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Abstract
Let P (λ) =

∑k
i=0 λiAi(p) be a family of monic poly-

nomial matrices smoothly dependent on a vector of real
parameters p = (p1, . . . , pn). In this work we study be-
havior of a multiple eigenvalue of the monic polynomial
family P (λ).

Key Words: Polynomial matrix, Eigenvalues, Per-
turbation.

1. Introduction

Given a polynomial matrix P (λ) =
∑k

i=0 λiAi

where Ai are square matrices over real or complex field,
it is an important question from both the theoretical
and the practical points of view to know how the eigen-
values and eigenvectors change when the elements of
P (λ) are subjected to small perturbations.

Eigenvalue problem for polynomial matrices
P (λ)v = 0, appears (among many other applications)
modeling physical and engineering problems by means
systems of k-order linear ordinary differential equa-
tions. The values of eigenvalues can correspond among
others, to frequencies of vibration, critical values of
stability parameters, or energy levels of atoms.

The eigenvalues of some matrices are sensitive to
perturbations, it is well know that the eigenvalues of
monic polynomial matrices are continuous functions
of the entries of the matrix coefficients of the poly-
nomial, but Small changes in the matrix elements can
lead to large changes in the multiplicity of eigenval-
ues. For example a little perturbation of the matrix(

λ 1
0 λ

)
as

(
λ 1
ε λ

)
the double eigenvalue λ = 0 is per-

turbed to two different eigenvalues λ = ±√ε changing
completely the structure of the polynomial matrix. Ob-
viously if we consider the perturbation

(
λ 1+ε
0 λ

)
there

are not changes in the structure.

Given a square complex matrix A, it is an impor-
tant question from both the theoretical and the prac-
tical points of view to know how the eigenvalues and
eigenvectors change when the elements of A are sub-
jected to small perturbations. The usual formulation
of the problem introduces a perturbation parameter ε
belonging to some neighborhood of zero, and writes the
perturbed matrix as A+εB for an arbitrary matrix B.
In this situation, it is well known [8] section II.1.2, that
each eigenvalue or eigenvector of A+ εB admits an ex-
pansion in fractional powers of ε, whose zero-th order
term is an eigenvalue or eigenvector of the unperturbed
matrix A.

In this paper, in section 1 we present an overview
over polynomial matrices P (λ) and the analysis of per-
turbation of simple eigenvalue λ0 of P (λ) such that 0
is a simple eigenvalue of the linear map P (λ0). Finally,
in section 3, we study the perturbation of a multiple
eigenvalue with a simple eigenvector of a monic poly-
nomial matrix smoothly depending on parameters.

The study of behavior of simple and multiple eigen-
values of a matrix depending smoothly of parameters
has a great interest for its many applications. Pertur-
bation theory for eigenvalues and eigenvectors of reg-
ular pencils is well established see [1],[10] for example
and for vibrational systems in [9]. In this paper we
extend some of these results to polynomial matrices.
2. Preliminaries

A square polynomial matrix of size n and degree k
is a polynomial of the form

P (λ) =
k∑

i=0

λiAi, A0, . . . , Ak ∈ Mn(F), (1)

where F is the field of real or complex numbers. Our
focus is on monic polynomial matrices. A square poly-
nomial matrix P (λ) is said to be monic if Ak = In is
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identically. The polynomial matrix (1) naturally arises
associated with linear systems of differential equations

Akx(k)(t)+Ak−1x
(k−1)(t)+. . .+A1x

1(t)+A0x(t) = f(t)
(2)

where x(t) is a vector-valued function (unknown) with
n coordinates, x(j)(t) denotes the j-th derivative of x(t)
and f(t) is another vector-valued function with n co-
ordinates. Of particular relevance is the case of linear
systems of second order, appearing in many engineering
applications.

The eigenvalues of a polynomial matrix P (λ) are
the zeros of the nk-degree scalar polynomial detP (λ).

Let λ0 be an eigenvalue of polynomial matrix P (λ),
then there exists a vector v0 6= 0 such that P (λ0)(v0) =
0, this vector is called an eigenvector.

We will call a Jordan chain of length k +1 for P (λ)
corresponding to complex number λ0 to the sequence
of n-dimensional vectors v0, . . . , vk such that

i∑

`=0

1
`!

P (`)(λ0)vi−` = 0, i = 0, . . . , k (3)

where P (`) denotes the `-derivative of P (λ) with re-
spect the variable λ. If λ0 is an eigenvalue there exists
a Jordan chain of length at least 1 formed by the eigen-
vector.

Let λ0 be an eigenvalue of P (λ), then det P t(λ0) =
det P (λ0) = 0, so λ0 is an eigenvalue of P t(λ). For
this eigenvalue there exists an eigenvector u0, that is
P t(λ0)(u0) = 0, equivalently ut

0P (λ0) = 0. The vec-
tor u0 is called left eigenvector corresponding to the
eignevalue λ0 of P (λ).

For more information see [4], or [7] for example.
Let P (λ) =

∑k
i=0 λiAi be now, a polynomial ma-

trix and we assume that the matrices Ai smoothly de-
pend on the vector of real parameters p = (p1, . . . , pr).
The function P (λ; p) =

∑k
i=0 λiAi(p) is called a multi-

parameter family of polynomial matrices. Eigenvalues
of the polynomial matrix function are continuous func-
tions of the vector of parameters. We are going to re-
view the behavior of a simple eigenvalue of the family
of polynomial matrices P (λ; p).

Let λ(p) be a simple eigenvalue of the polynomial
matrix P (λ; p). Since λ(p) is a simple root of the scalar
polynomial det P (λ), we have

∂

∂λ
det P (λ; p) 6= 0. (4)

The expression (4) permit us to make use the im-
plicit function theorem to the equation detP (λ; p) = 0,
and we observe that the eigenvalue λ(p) of the family

of polynomial matrices smoothly depends on the vec-
tor of parameters, and its derivatives with respect to
parameters are

∂λ(p)
∂pi

= −
∂

∂pi
det P (λ; p)

∂

∂λ
detP (λ; p)

, i = 1, . . . , r. (5)

Taking into account that λ(p) is a simple eigenvalue
and that the sum of the lengths of Jordan chains in a
canonical set is the multiplicity of the eigenvalue as zero
of det P (λ; p), we have that the Jordan chains consist
only of the eigenvectors.

The eigenvector v0(p) corresponding to the sim-
ple eigenvalue λ(p) is determined up to a nonzero
scaling factor α. This eigenvector determines a
one-dimensional null-subspace of the matrix operator
P (λ(p); p) smoothly dependent on p. Hence, the eigen-
vector v0(p) can be chosen as a smooth function of the
parameters.

An approximation of the eigenvalues as well of the
corresponding eigenvectors by means their derivatives
is given by the following result.

Theorem 1.

∂λ

∂pi |(λ0;p0)

= −
ut

0

∂P (λ; p)
∂pi |(λ0,p0)

v0(p0)

ut
0P

′(λ0; p0)v0(p0)
(6)

and

∂v0(p)
∂pi |(λ0,p0)

=

−T−1
0

(
∂λ

∂pi
(P ′(λ; p)) +

∂P (λ; p)
∂pi

)

|(λ0,p0)

v0(p0).

(7)
where T0 = P (λ0); p0) + u0u

t
0P

′(λ0; p0), and

∂2λ

∂pi∂pj |(λ0,p0)

= −a

b
,

with

a =(
ut

0

(
∂λ

∂pi

∂λ

∂pj
P ′(λ; p) +

∂λ

∂pi

∂P ′(λ; p)

∂pj

+
∂P ′(λ; p)

∂pi

∂λ

∂pj
+

∂2P (λ; p)

∂pi∂pj

)
v0(p)

+ut
0

(
P ′(λ; p)

∂λ

∂pj
+

∂P (λ; p)

∂pj

)
∂v0

∂pi

+ut
0

(
P ′(λ; p)

∂λ

∂pi
+

∂P (λ; p)

∂pi

)
∂v0

∂pj

)

|(λ0,p0)

,

and
b = ut

0P
′(λ0; p0)v0(p0).
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∂2v0(p)
∂pi∂pj |(λ0,p0)

=

T−1
0

(
∂2λ

∂pi∂pj
P ′(λ; p)v0(p)+

(
∂λ

∂pi

∂λ

∂pj
P ′(λ; p) +

∂λ

∂pi

∂P ′(λ; p)
∂pj

+
∂P ′(λ; p)

∂pi

∂λ

∂pj
+

∂2P (λ; p)
∂pi∂pj

)
v0(p)

+
(

P ′(λ; p)
∂λ

∂pj
+

∂P (λ; p)
∂pj

)
∂v0

∂pi

+
(

P ′(λ; p)
∂λ

∂pi
+

∂P (λ; p)
∂pi

)
∂v0

∂pj

)

|(λ0,p0)

.

The proof is analogous to that given in [9] for ma-
trix pencils and for vibrational systems.
3. Perturbation of eigenvalue of arbitrary mul-
tiplicity with single eigenvector

Let P (λ; p) = λ2I2 + A(p) with A(p) =
(−1 p

p 0

)

be a one parameter family of polynomial matrices. The
eigenvalues are

λi = ±
√

1±
√

1 + 4p2

2
, (8)

that they are branches of one quadruple-valued ana-

lytic function λ(p) =

√
1 +

√
1 + 4p2

2
the exceptional points are:

- p =
1
2
i and the eigenvalues are ±

√
2

2
both being

double.

- p = −1
2
i and the eigenvalues are ±

√
2

2
both being

double.
-p = 0 and the eigenvalues are +1, −1 both being

simple and 0 being double.
We observe that for p = 0, the polynomial matrix

P (λ; p) has a single eigenvector up to a non-zero scaling
factor for the double eigenvalue λ = 0.

We next consider the behavior of the eigenvalues
in the neighborhood of one of the exceptional points.
Concretely we take p = 0. In this case the eigen-
values are not differentiable functions of the param-
eter at p = 0, just where the double eigenvalue ap-
pears. Therefore the analysis of perturbations of multi-
ple eigenvalues with single eigenvector, must be treated
in a different manner.

Let P (λ; p) be a monic polynomial matrix family
and λ0 an eigenvalue of arbitrary multiplicity ` with
single eigenvector up to a non-zero scaling factor at

the point p = p0, then, there exists a Jordan chain v0,
. . ., v`−1 such that

P (λ0, p0)v0 = 0,
P ′(λ0, p0)v0 + P (λ0, p0)v1 = 0,

1
(`− 1)!

P `−1(λ0, p0)v0 + . . . + P (λ0, p0)v`−1 = 0,

(9)
and, there exists a left Jordan chain u0, . . ., u`−1 such
that

ut
0P (λ0, p0) = 0,

ut
0P

′(λ0, p0) + ut
1P (λ0, p0) = 0,

1
(`− 1)!

ut
0P (λ0, p0) + . . . + ut

`−1P (λ0, p0) = 0.

(10)

Remark 1. a) ut
0P

′(λ0, p0)v0 = 0,

b) ut
1P

′(λ0, p0)v0 = 0 ⇔ ut
1P (λ0, p0)v1 = 0 ⇔

ut
0P

′(λ0, p0)v1 = 0,

c) ut
0P

′(λ0; p0)v1 = ut
1P

′(λ0; p0)v0.

In order to analyze the behavior of two eigenvalues
λ(p) that merge to λ0 at p0, we consider a perturba-
tion of the parameter along a smooth curve p = p(ε),
where ε ≥ 0 is a small real perturbation parameter and
p(0) = p0.

Along the curve p(ε) = (p1(ε), . . . , pr(ε)) we have a
one parameter matrix family P (λ, p(ε)), which can be
represented in the form of Taylor expansion

P (λ, p(ε)) = P0 + εP1 + ε2P2 + . . . ,

with P0 = P (λ, p0), P1 =
∑r

i=1

∂P (λ, p(ε))
∂pi

dpi

dε
,

P2 =
1
2

(∑r
i=1

∂P (λ, p(ε))
∂pi

d2pi

dε2
+

∑r
i,j=1

∂2P (λ, p(ε))
∂pi∂pj

dpi

dε

dpj

dε

)
,

where the derivatives are evaluated at p0.
Taking into account that P (λ, p(ε)) =∑k

i=0 λiAi(p(ε) (Ak(p(ε) = In), we have that

P (λ, p(ε)) =
k∑

i=0

λi(Ai0 + εAi1 + ε2Ai2 + . . .) (11)

where Ak0 + εAk1 + ε2Ak2 + . . . = In, A`0 =

A`(p0), A`1 =
∑r

i=1

∂A`(p(ε))
∂pi

dpi

dε
, A`2 =

1
2

(∑r
i=1

∂A`(p(ε))
∂pi

d2pi

dε2
+

∑r
i,j=1

∂2A`(p(ε))
∂pi∂pj

dpi

dε

dpj

dε

)
.

and the derivatives are evaluated at p0.
If λ0 is a `-multiplicity eigenvalue of P (λ; p0) having

a unique eigenvector v0 up to a non-zero scaling factor
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the perturbation theory (see [8], for example) tell us
that the `-fold eigenvalue λ0 generally splits into ` of
simple eigenvalues λ under perturbation of the poly-
nomial matrix P (λ; p0). These eigenvalues λ and the
corresponding eigenvectors v can be represented in the
form of the Puiseux series:

λ = λ0 + ε1/`λ1 + ε2/`λ2 + ε3/`λ3 + ε4/`λ4 + . . .
v = v0 + ε1/`w1 + ε2/`w2 + ε3/`w3 + ε4/`w4 + . . .

(12)

Lemma 1. Let p0 be a point such that λ(p0) = λ0

is a `-multiplicity eigenvalue with single eigenvector
v0(p0) and u0 a corresponding left eigenvector. Then,
[u0]⊥ = ImP (λ0, p0).

Proof. Let z ∈ Im P (λ0, p0), then there exists a vector
x such that P (λ0, p0)x = z. So

ut
0z = ut

0P (λ0, p0)x = 0tx = 0,

consequently Im P (λ0; p0) ⊂ [u0]⊥. And taking into
account that

rank P (λ0, p0) = dim Im P (λ0, p0) = n− 1 = dim[u0]⊥,

we conclude the result.

Corollary 1. With the same conditions as the

previous lemma, we have.
1
`!

ut
0P

`(λ0; p0)v0 +
1

(`− 1)!
ut

0P
`−1(λ0; p0)v1 + . . . + ut

0P
′(λ0; p0)v`−1 6= 0.

Proof. Suppose
1
`!

ut
0P

`(λ0; p0)v0+. . .+ut
0P

′(λ0; p0)v`−1

6= 0. Then
1
`!

P `(λ0; p0)v0 +
1

(`− 1)!
P `−1(λ0; p0)v1+

. . . + P ′(λ0; p0)v`−1 ∈ Im P (λ0, p0), and
1
`!

P `(λ0; p0)v0

+
1

(`− 1)!
P `−1(λ0; p0)v1 + . . . + P ′(λ0; p0)v`−1 =

P (λ0; p0)x. Equivalently:

1
`!

P `(λ0; p0)v0 +
1

(`− 1)!
P `−1(λ0; p0)v1 + . . .

+P ′(λ0; p0)v`−1 + P (λ0; p0)(−x) = 0,
(13)

but the Jordan chains of the P (λ; p0) for λ = λ0 are
length `, so there is no vector x verifying (13).

4-1. Perturbation of double eigenvalue with sin-
gle eigenvector

Firstly and for a more understanding, we analyze
the case where ` = 2

Substituting (12) into (11) we obtain

P (λ; p(ε)) =

(λk
0In + λk−1

0 Ak−10 + . . . + λ0A10 + A00)+

ε1/2(kλk−1
0 λ1In + (k − 1)λk−2

0 λ1Ak−10 + . . . + λ1A10)+

ε((kλk−1
0 λ2 +

1

2
k(k − 1)λ0λ

2
1)In + ((k − 1)λk−2

0 λ2+

1

2
(k − 1)(k − 2)λ0λ

2
1)Ak−10 + λk−1

0 Ak−11+

λ2A10 + λ0A11 + . . . + A01) + . . .

If v is an eigenvector for the eigenvalue λ, we have
that

P (λ; p(ε))v = P (λ; p(ε))(v0 + ε1/2w1 + εw2 + . . .) = 0.

Then, we find the chain of equations for the unknowns
λ1, λ2, . . . and w1, w2, . . ..

P (λ0, p0)v0 = 0, (14)

λ1P
′(λ0; p0)v0 + P (λ0; p0)w1 = 0, (15)

P (λ0; p0)w2 + λ1P
′(λ0; p0)w1 +

1
2
λ2

1P
′′(λ0; p0)v0+

λ2P
′(λ0; p0)v0 + P1(λ0; p0)v0 = 0,

(16)

P (λ0; p0)w3 + λ1P
′(λ0; p0)w2 +

1

2
λ2

1P
′′(λ0; p0)w1+

λ2P
′(λ0; p0)w1 + P1(λ0; p0)w1 + λ1λ2P

′′(λ0; p0)v0+

λ3
1

1

3!
P ′′′(λ0; p0)v0 + λ3P

′(λ0; p0)v0 + λ1P
′
1(λ0; p0)v0 = 0,

(17)

where P1(λ0; p0) = λk−1
0 Ak−11 + λ0Ak−21 + . . . +

λ0A11 + A01.
Equation (14) is satisfied because v0 is an eigen-

vector corresponding to the eigenvalue λ0. Compar-
ing equation (15) with (3) for i = 1 we observe that
w1 = λ1v1 + βv0 for all β is a solution, we take
w1 = λ1v1.

To find the value of λ1 we premultiply equation (16)
by ut

0, using the given value for w1 and taking into
account ut

0P (λ0; p0) = 0 and ut
0P

′(λ0; p0)v0 = 0 we
obtain

λ2
1(u

t
0P

′(λ0; p0)v1 +
1

2
ut

0P
′′(λ0; p0)v0)+ut

0P1(λ0; p0)v0 = 0.

Taking into account corollary 1 we can find

λ1 = ±
√√√√ −ut

0P1(λ0; p0)v0

ut
0P

′(λ0; p0)v1 +
1
2
ut

0P
′′(λ0; p0)v0

. (18)

If ut
0P1(λ0; p0)v0 6= 0 we have two values of λ1 that

determine leading terms in expansions for two different
eigenvalues λ that bifurcate from the double eigenvalue
λ0.

Recent Researches in System Science

ISBN: 978-1-61804-023-7 103



Suppose then, that ut
0P1(λ0; p0)v0 6= 0. Premulti-

plying (17) by ut
0,

λ1u
t
0P

′(λ0, p0)w2 +
1

2
λ3

1u
t
0P

′′(λ0; p0)v1+

λ1λ2u
t
0P

′(λ0; p0)v1 + λ1u
t
0P1(λ0; p0)v1+

λ1λ2u
t
0P

′′(λ0; p0)v0 + λ3
1

1

3!
ut

0P
′′′(λ0; p0)v0+

λ1u
t
0P

′
1(λ0; p0)v0 = 0.

Premultiplying (16) by ut
1 and according to 1, we

have:

ut
0P

′(λ0; p0)w2 =

λ1u
t
1P

′(λ0; p0)w1 +
1
2
λ2

1u
t
1P

′′(λ0; p0)v0+

λ2u
t
1P

′(λ0; p0)v0 + ut
1P1(λ0; p0)v0.

So, taking into account (18)

λ1λ2(2ut
0P

′(λ0; p0)v1 + ut
0P

′′(λ; p0)v0) =

−(λ3
1(u

t
1P

′(λ0; p0)v1 +
1

2
ut

1P
′′(λ0; p0)v0 +

1

2
ut

0P
′′(λ0; p0)v1

+
1

3!
ut

0P
′′′(λ0; p0)v0) + λ1(u

t
1P1(λ0; p0)v0+

ut
0P1(λ0; p0)v1 + ut

0P
′
1(λ0; p0)v0))

Since λ1(ut
0P

′(λ0; p0)v1 +
1
2
ut

0P
′′(λ0; p0)v0) 6= 0 we

obtain

λ2= −
λ2

1(
1

2
ut

0P
′′(λ0; p0)v1+

1

3!
ut

0P
′′′(λ0; p0)v0

2(ut
0P

′(λ0; p0)v1 +
1

2
ut

0P
′′(λ0; p0)v0)

−
λ2

1(u
t
1P

′(λ0; p0)v1+
1

2
ut

1P
′′(λ0; p0)v0)

2(ut
0P

′(λ0; p0)v1 +
1

2
ut

0P
′′(λ0; p0)v0)

+
ut

0P1(λ0; p0)v1 + ut
0P

′
1(λ0; p0)v0 + ut

1P1(λ0; p0)v0

2(ut
0P

′(λ0; p0)v1 +
1

2
ut

0P
′′(λ0; p0)v0)

.

(19)

Now, we can compute w2. We have

P (λ0; p0)w2 = −λ1P
′(λ0; p0)w1 − 1

2
λ2

1P
′′(λ0; p0)v0−

λ2P
′(λ0; p0)v0 + P1(λ0; p0)v0

(20)

Lemma 2. Following condition ut
0P1(λ0; p0)v0 6= 0 we

have that P (λ0; p0) + u0u
t
0P1(λ0; p0)v0v

t
0 is an invert-

ible matrix.

Proof. Let x = αv0 + w with w ∈ [v0]⊥, be
a vector in the null space, then (P (λ0; p0) +
u0u

t
0P1(λ0; p0)v0v

t
0)x = 0.

Premultiplying by ut
0 we have

ut
0(P (λ0; p0) + u0u

t
0P1(λ0; p0)v0v

t
0)x = 0,

0 = u0u
t
0P1(λ0; p0)v0v

t
0(αv0 + w) =

|α|‖u0‖2‖v0‖2ut
0P1(λ0; p0)v0.

Then α = 0.
Consequently, x = w ∈ [v0]⊥ and x ∈

Keru0u
t
0P1(λ0; p0)v0v

t
0, so x ∈ KerP (λ0; p0) and x =

βv0, but x ∈ [v0]⊥, then β = 0.

Now we consider the normalization condition
vt
0w2 = 0, and adding u0u

t
0P1(λ0; p0)v0v

t
0 from the left

to equation (20) and using lemma 2, we find vector w2.
Using these calculations we have the following the-

orem.

Theorem 2. Let λ0 be a double eigenvalue of the poly-
nomial matrix P (λ; p0), with a single eigenvector up to
a non-zero scaling factor, and let v0, v1 be a Jordan
chain and u0, u1 a left Jordan chain. We consider a
perturbation of the parameter vector along the curve
p(ε) starting at p0 satisfying the condition λ1 6= 0.

Then, the double eigenvalue λ0 bifurcates into two
simple eigenvalues given by the relation

λ = λ0 + ε1/2λ1 + ελ2 + o(ε),

with λ1 and λ2 as (18) and (19) respectively.

4-2. Perturbation of a `-multiplicity eigenvalue
with single eigenvector

Now, we analyze the general case.
Analogously, substituting (12) into (11) we obtain

P (λ; p(ε)) = (λ0 + ε1/`λ1 + ε2/`λ2 + . . . + ελ` + . . .)kIn+

(λ0 + ε1/`λ1 + . . .)k−1(Ak−10 + . . . + ε`Ak−1` + . . .)+
. . . +

(λ0 + ε1/`λ1 + ε2/`λ2 + . . .)(A10 + εA11 + ε2A12 + . . .)+
A00 + εA01 + ε2A02 + . . . =

(λk
0In + λk−1

0 Ak−10 + . . . + λ0A10 + A00)+

ε1/`(kλk−1
0 λ1In + (k − 1)λk−2

0 λ1Ak−10 + . . . + λ1A10)+

ε2/`((kλk−1
0 λ2 +

1

2
k(k − 1)λ0λ

2
1)In + ((k − 1)λk−2

0 λ2+

1

2
(k − 1)(k − 2)λ0λ

2
1)Ak−10 + . . . + λ2A10) + . . .

If v is an eigenvector for the eigenvalue λ we have
that

P (λ; p(ε))v = P (λ; p(ε))(v0+ε1/`w1+ε2/`w2+ . . .) = 0

Then, we find the chain of equations for the unknowns
λ1, λ2, . . . and w1, w2, . . ..

P (λ0, p0)v0 = 0, (21)

λ1P
′(λ0; p0)v0 + P (λ0; p0)w1 = 0, (22)

P (λ0; p0)w2 + λ1P
′(λ0; p0)w1+

1
2
λ2

1P
′′(λ0; p0)v0 + λ2P

′(λ0; p0)v0 = 0,
(23)
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λ3P
′(λ0, p0)v0 +

1
3!

λ3
1P

′′′(λ0; p0)v0+
1
2
λ1λ2P

′′(λ0; p0)v0 + λ2P
′(λ0; p0)w1+

1
2
λ2

1P
′′(λ0; p0)w1 + λ1P

′(λ0; p0)w2 + P (λ0; p0)w3=0,

(24)
. . .

P (λ0; p0)w` + λ1P
′(λ0; p0)w`−1+

1
2
λ2

1P
′′(λ0; p0)w`−2 + λ2P

′(λ0; p0)w1 + . . . +

λ`−1P
′(λ0; p0)w1 + P1(λ0; p0)v0 = 0,

(25)

where P1(λ0; p0) = λk−1
0 Ak−11 + λ0Ak−21 + . . . +

λ0A11 + A01.
Equation (21) is satisfied because v0 is an eigen-

vector corresponding to the eigenvalue λ0. Compar-
ing equation (22) with (3) for i = 1 we observe that
w1 = λ1v1 +βv0 is a solution, comparing equation (23)
with (3) for i = 2 w2 = λ2

1v2 + λ2v1 is a solution,
following in this sense w3 = λ3

1v3 + λ1λ2v2 + λ3v1 etc.

Theorem 3. Let λ0 be a `-multiplicity eigenvalue of
the polynomial matrix P (λ; p0), with a single eigenvec-
tor up to a non-zero scaling factor, and let v0, . . . , v`−1

be a Jordan chain and u0, . . . , u`−1 a left Jordan
chain. We consider a perturbation of the parameter
vector along the curve p(ε) starting at p0. Suppose
ut

0P1(λ0; p0)v0 6= 0, then, the eigenvalue λ0 bifurcates
into ` simple eigenvalues given by the relation

λ = λ0 + ε1/`λ1 + o(ε),

with

λ1 = `

√√√√ −ut
0P1(λ0; p0)v0

1
`!

ut
0P

`(λ0; p0)v0 + . . . + ut
0P

′(λ0; p0)v`−1

.

Remark 2. Condition ut
0P1(λ0; p0)v0 6= 0 holds for

almost all perturbations.

Proof. To find the value of λ1 using w1 = λ1v1 + βv0

in equation (16) and premultiply it by ut
0 and tak-

ing into account remark 1 and normalization condition
ut

0P
′(λ0; p0)vi = 0, we obtain

λ`
1(

1
`!

ut
0P

`(λ0; p0)v0 +
1

(`− 1)!
ut

0P
`−1(λ0; p0)v1+

. . . + ut
0P

′(λ0; p0)v`−1) + ut
0P1(λ0; p0)v0 = 0.

Now, corollary 1 ensures the result.

5. Conclusion

In this paper the perturbation of a multiple eigen-
value with a simple eigenvector of a monic polynomial
matrix smoothly depending on parameters is analyzed.
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