
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

 

In this paper, two indices (combined or phi index and I index), different to the 

presented in [1][2][3] are used to detect damages; these indices are calculated from the 

information obtained from the projection of the experiments into the PCA models 

(baseline). They give us a measurement about the difference between the tested and 

the healthy structure. The experiments are taken from an active piezoelectric system 

which is excited with lamb waves in different phases and the fact that any defect in the 

structure changes its vibrational response is exploited. 

For localization, five different methods of contribution analysis are used (complete 

decomposition contribution, partial decomposition contribution, angle based 

contribution, reconstruction based contribution and diagonal contribution).  With these 

methods, the contribution of each sensor to each index is analyzed, in this way, sensor 

with largest contribution suggests the path where the damage could be located (from 

the actuator to this sensor).  The combination of all indices and all contributions (a 

total of 2 x 5) are analyzed and compared. To validate the approaches, they are applied 

to an aircraft turbine blade instrumented with seven PZT’s. Different damages are 

simulated.    

 

INTRODUCTION 
 

The problem of monitoring defects in structures can be tackled from different points of 

view, generally they are focused on analysis of physical/mathematical models or 

analysis of a set of data (experimental or by simulation). Systems which do not use 

physical models the problem can approach as pattern recognition, some features from 

the dynamical response of the healthy structure are used as pattern. The fact that any 

defect in the structure changes its vibrational response is exploited. To perform global 

detection, classification and localization of damages, techniques such as Principal 

Component Analysis (PCA) are useful because by means of multivariable analysis, it  
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provides arguments for discerning which dynamic is the most important in the system. 

The use of PCA as pattern recognition tool using time based signals have shown good 

results for structural damage detection, localization and classification [1][2][3]. 
 

These approaches combine the use of an active piezoelectric system, which contain 

piezoelectric transducers (PZT’s) that can be used as actuators or sensors to produce 

and collect lamb waves in structures in different phases. In each phase of the diagnosis 

procedure, one PZT is used as actuator (a known electrical signal is applied) and the 

others are used as sensors (collecting the wave propagated through the structure at 

different points). The number of phases is related to the number of PZT’s. In each 

phase, an initial baseline model for undamaged structure is built applying PCA to the 

data collected in several experiments.  Current structure (damaged or not) is subjected 

to the same excitation, and the collected data are projected into the PCA models (one 

by each phase). This paper present a damage detection and localization methodology 

based on principal component analysis and two damage indices. The methodology 

includes the use of a piezoelectric active system which allow to excite and collect the 

signal from the PZTs attached on the surface of an aircraft turbine blade in different 

phases.  Five methods for damage localization are performed and its results are 

presented. 

 

PRINCIPAL COMPONENT ANALYSIS 

 

Introduction 

Principal Component Analysis (PCA) is a technique of multivariable and megavariate 

analysis [4] which may provide arguments for how to reduce a complex data set to a 

lower dimension and reveal some hidden and simplified structure/patterns that often 

underlie it. The goal of Principal Component Analysis is to obtain the most important 

information  from  the data [5]. In order to develop a PCA model it is necessary to 

arrange the collected data in a matrix X.  This m × n matrix contains information from 

n sensors and m experimental trials [6]. Since physical variables and sensors have 

different magnitudes and scales, each data-point is scaled using the mean of all 

measurements of the sensor at the same time and the standard deviation of all 

measurements of the sensor.  Once the variables are  normalized the covariance matrix 

Cx is calculated.  It is a square symmetric m × m matrix that measures the degree of 

linear relationship within the data set between all possible pairs of variables (sensors).  

The subspaces in PCA are defined by the eigenvectors and eigenvalues of the 

covariance matrix as follow: 

                                                     CxP = PΛ                                                                  (1) 

Where the eigenvectors of Cx are the columns of P, and the eigenvalues are the 

diagonal terms of Λ (the off-diagonal terms are zero). Columns of matrix P are sorted 

according to the eigenvalues by descending order and they are called the Principal 

Components of the data set. The eigenvectors with the highest eigenvalue represents 

the most important pattern in the data with the largest quantity of information. 

Geometrically, the transformed data matrix T (score matrix) represents the projection 

of the original data over the direction of the principal components P.  

                                                T = XP                                                                   (2) 



In the full dimension case, this projection is invertible (since PP
T
=I) and the original 

data can be recovered as X=TP
T
. Now, with the given T, it is not possible to fully 

recover X, but T can be projected back onto the original m-dimensional space and 

obtain another data matrix as follow:    

                                                   X
∧

= TP
T = X (PP

T
)                                                                (3) 

Considering 
∧

X  as the projection of the data matrix X onto the selected r principal 

components and X as the projection onto the residual left components, the following 

decomposition can be performed: 

X = X
∧

+ X  
(4) 

  X
∧

= X (PP
T

)  
(5) 

    X = X I − PP
T( ) (6) 

                                                

Damage Detection Indices 

There are several definitions of fault detection indices [8]. Two well-known indices 

are commonly used to this aim: the Q-index (or SPE-index), the Hotelling’s T
2
-

statistic (D-statistic). There exist another type of indices reported in the literature as 

combined index [10] and  I  index [11].  The first one is a combination of the Q-index 

and T
2
-index and  is used to monitor the behavior of a process, the second one is used 

in meta-analysis and can be interpreted as a percentage of  heterogeneity.   

Q-statistic, T2-statistic, Combined Index (ϕ  or phi), I index of the i-th sample (or 

experiment) are defined as follows: 

 

)(= TPPI −Q  
(7) 

TPP 1−Λ=T  (8) 
TT

PPPPI
1

)(
−Λ+−=+= TQiϕ    (9) 

I =

0 for Q ≤ (k −1)

Q − (k − 1)

Q
*100% for Q > (k −1)

 

 
 

  
 

(10) 

where, k is the number of experiments. 

 

CONTRIBUTION METHODS FOR LOCALIZATION 
According to [8] five methods can be used for fault detection in process monitoring. 

Authors of this work adapted these methods for use in damage detection and 

localization in structures.  These methodologies are used to calculate the contribution 

of each sensor to each index in each experiment trial. In this way, the damage will be 

located between actuator and sensor with largest contribution. All the indices can 

determine if there are damages and distinguish between them, however they do not 

provide reasons for it. The main idea is to determine which variable or variables are 

responsible. The variables with the largest contribution are considered major 

contributors to the damage. 

 

Complete Decomposition Contribution (CDC) 
Complete decomposition Contributions also called contribution plots are well known 

diagnostic tools for fault identification [7]. In each index is indicated the significance 



of the effect of each variable on the index. The contribution of the variable (or sensor) 

j to the index is defined as in the equation 11. 

xMMxCDC
T

jj

TIndex

j
2

1

2

1

ξξ=  

(11) 

where jξ  is the j
th
 column of the identity matrix, and  represents the direction of xi. 

Partial Decomposition Contributions (PDC) 
This method decomposes a damage detection index as the summation of variable 

contributions. 

xMxPDC
T

jj

TIndex

j ξξ2

1

=  (12) 

Diagonal Contributions (DC) 
The diagonal contributions remove the cross-talk among variables. The DC is defined 

as: 

xMxDC
T

jj

T

jj

TIndex

j ξξξξ=  (13) 

Reconstruction Based Contributions (RBC) 
The Reconstruction Based Contribution [9] is an approach that uses the amount of 

reconstruction of a damage detection index along a variable direction as the 

contribution of that variable to the index. The RBC is defined as: 
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Angle-Based Contributions (ABC) 
The ABC measures the cosine between a measure and a variable direction. 

The ABC of variable j is the squared cosine of the angle between x  and jξ  
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where jj M ξξ 2

1

=  and  xMx 2

1

=  

 

EXPERIMENTAL MOCKUP 
 

This work involves experiments with an aircraft turbine blade. This blade was 

instrumented with seven piezoelectric transducer discs (PZT’s) attached on the 

surface: three of them were distributed in one face and the others on the other face (see 

Figure 1).  The experiment to assess the structure is performed in several phases [4]. In 

every phase, just one PZT is used as actuator (an electrical excitation signal is applied) 

and the others are used as sensors.  

 

 
a. b. 

Figure 1 Aircraft turbine blade with the PZT’s location and ubication of damages 



Adding two masses in different locations, nine damages were simulated.  140 

experiments were performed and recorded: 50 with the undamaged structure, and 10 

per damage [1]. The PCA model was created using 80% of the whole dataset collected 

using the undamaged structure. Signals from the other 20% and the whole dataset of 

the damaged structure were used for testing the approach.  

 

DAMAGE DETECTION 

 
The damage detection methodology includes the use of the  phi vs  I  plots.  Figure 2 

shows the plot for the actuator 1. In this figure it is possible to observe that the data 

from undamaged structure are grouped and separated of the data from the damaged 

structure, in the same way, the figure shows that there is clustering of results within 

each damage. 
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Figure 2  phi  vs  I  plot for actuator 1. 

 

Is possible to obtain similar plots with the other actuators, the  amplitude and position 

of the points in the plot depend of the ubication of the actuator in relation with the 

damage, but in all the plots is possible to detect abnormalities. 

 

DAMAGE LOCALIZATION 

 
The location of damage was made using 5 methods: CDC, PDC, RBC, ABC, DC. As 

explained in the Contribution Methods for localization section.  Figures 3 and 4 show 

the different contributions in each sensor to phi index and  I index using the CDC 

method when damage 1 is present.  Figure 5 presents the final localization f the 

damage 1 using I index and CDC.  As it is observed in Figure 4, contributions of  

sensors 3, 6 and 7 are null, this is due to the threshold defined in the  index I, which 

allows to eliminate the less significant contributions.  Figures 6 to 9 show the 

comparison between the five methods (CDC, PDC, RBC, ABC and DC) of 

contribution of each sensor to each index.  Sensors in figure are the PZT that are not 

working as actuator. In general terms, it shows that the use of all methods allow to 

locate the damage and, the fact that contributions in most cases have similar results, 

although it may be noted that in some cases the methods PDC, RBC, ABC & DC  

provide major contributions compared with the CDC method.   



 
Figure 3 Combined index with CDC method 

 
Figure 4  I index with CDC method 

 
Figure 5  Damage localization for damage 1using the I-index 
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Figure 6  Comparison between methods of contribution to Phi and I -Index  using PZT1 as actuator 
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Figure 7  Comparison between methods of contribution to Phi and I -Index  using PZT3 as actuator 
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Figure 8  Comparison between methods of contribution to Phi and I -Index  using PZT4 as actuator 
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Figure 9  Comparison between methods of contribution to Phi and I -Index  using PZT7 as actuator 

 

 
Negative contributions such as those obtained in Figures 6, 8 and 9 for the phi index 

have no physical sense.  Also, as is shown for damage detection, also in the damage 

localization, sensors 3, 6, and 7 have contributions equal to zero since in this case are 

far from the damage and there is a stringer on the way between the actuator and 

sensors. 

 

CONCLUSIONS 

 
A novelty methodology in SHM is presented, this include the use of PCA as pattern 

recognition technique and two indices (phi and I ) for damage detection and 5 methods 

for damage localization (CDC, PDC, RBC, ABC and DC).   

For damage detection, it was showed the utility of  phi vs I plots, using this kind of 

plots  it is possible to discern the presence of damage in the structure, in general terms, 

in this figures, the undamaged data and different damages are grouped, it means that 

similar conditions (damage) share similar space on the figure. 

The 5 methods presented allow localizing the damages, in some cases there are less 

contributions when the CDC method is used. 

Results vary for each actuator, obtaining better results in the piezoelectric who are 

closest to the excitation signal. 
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