustic
phenomena, which in the case of liquids has no major
implications. However, for liquids, deviations from
the aforementioned hypothesis are mainly due to vis-
cosity variations, as the viscosity strongly decreases
with the temperature increase.

When considering the Boussinesq effects in our work,
the following are assumed:

e temperature dependent thermophysical proper-
ties

e density variations are only taken into account
in the bouyancy term

e the temperature dependence of the density is
linearized as:

p(T) = pm—p'(T) (5)

Under the above assumptions, equations 1-3 read:

Mu = 0 (6)
u
E"FC(M)M‘FD(V(T)M)"F
Pn'Gp—p,'p(T)g = 0 (7)
L C)T+py'Cry DTIT) = 0 ®

The temperature dependencies for v(T'), k(T) and
p(T) are taken from Furukawa.[6]

Considering the reference scales for length, time,
velocity, temperature and dynamic pressure as H,
(H*/o)Ra="3, (oe/H)Ra">, T;, — T, p(ot/H?)Ra, re-
spectively, Non-Oberbeck-Boussinesq thermal con-
vection in the cavity is governed by the non-
dimensional quantities: Ra = (gB,,AT,.sH>Pry)/ V2,
Pry = Vy /0y, T and the non-dimensional thermo-
physical properties: v = V(T)/Vy; k* = k(T)/km;

p* = Pu—p(T) _ _p'(T)
Pm ﬁm AT}e f Pm BmATre f :

The governing equations are discretized on a collo-
cated unstructured grid arrangement, by means of
second-order spectro-consistent schemes [7]. Such

discretization preserves the symmetry properties of
the continuous differential operators, i.e., the conser-
vation properties are held if, the convective term is
discretized by a skew-symmetric operator and the dif-
fusive term is approximated by a symmetric, positive-
definite coefficient matrix. These properties ensure
both, stability and conservation of the global kinetic-
energy balance on any grid. Energy transport is also
discretized by means of a spectro-consistent scheme.
An explicit third-order Gear-like scheme [8] based on
a fractional step method is used for time-advancement
algorithm, except for the pressure gradient where a
first-order backward Euler scheme is used.

Collocated meshes do not conserve kinetic energy
when fractional step method is used [9, 10]. The
source of these errors are interpolation schemes and
inconsistency in the pressure field, in order to en-
sure mass conservation. While the first is eliminated
through the use of consevative schemes, the latter
equals to &, = (p.)*M.(G, — G)p,. Felten and Lund
[10] showed that pressure errors are of the order of
O(Ax* At). However, these errors do not have sig-
nificant impact on the grid resolutions and time-steps
used in DNS.

Boundary conditions and fluid properties: For the
velocities, no-slip condition is applied on all the walls.
In the spanwise direction (when applicable) periodic
boundary condition is used.

Isothermal vertical walls are assumed. Left vertical
wall is at 57 °C and right vertical wall is at 47 °C. In
the top and bottom confining walls, Neumann bound-
ary condition (dT /dn = 0) is applied.

Except for the Non-Boussinesq calculations, the fluid
properties for water are calculated at the average tem-
perature of (7, +7;)/2 = 52°C. Rayleigh number
based on the height of the cavity is Ra = pB (T, —
T.)H?/vo = 2.2 x 10'! and the Prandtl number is
Pr=v/o =3.44, being Vv is the kinematic viscosity
and o thermal diffusivity.

In Figure 2 the temperature dependencies of density
and kinematic viscosity are shown for the working
temperatures of the prototype.
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Figure 2: Variable thermophysical properties

Geometric discretization: The smallest scales at
the hot and cold walls are imposed by viscous and
thermal boundary layers, while grid size at the bulk
must be lesser than Kolmogorov scale. For the Prandtl
number in our case, the thermal boundary layer is thin-
ner than the viscous boundary layer as & ~ h/Ra’?
and 8, ~ Pr%3§, [11]. The meshes shown in Table 1
are used for our preliminary studies.

Table 1: Space and time meshes used in the test cases.

mesh ny ms3 my

Ny 258 314 535

N, 770 940 1871
Axpin  6.80x107° 6.80x 107 4.08 x 107>
Aymin  1.30x 1073 1.06x 1073 534x107*

At 2.54%x107° 2.54%x107 9.15x107°

PRELIMINARY RESULTS AND CONCLU-
SIONS

As the numerical effort to carry out the present sim-
ulations is too large, all the calculations here pre-
sented are restricted to two-dimensional (2D) simu-
lations. Although 2D calculations might affect the
fluid dynamics, some of the characteristics of the flow
or the Boussinesq effects can still be captured un-
der this assumption. It has been shown earlier by
Trias et al. [3] for a differentially heated cavity for
Rayleigh numbers up to 10'° and by Schalzl et al.
[12] for Rayleigh-Benard convection, that in general
as a rough approach to capture the general features
of the flow and especially boundary layer profiles
and Nusselt numbers, 2D simulations can be a good
approximation.

In the present work, the results obtained for some of
the mentioned meshes are presented, while results for
other meshes are being calculated. In Table 2, a brief
resume of the studied cases are shown.

Table 2:  / calculated cases; x pending cases.

mesh Boussinesq Non-Boussinesq

(BSQ) (NBSQ)
m v v
ms \/ X
my \/ X

In Figures 3 and 4 y-direction velocity profiles at
mid height of the cavity are given. Boussinesq ap-
proximation solutions are symmetric in the vicinity of
hot and cold walls, while the symmetry is broken in
Non-Boussinesq solution. Even though the available
Non-Boussinesq solution corresponds to the coarsest
mesh level, the significant differences in y-direction
velocities cannot be attributed to spatial discretization
since the Boussinesq approximation solution for the
same mesh gives acceptable results with respect to
DNS solution.
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Figure 3: y-direction velocity profile at mid height of
the cavity in the vicinity of hot wall

In the vicinity of the hot wall (see Figure 3), the Non-
Boussinesq solution underestimates the peak value
by approximately 35%. On the other hand, in the
vicinity of the cold wall, Non-Boussinesq solution
overestimates the absolute peak value by about 14 %.
Morever, the peak values occur at different positions,
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indicating differences in boundary layer thicknesses.
For Non-Boussinesq solution, in hot wall the peak
value corresponds to X, = 0.00217 while for the
finest mesh with Boussinesq approximation the peak
occurs atx,,, = 0.0019. In the cold wall, the values
are 0.14768 and 0.147775 respectively.
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Figure 4: y-direction velocity profile at mid height of
the cavity in the vicinity of cold wall

04
BSQ m2
BSQ m3
——— BSQ m4
02 — ——- NBSQ m2
"~
- —————— “1
= 0
021
0.4
I S SRR SRR SRR SRTA S i

0 0.02 0.04 0.06 0.08 0.1 012  0.14
X

Figure 5: Temperature profiles at mid height of the
cavity

As the core temperature is concerned, Non-
Boussinesq solution predicts a significantly greater
temperature (T >°¢ > T7°?). This effect can be ob-
served in Figure 5. In Boussinesq solution the temper-
ature at the core of the cavity corresponds to the mean
temperature of the case, however in Non-Boussinesq

case this symmetry is broken.
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Figure 6: Local Nusselt number profile in hot wall
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Figure 7: Local Nusselt number profile in cold wall

In Figure 6, the local Nusselt number distribution for
both Boussinesq and Non-Boussinesq solutions are
given for the coarsest mesh levels, and the reference
DNS solution using Boussinesq approximation (BSQ
my). This hot wall graph indicates different transition
points. For Non-Boussinesq solution, the transition
point is observed around y = 0.35 while as the Boussi-
nesq approximation is adopted, the instabilities are
not significant till approximately y = 0.46. These re-
sults show that the transition point estimation presents
significant deviations, at least for the coarsest mesh.
The average Nusselt numbers are shown in Table 3
with respect to the finest Boussinesq solution.

As we focus on the cold wall, the differences between
Boussinesq and Non-Boussinesq solution in terms
of transition point are less pronounced (see Figure
6). However, it is important to note that for the Non-
Boussinesq solution the transition point corresponds
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to y = 0.60, which clearly indicates the lack of sym-
metry in this case.

In Figures 8 and 9 the representative instantaneous
isotherms corresponding to ¢t = 450 and ¢t = 500 are
shown. Note that for the Non-Boussinesq solution,
the core of the cavity is warmer than the Boussinesq
solutions. Additionally, for this case the instabilities
are visible in the vicinity of the hot wall by 1/3 of
the cavity, while in the case of the cold wall, we can
roughly say that the instabilities are ejected to the
core after 2/3 of the cavity length from the leading
edge. However, both Boussinesq approximation solu-
tions present symmetric behaviour as the instabilities
are concerned. In the BSQ my4 solution, the temper-
ature drop in the top and bottom region occurs in a
smaller region, which in turn makes relatively larger
the mixing region in the core.

Table 3: Average Nusselt numbers

case Average Nusselt  Error

NBSQ m; 259.47 16.7 %

BSQ m; 244.24 9.8 %
BSQ my 222.27 -

Figure 8: Representative instantaneous isotherms for
t=450; (left) NBSQ m;, , (middle) BSQ my, (right)
BSQ my.

Figure 9: Representative instantaneous isotherms for
t=500; (left) NBSQ m; , (middle) BSQ m,, (right)
BSQ my.
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Figure 10: Reynolds stress (v'v’

With regard to second order statistics, the prelimi-
nary results show significant differences (e.g. see
Figure 10 ), which could be due to the used mesh
level and time-integration period. As the solutions
of the pending cases become available with sufficient
time-integration period, more light could be shed on
the remaining topics of interest, like stratification,
detailed turbulent statistics, heat transfer and fluid
dynamics.



7" International Conference on Computational Heat and Mass Transfer

ACKNOWLEDGEMENTS

This work has been by financially supported by the
Ministerio de Educacién y Ciencia, Secretaria de Es-
tado de Universidades e Investigacion, Spain (ref.
ENE2009-07689 and ENE2009-09496).

REFERENCES

[1]

[4]

D. D. Gray and A. Giorgini. The validity of
the boussinesq approximation for liquids and

gases. International Journal of Heat and Mass
Transfer, 19(5):545-551, 1976.

D.G. Barhaghi and L. Davidson. Natural con-
vection boundary layer in a 5:1 cavity. Physics
of Fluids, 19:125106, 2007.

X. Trias, M. Soria, A. Oliva, and C. D. Pérez-
Segarra. Direct Numerical simulations of two
and three dimensional turbulent natural convec-
tion flows in a differentialy heated cavity of

aspect ratio 4. Journal of Fluid Mechanics,
586:259-293, 2007.

S. Xin, J. Salat, P. Joubert, A. Sergent, and
P. Le Quere. Three dimensional numerical sim-
ulations of turbulent natural convection in an
air-filled differentially heated cavity. In Pro-
ceedings of the 13th International Heat Transfer
Conference, 2006.

D. Kizildag, J. Ventosa, I. Rodriguez, and
A. Oliva. Non-Oberbeck-Boussinesq Natural
Convection in a Tall Differentially Heated Cav-
ity. In Proceedings of the Fifth European Con-
ference on Computational Fluid Dynamics EC-
COMAS CFD 2010, pages 1-13, 2010.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

M. Furukawa. Practical Expressions for Thermo-
dynamic and Transport Properties of Commonly
Used Fluids. Journal of Thermophysics and
Heat Transfer, 5(4):524-531, 1991.

R. W. C. P. Verstappen and A. E. P. Veldman.
Symmetry-preserving discretization of turbu-

lent flow. Journal of Engineering Mathematics,
187(1):343-368, 2003.

G. M. Fishpool and M. A. Leschziner. Stabil-
ity bounds for fractional-step schemes for the
Navier-Stokes equations at high Reynolds num-
ber. Computers and Fluids, 38(6):1289—1298,
2009.

Y. Morinishi, T.S. Lund, O.V. Vasilyev, and
P. Moin. Fully conservative higher order fi-
nite difference schemes for incompressible flow.
Journal of Computational Physics, 143(1):90-
124, 1998.

F. N. Felten and T. S. Lund. Kinetic Energy Con-
servation Issues Associated with the Collocated
Mesh Scheme for Incompressible Flow. Jour-
nal of Computational Physics, 215(2):465-484,
2006.

J. Patterson and J. Imberger. Unsteady natural
convection in a rectangular cavity. J. Fluids
Mech., 100:65-86, 1980.

J. Schmalzl, M. Breuer, and U. Hansen. On
the validity of two-dimensional numerical ap-

proaches to time-dependent thermal convection.
Europhys. Lett., 67(3):390-396, 2004.



