# Perturbation analysis of eigenvalues of polynomial matrices smoothly depending on parameters 

M. Isabel García-Planas, Sonia Tarragona<br>Departament de Matemática Aplicada I<br>Universitat Politècnica de Catalunya, C. Minería 1, Esc C, $1^{0}-3^{\text {a }}$<br>08038 Barcelona, Spain<br>E-mail: maria.isabel.garcia@upc.edu


#### Abstract

Let $P(\lambda)=\sum_{i=0}^{k} \lambda^{i} A_{i}(p)$ be a family of monic polynomial matrices smoothly dependent on a vector of real parameters $p=\left(p_{1}, \ldots, p_{n}\right)$. In this work we study behavior of a multiple eigenvalue of the monic polynomial family $P(\lambda)$.


Key Words: Polynomial matrix, Eigenvalues, Perturbation.

## 1. Introduction

Given a polynomial matrix $P(\lambda)=\sum_{i=0}^{k} \lambda^{i} A_{i}$ where $A_{i}$ are square matrices over real or complex field, it is an important question from both the theoretical and the practical points of view to know how the eigenvalues and eigenvectors change when the elements of $P(\lambda)$ are subjected to small perturbations.

Eigenvalue problem for polynomial matrices $P(\lambda) v=0$, appears (among many other applications) modeling physical and engineering problems by means systems of $k$-order linear ordinary differential equations. The values of eigenvalues can correspond among others, to frequencies of vibration, critical values of stability parameters, or energy levels of atoms.

The eigenvalues of some matrices are sensitive to perturbations, it is well know that the eigenvalues of monic polynomial matrices are continuous functions of the entries of the matrix coefficients of the polynomial, but Small changes in the matrix elements can lead to large changes in the multiplicity of eigenvalues. For example a little perturbation of the matrix $\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right)$ as $\left(\begin{array}{ll}\lambda & 1 \\ \varepsilon & \lambda\end{array}\right)$ the double eigenvalue $\lambda=0$ is perturbed to two different eigenvalues $\lambda= \pm \sqrt{\varepsilon}$ changing completely the structure of the polynomial matrix. Obviously if we consider the perturbation $\left(\begin{array}{cc}\lambda & 1+\varepsilon \\ 0 & \lambda\end{array}\right)$ there are not changes in the structure.

Given a square complex matrix $A$, it is an important question from both the theoretical and the practical points of view to know how the eigenvalues and eigenvectors change when the elements of $A$ are subjected to small perturbations. The usual formulation of the problem introduces a perturbation parameter $\varepsilon$ belonging to some neighborhood of zero, and writes the perturbed matrix as $A+\varepsilon B$ for an arbitrary matrix $B$. In this situation, it is well known [8] section II.1.2, that each eigenvalue or eigenvector of $A+\varepsilon B$ admits an expansion in fractional powers of $\varepsilon$, whose zero-th order term is an eigenvalue or eigenvector of the unperturbed matrix $A$.

In this paper, in section 1 we present an overview over polynomial matrices $P(\lambda)$ and the analysis of perturbation of simple eigenvalue $\lambda_{0}$ of $P(\lambda)$ such that 0 is a simple eigenvalue of the linear map $P\left(\lambda_{0}\right)$. Finally, in section 3 , we study the perturbation of a multiple eigenvalue with a simple eigenvector of a monic polynomial matrix smoothly depending on parameters.

The study of behavior of simple and multiple eigenvalues of a matrix depending smoothly of parameters has a great interest for its many applications. Perturbation theory for eigenvalues and eigenvectors of regular pencils is well established see [1],[10] for example and for vibrational systems in [9]. In this paper we extend some of these results to polynomial matrices.

## 2. Preliminaries

A square polynomial matrix of size $n$ and degree $k$ is a polynomial of the form

$$
\begin{equation*}
P(\lambda)=\sum_{i=0}^{k} \lambda^{i} A_{i}, \quad A_{0}, \ldots, A_{k} \in M_{n}(\mathbb{F}) \tag{1}
\end{equation*}
$$

where $\mathbb{F}$ is the field of real or complex numbers. Our focus is on monic polynomial matrices. A square polynomial matrix $P(\lambda)$ is said to be monic if $A_{k}=I_{n}$ is
identically. The polynomial matrix (1) naturally arises associated with linear systems of differential equations

$$
\begin{equation*}
A_{k} x^{(k)}(t)+A_{k-1} x^{(k-1)}(t)+\ldots+A_{1} x^{1}(t)+A_{0} x(t)=f(t) \tag{2}
\end{equation*}
$$

where $x(t)$ is a vector-valued function (unknown) with $n$ coordinates, $x^{(j)}(t)$ denotes the $j$-th derivative of $x(t)$ and $f(t)$ is another vector-valued function with $n$ coordinates. Of particular relevance is the case of linear systems of second order, appearing in many engineering applications.

The eigenvalues of a polynomial matrix $P(\lambda)$ are the zeros of the $n k$-degree scalar polynomial $\operatorname{det} P(\lambda)$.

Let $\lambda_{0}$ be an eigenvalue of polynomial matrix $P(\lambda)$, then there exists a vector $v_{0} \neq 0$ such that $P\left(\lambda_{0}\right)\left(v_{0}\right)=$ 0 , this vector is called an eigenvector.

We will call a Jordan chain of length $k+1$ for $P(\lambda)$ corresponding to complex number $\lambda_{0}$ to the sequence of $n$-dimensional vectors $v_{0}, \ldots, v_{k}$ such that

$$
\begin{equation*}
\sum_{\ell=0}^{i} \frac{1}{\ell!} P^{(\ell)}\left(\lambda_{0}\right) v_{i-\ell}=0, \quad i=0, \ldots, k \tag{3}
\end{equation*}
$$

where $P^{(\ell)}$ denotes the $\ell$-derivative of $P(\lambda)$ with respect the variable $\lambda$. If $\lambda_{0}$ is an eigenvalue there exists a Jordan chain of length at least 1 formed by the eigenvector.

Let $\lambda_{0}$ be an eigenvalue of $P(\lambda)$, then $\operatorname{det} P^{t}\left(\lambda_{0}\right)=$ $\operatorname{det} P\left(\lambda_{0}\right)=0$, so $\lambda_{0}$ is an eigenvalue of $P^{t}(\lambda)$. For this eigenvalue there exists an eigenvector $u_{0}$, that is $P^{t}\left(\lambda_{0}\right)\left(u_{0}\right)=0$, equivalently $u_{0}^{t} P\left(\lambda_{0}\right)=0$. The vector $u_{0}$ is called left eigenvector corresponding to the eignevalue $\lambda_{0}$ of $P(\lambda)$.

For more information see [4], or [7] for example.
Let $P(\lambda)=\sum_{i=0}^{k} \lambda^{i} A_{i}$ be now, a polynomial matrix and we assume that the matrices $A_{i}$ smoothly depend on the vector of real parameters $p=\left(p_{1}, \ldots, p_{r}\right)$. The function $P(\lambda ; p)=\sum_{i=0}^{k} \lambda^{i} A_{i}(p)$ is called a multiparameter family of polynomial matrices. Eigenvalues of the polynomial matrix function are continuous functions of the vector of parameters. We are going to review the behavior of a simple eigenvalue of the family of polynomial matrices $P(\lambda ; p)$.

Let $\lambda(p)$ be a simple eigenvalue of the polynomial matrix $P(\lambda ; p)$. Since $\lambda(p)$ is a simple root of the scalar polynomial $\operatorname{det} P(\lambda)$, we have

$$
\begin{equation*}
\frac{\partial}{\partial \lambda} \operatorname{det} P(\lambda ; p) \neq 0 \tag{4}
\end{equation*}
$$

The expression (4) permit us to make use the implicit function theorem to the equation $\operatorname{det} P(\lambda ; p)=0$, and we observe that the eigenvalue $\lambda(p)$ of the family
of polynomial matrices smoothly depends on the vector of parameters, and its derivatives with respect to parameters are

$$
\begin{equation*}
\frac{\partial \lambda(p)}{\partial p_{i}}=-\frac{\frac{\partial}{\partial p_{i}} \operatorname{det} P(\lambda ; p)}{\frac{\partial}{\partial \lambda} \operatorname{det} P(\lambda ; p)}, \quad i=1, \ldots, r \tag{5}
\end{equation*}
$$

Taking into account that $\lambda(p)$ is a simple eigenvalue and that the sum of the lengths of Jordan chains in a canonical set is the multiplicity of the eigenvalue as zero of $\operatorname{det} P(\lambda ; p)$, we have that the Jordan chains consist only of the eigenvectors.

The eigenvector $v_{0}(p)$ corresponding to the simple eigenvalue $\lambda(p)$ is determined up to a nonzero scaling factor $\alpha$. This eigenvector determines a one-dimensional null-subspace of the matrix operator $P(\lambda(p) ; p)$ smoothly dependent on $p$. Hence, the eigenvector $v_{0}(p)$ can be chosen as a smooth function of the parameters.

An approximation of the eigenvalues as well of the corresponding eigenvectors by means their derivatives is given by the following result.

## Theorem 1.

$$
\begin{equation*}
\frac{\partial \lambda}{\partial p_{i} \mid\left(\lambda_{0} ; p_{0}\right)}=-\frac{\left.u_{0}^{t} \frac{\partial P(\lambda ; p)}{\partial p_{i}} \right\rvert\,\left(\lambda_{0}, p_{0}\right)}{} v_{0}\left(p_{0}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{\partial v_{0}(p)}{\partial p_{i}} \\
& -T_{0}^{-1}\left(\frac{\partial \lambda}{\partial p_{i}}\left(P^{\prime}(\lambda ; p)\right)+\frac{\partial P(\lambda ; p)}{\partial p_{i}}\right)_{\mid\left(\lambda_{0}, p_{0}\right)} v_{0}\left(p_{0}\right) \tag{7}
\end{align*}
$$

where $\left.T_{0}=P\left(\lambda_{0}\right) ; p_{0}\right)+u_{0} u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right)$, and

$$
\frac{\partial^{2} \lambda}{\partial p_{i} \partial p_{j \mid\left(\lambda_{0}, p_{0}\right)}}=-\frac{a}{b}
$$

with

$$
\begin{aligned}
& a= \\
& \begin{aligned}
&\left(u_{0}^{t}\right.\left(\frac{\partial \lambda}{\partial p_{i}} \frac{\partial \lambda}{\partial p_{j}} P^{\prime}(\lambda ; p)+\frac{\partial \lambda}{\partial p_{i}} \frac{\partial P^{\prime}(\lambda ; p)}{\partial p_{j}}\right. \\
&\left.\quad+\frac{\partial P^{\prime}(\lambda ; p)}{\partial p_{i}} \frac{\partial \lambda}{\partial p_{j}}+\frac{\partial^{2} P(\lambda ; p)}{\partial p_{i} \partial p_{j}}\right) v_{0}(p) \\
&+u_{0}^{t}\left(P^{\prime}(\lambda ; p) \frac{\partial \lambda}{\partial p_{j}}+\frac{\partial P(\lambda ; p)}{\partial p_{j}}\right) \frac{\partial v_{0}}{\partial p_{i}} \\
&\left.\quad+u_{0}^{t}\left(P^{\prime}(\lambda ; p) \frac{\partial \lambda}{\partial p_{i}}+\frac{\partial P(\lambda ; p)}{\partial p_{i}}\right) \frac{\partial v_{0}}{\partial p_{j}}\right)_{\mid\left(\lambda_{0}, p_{0}\right)}
\end{aligned}
\end{aligned}
$$

and

$$
b=u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{0}\left(p_{0}\right)
$$

$$
\begin{aligned}
& \frac{\partial^{2} v_{0}(p)}{\partial p_{i} \partial p_{j}}{ }_{\mid\left(\lambda_{0}, p_{0}\right)}= \\
& T_{0}^{-1}\left(\frac{\partial^{2} \lambda}{\partial p_{i} \partial p_{j}} P^{\prime}(\lambda ; p) v_{0}(p)+\right. \\
& \quad\left(\frac{\partial \lambda}{\partial p_{i}} \frac{\partial \lambda}{\partial p_{j}} P^{\prime}(\lambda ; p)+\frac{\partial \lambda}{\partial p_{i}} \frac{\partial P^{\prime}(\lambda ; p)}{\partial p_{j}}\right. \\
& \left.\quad+\frac{\partial P^{\prime}(\lambda ; p)}{\partial p_{i}} \frac{\partial \lambda}{\partial p_{j}}+\frac{\partial^{2} P(\lambda ; p)}{\partial p_{i} \partial p_{j}}\right) v_{0}(p) \\
& +\left(P^{\prime}(\lambda ; p) \frac{\partial \lambda}{\partial p_{j}}+\frac{\partial P(\lambda ; p)}{\partial p_{j}}\right) \frac{\partial v_{0}}{\partial p_{i}} \\
& \left.\quad+\left(P^{\prime}(\lambda ; p) \frac{\partial \lambda}{\partial p_{i}}+\frac{\partial P(\lambda ; p)}{\partial p_{i}}\right) \frac{\partial v_{0}}{\partial p_{j}}\right)_{\mid\left(\lambda_{0}, p_{0}\right)} .
\end{aligned}
$$

The proof is analogous to that given in [9] for matrix pencils and for vibrational systems.

## 3. Perturbation of eigenvalue of arbitrary multiplicity with single eigenvector

$$
\text { Let } P(\lambda ; p)=\lambda^{2} I_{2}+A(p) \text { with } A(p)=\left(\begin{array}{cc}
-1 & p \\
p & 0
\end{array}\right)
$$ be a one parameter family of polynomial matrices. The eigenvalues are

$$
\begin{equation*}
\lambda_{i}= \pm \sqrt{\frac{1 \pm \sqrt{1+4 p^{2}}}{2}} \tag{8}
\end{equation*}
$$

that they are branches of one quadruple-valued analytic function $\lambda(p)=\sqrt{\frac{1+\sqrt{1+4 p^{2}}}{2}}$
the exceptional points are:

- $p=\frac{1}{2} i$ and the eigenvalues are $\pm \frac{\sqrt{2}}{2}$ both being double.
$-p=-\frac{1}{2} i$ and the eigenvalues are $\pm \frac{\sqrt{2}}{2}$ both being double.
$-p=0$ and the eigenvalues are $+1,-1$ both being simple and 0 being double.

We observe that for $p=0$, the polynomial matrix $P(\lambda ; p)$ has a single eigenvector up to a non-zero scaling factor for the double eigenvalue $\lambda=0$.

We next consider the behavior of the eigenvalues in the neighborhood of one of the exceptional points. Concretely we take $p=0$. In this case the eigenvalues are not differentiable functions of the parameter at $p=0$, just where the double eigenvalue appears. Therefore the analysis of perturbations of multiple eigenvalues with single eigenvector, must be treated in a different manner.

Let $P(\lambda ; p)$ be a monic polynomial matrix family and $\lambda_{0}$ an eigenvalue of arbitrary multiplicity $\ell$ with single eigenvector up to a non-zero scaling factor at
the point $p=p_{0}$, then, there exists a Jordan chain $v_{0}$, $\ldots, v_{\ell-1}$ such that

$$
\begin{gather*}
P\left(\lambda_{0}, p_{0}\right) v_{0}=0 \\
P^{\prime}\left(\lambda_{0}, p_{0}\right) v_{0}+P\left(\lambda_{0}, p_{0}\right) v_{1}=0 \\
\frac{1}{(\ell-1)!} P^{\ell-1}\left(\lambda_{0}, p_{0}\right) v_{0}+\ldots+P\left(\lambda_{0}, p_{0}\right) v_{\ell-1}=0 \tag{9}
\end{gather*}
$$

and, there exists a left Jordan chain $u_{0}, \ldots, u_{\ell-1}$ such that

$$
\begin{gather*}
u_{0}^{t} P\left(\lambda_{0}, p_{0}\right)=0 \\
u_{0}^{t} P^{\prime}\left(\lambda_{0}, p_{0}\right)+u_{1}^{t} P\left(\lambda_{0}, p_{0}\right)=0 \\
\frac{1}{(\ell-1)!} u_{0}^{t} P\left(\lambda_{0}, p_{0}\right)+\ldots+u_{\ell-1}^{t} P\left(\lambda_{0}, p_{0}\right)=0 \tag{10}
\end{gather*}
$$

Remark 1. a) $u_{0}^{t} P^{\prime}\left(\lambda_{0}, p_{0}\right) v_{0}=0$,
b) $u_{1}^{t} P^{\prime}\left(\lambda_{0}, p_{0}\right) v_{0}=0 \Leftrightarrow u_{1}^{t} P\left(\lambda_{0}, p_{0}\right) v_{1}=0 \Leftrightarrow$ $u_{0}^{t} P^{\prime}\left(\lambda_{0}, p_{0}\right) v_{1}=0$,
c) $u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{1}=u_{1}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{0}$.

In order to analyze the behavior of two eigenvalues $\lambda(p)$ that merge to $\lambda_{0}$ at $p_{0}$, we consider a perturbation of the parameter along a smooth curve $p=p(\varepsilon)$, where $\varepsilon \geq 0$ is a small real perturbation parameter and $p(0)=p_{0}$.

Along the curve $p(\varepsilon)=\left(p_{1}(\varepsilon), \ldots, p_{r}(\varepsilon)\right)$ we have a one parameter matrix family $P(\lambda, p(\varepsilon))$, which can be represented in the form of Taylor expansion

$$
P(\lambda, p(\varepsilon))=P_{0}+\varepsilon P_{1}+\varepsilon^{2} P_{2}+\ldots
$$

with $P_{0}=P\left(\lambda, p_{0}\right), P_{1}=\sum_{i=1}^{r} \frac{\partial P(\lambda, p(\varepsilon))}{\partial p_{i}} \frac{d p_{i}}{d \varepsilon}$,

$$
\begin{aligned}
& P_{2}= \frac{1}{2} \\
&\left(\sum_{i=1}^{r} \frac{\partial P(\lambda, p(\varepsilon))}{\partial p_{i}} \frac{d^{2} p_{i}}{d \varepsilon^{2}}+\right. \\
&\left.\sum_{i, j=1}^{r} \frac{\partial^{2} P(\lambda, p(\varepsilon))}{\partial p_{i} \partial p_{j}} \frac{d p_{i}}{d \varepsilon} \frac{d p_{j}}{d \varepsilon}\right),
\end{aligned}
$$

where the derivatives are evaluated at $p_{0}$.
Taking into account that $P(\lambda, p(\varepsilon))=$ $\sum_{i=0}^{k} \lambda i A_{i}\left(p(\varepsilon)\left(A_{k}\left(p(\varepsilon)=I_{n}\right)\right.\right.$, we have that

$$
\begin{equation*}
P(\lambda, p(\varepsilon))=\sum_{i=0}^{k} \lambda^{i}\left(A_{i_{0}}+\varepsilon A_{i_{1}}+\varepsilon^{2} A_{i_{2}}+\ldots\right) \tag{11}
\end{equation*}
$$

where $A_{k_{0}}+\varepsilon A_{k_{1}}+\varepsilon^{2} A_{k_{2}}+\ldots=I_{n}, A_{\ell_{0}}=$ $A_{\ell}\left(p_{0}\right), \quad A_{\ell_{1}}=\sum_{i=1}^{r} \frac{\partial A_{\ell}(p(\varepsilon))}{\partial p_{i}} \frac{d p_{i}}{d \varepsilon}, \quad A_{\ell_{2}}=$ $\frac{1}{2}\left(\sum_{i=1}^{r} \frac{\partial A_{\ell}(p(\varepsilon))}{\partial p_{i}} \frac{d^{2} p_{i}}{d \varepsilon^{2}}+\sum_{i, j=1}^{r} \frac{\partial^{2} A_{\ell}(p(\varepsilon))}{\partial p_{i} \partial p_{j}} \frac{d p_{i}}{d \varepsilon} \frac{d p_{j}}{d \varepsilon}\right)$. and the derivatives are evaluated at $p_{0}$.

If $\lambda_{0}$ is a $\ell$-multiplicity eigenvalue of $P\left(\lambda ; p_{0}\right)$ having a unique eigenvector $v_{0}$ up to a non-zero scaling factor
the perturbation theory (see [8], for example) tell us that the $\ell$-fold eigenvalue $\lambda_{0}$ generally splits into $\ell$ of simple eigenvalues $\lambda$ under perturbation of the polynomial matrix $P\left(\lambda ; p_{0}\right)$. These eigenvalues $\lambda$ and the corresponding eigenvectors $v$ can be represented in the form of the Puiseux series:

$$
\begin{align*}
& \lambda=\lambda_{0}+\varepsilon^{1 / \ell} \lambda_{1}+\varepsilon^{2 / \ell} \lambda_{2}+\varepsilon^{3 / \ell} \lambda_{3}+\varepsilon^{4 / \ell} \lambda_{4}+\ldots \\
& v=v_{0}+\varepsilon^{1 / \ell} w_{1}+\varepsilon^{2 / \ell} w_{2}+\varepsilon^{3 / \ell} w_{3}+\varepsilon^{4 / \ell} w_{4}+\ldots \tag{12}
\end{align*}
$$

Lemma 1. Let $p_{0}$ be a point such that $\lambda\left(p_{0}\right)=\lambda_{0}$ is a $\ell$-multiplicity eigenvalue with single eigenvector $v_{0}\left(p_{0}\right)$ and $u_{0}$ a corresponding left eigenvector. Then, $\left[u_{0}\right]^{\perp}=\operatorname{Im} P\left(\lambda_{0}, p_{0}\right)$.

Proof. Let $z \in \operatorname{Im} P\left(\lambda_{0}, p_{0}\right)$, then there exists a vector $x$ such that $P\left(\lambda_{0}, p_{0}\right) x=z$. So

$$
u_{0}^{t} z=u_{0}^{t} P\left(\lambda_{0}, p_{0}\right) x=0^{t} x=0
$$

consequently $\operatorname{Im} P\left(\lambda_{0} ; p_{0}\right) \subset\left[u_{0}\right]^{\perp}$. And taking into account that
$\operatorname{rank} P\left(\lambda_{0}, p_{0}\right)=\operatorname{dim} \operatorname{Im} P\left(\lambda_{0}, p_{0}\right)=n-1=\operatorname{dim}\left[u_{0}\right]^{\perp}$, we conclude the result.

Corollary 1. With the same conditions as the previous lemma, we have. $\frac{1}{\ell!} u_{0}^{t} P^{\ell}\left(\lambda_{0} ; p_{0}\right) v_{0}+$ $\frac{1}{(\ell-1)!} u_{0}^{t} P^{\ell-1}\left(\lambda_{0} ; p_{0}\right) v_{1}+\ldots+u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{\ell-1} \neq 0$. Proof. Suppose $\frac{1}{\ell!} u_{0}^{t} P^{\ell}\left(\lambda_{0} ; p_{0}\right) v_{0}+\ldots+u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{\ell-1}$ $\neq 0$. Then $\frac{1}{\ell!} P^{\ell}\left(\lambda_{0} ; p_{0}\right) v_{0}+\frac{1}{(\ell-1)!} P^{\ell-1}\left(\lambda_{0} ; p_{0}\right) v_{1}+$ $\ldots+P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{\ell-1} \in \operatorname{Im} P\left(\lambda_{0}, p_{0}\right)$, and $\frac{1}{\ell!} P^{\ell}\left(\lambda_{0} ; p_{0}\right) v_{0}$ $+\frac{1}{(\ell-1)!} P^{\ell-1}\left(\lambda_{0} ; p_{0}\right) v_{1}+\ldots+P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{\ell-1}=$ $P\left(\lambda_{0} ; p_{0}\right) x$. Equivalently:

$$
\begin{align*}
& \frac{1}{\ell!} P^{\ell}\left(\lambda_{0} ; p_{0}\right) v_{0}+\frac{1}{(\ell-1)!} P^{\ell-1}\left(\lambda_{0} ; p_{0}\right) v_{1}+\ldots  \tag{13}\\
& +P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{\ell-1}+P\left(\lambda_{0} ; p_{0}\right)(-x)=0
\end{align*}
$$

but the Jordan chains of the $P\left(\lambda ; p_{0}\right)$ for $\lambda=\lambda_{0}$ are length $\ell$, so there is no vector $x$ verifying (13).

## 4-1. Perturbation of double eigenvalue with single eigenvector

Firstly and for a more understanding, we analyze the case where $\ell=2$

Substituting (12) into (11) we obtain

$$
\begin{aligned}
& P(\lambda ; p(\varepsilon))= \\
& \left(\lambda_{0}^{k} I_{n}+\lambda_{0}^{k-1} A_{k-1_{0}}+\ldots+\lambda_{0} A_{1_{0}}+A_{0_{0}}\right)+ \\
& \varepsilon^{1 / 2}\left(k \lambda_{0}^{k-1} \lambda_{1} I_{n}+(k-1) \lambda_{0}^{k-2} \lambda_{1} A_{k-1_{0}}+\ldots+\lambda_{1} A_{1_{0}}\right)+ \\
& \varepsilon\left(\left(k \lambda_{0}^{k-1} \lambda_{2}+\frac{1}{2} k(k-1) \lambda_{0} \lambda_{1}^{2}\right) I_{n}+\left((k-1) \lambda_{0}^{k-2} \lambda_{2}+\right.\right. \\
& \left.\quad \frac{1}{2}(k-1)(k-2) \lambda_{0} \lambda_{1}^{2}\right) A_{k-1_{0}}+\lambda_{0}^{k-1} A_{k-1_{1}}+ \\
& \left.\quad \lambda_{2} A_{1_{0}}+\lambda_{0} A_{1_{1}}+\ldots+A_{0_{1}}\right)+\ldots
\end{aligned}
$$

If $v$ is an eigenvector for the eigenvalue $\lambda$, we have that

$$
P(\lambda ; p(\varepsilon)) v=P(\lambda ; p(\varepsilon))\left(v_{0}+\varepsilon^{1 / 2} w_{1}+\varepsilon w_{2}+\ldots\right)=0
$$

Then, we find the chain of equations for the unknowns $\lambda_{1}, \lambda_{2}, \ldots$ and $w_{1}, w_{2}, \ldots$

$$
\begin{gather*}
P\left(\lambda_{0}, p_{0}\right) v_{0}=0, \\
\lambda_{1} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{0}+P\left(\lambda_{0} ; p_{0}\right) w_{1}=0, \\
P\left(\lambda_{0} ; p_{0}\right) w_{2}+\lambda_{1} P^{\prime}\left(\lambda_{0} ; p_{0}\right) w_{1}+\frac{1}{2} \lambda_{1}^{2} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}+ \\
\lambda_{2} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{0}+P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0}=0, \tag{16}
\end{gather*}
$$

$P\left(\lambda_{0} ; p_{0}\right) w_{3}+\lambda_{1} P^{\prime}\left(\lambda_{0} ; p_{0}\right) w_{2}+\frac{1}{2} \lambda_{1}^{2} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) w_{1}+$
$\lambda_{2} P^{\prime}\left(\lambda_{0} ; p_{0}\right) w_{1}+P_{1}\left(\lambda_{0} ; p_{0}\right) w_{1}+\lambda_{1} \lambda_{2} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}+$
$\lambda_{1}^{3} \frac{1}{3!} P^{\prime \prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}+\lambda_{3} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{0}+\lambda_{1} P_{1}^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{0}=0$,
where $P_{1}\left(\lambda_{0} ; p_{0}\right)=\lambda_{0}^{k-1} A_{k-1_{1}}+\lambda_{0} A_{k-2_{1}}+\ldots+$ $\lambda_{0} A_{11}+A_{01}$.

Equation (14) is satisfied because $v_{0}$ is an eigenvector corresponding to the eigenvalue $\lambda_{0}$. Comparing equation (15) with (3) for $i=1$ we observe that $w_{1}=\lambda_{1} v_{1}+\beta v_{0}$ for all $\beta$ is a solution, we take $w_{1}=\lambda_{1} v_{1}$.

To find the value of $\lambda_{1}$ we premultiply equation (16) by $u_{0}^{t}$, using the given value for $w_{1}$ and taking into account $u_{0}^{t} P\left(\lambda_{0} ; p_{0}\right)=0$ and $u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{0}=0$ we obtain
$\lambda_{1}^{2}\left(u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{1}+\frac{1}{2} u_{0}^{t} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}\right)+u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0}=0$.

Taking into account corollary 1 we can find

$$
\begin{equation*}
\lambda_{1}= \pm \sqrt{\frac{-u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0}}{u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{1}+\frac{1}{2} u_{0}^{t} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}}} . \tag{18}
\end{equation*}
$$

If $u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0} \neq 0$ we have two values of $\lambda_{1}$ that determine leading terms in expansions for two different eigenvalues $\lambda$ that bifurcate from the double eigenvalue $\lambda_{0}$.

Suppose then, that $u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0} \neq 0$. Premultiplying (17) by $u_{0}^{t}$,

$$
\begin{aligned}
& \lambda_{1} u_{0}^{t} P^{\prime}\left(\lambda_{0}, p_{0}\right) w_{2}+\frac{1}{2} \lambda_{1}^{3} u_{0}^{t} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{1}+ \\
& \lambda_{1} \lambda_{2} u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{1}+\lambda_{1} u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{1}+ \\
& \lambda_{1} \lambda_{2} u_{0}^{t} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}+\lambda_{1}^{3} \frac{1}{3!} u_{0}^{t} P^{\prime \prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}+ \\
& \lambda_{1} u_{0}^{t} P_{1}^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{0}=0 .
\end{aligned}
$$

Premultiplying (16) by $u_{1}^{t}$ and according to 1 , we have:

$$
\begin{aligned}
& u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) w_{2}= \\
& \lambda_{1} u_{1}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) w_{1}+\frac{1}{2} \lambda_{1}^{2} u_{1}^{t} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}+ \\
& \lambda_{2} u_{1}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{0}+u_{1}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0}
\end{aligned}
$$

So, taking into account (18)

$$
\begin{aligned}
& \lambda_{1} \lambda_{2}\left(2 u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{1}+u_{0}^{t} P^{\prime \prime}\left(\lambda ; p_{0}\right) v_{0}\right)= \\
& -\left(\lambda _ { 1 } ^ { 3 } \left(u_{1}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{1}+\frac{1}{2} u_{1}^{t} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}+\frac{1}{2} u_{0}^{t} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{1}\right.\right. \\
& \left.+\frac{1}{3!} u_{0}^{t} P^{\prime \prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}\right)+\lambda_{1}\left(u_{1}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0}+\right. \\
& \left.\left.u_{0}^{t} \dot{P}_{1}\left(\lambda_{0} ; p_{0}\right) v_{1}+u_{0}^{t} P_{1}^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{0}\right)\right)
\end{aligned}
$$

Since $\lambda_{1}\left(u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{1}+\frac{1}{2} u_{0}^{t} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}\right) \neq 0$ we obtain

$$
\begin{align*}
\lambda_{2}= & -\frac{\lambda_{1}^{2}\left(\frac{1}{2} u_{0}^{t} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{1}+\frac{1}{3!} u_{0}^{t} P^{\prime \prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}\right.}{2\left(u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{1}+\frac{1}{2} u_{0}^{t} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}\right)} \\
& -\frac{\lambda_{1}^{2}\left(u_{1}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{1}+\frac{1}{2} u_{1}^{t} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}\right)}{2\left(u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{1}+\frac{1}{2} u_{0}^{t} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}\right)} \\
& +\frac{u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{1}+u_{0}^{t} P_{1}^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{0}+u_{1}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0}}{2\left(u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{1}+\frac{1}{2} u_{0}^{t} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}\right)} . \tag{19}
\end{align*}
$$

Now, we can compute $w_{2}$. We have

$$
\begin{align*}
& P\left(\lambda_{0} ; p_{0}\right) w_{2}=-\lambda_{1} P^{\prime}\left(\lambda_{0} ; p_{0}\right) w_{1}-\frac{1}{2} \lambda_{1}^{2} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}- \\
& \lambda_{2} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{0}+P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0} \tag{20}
\end{align*}
$$

Lemma 2. Following condition $u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0} \neq 0$ we have that $P\left(\lambda_{0} ; p_{0}\right)+u_{0} u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0} v_{0}^{t}$ is an invertible matrix.

Proof. Let $x=\alpha v_{0}+w$ with $w \in\left[v_{0}\right]^{\perp}$, be a vector in the null space, then $\left(P\left(\lambda_{0} ; p_{0}\right)+\right.$ $\left.u_{0} u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0} v_{0}^{t}\right) x=0$.

Premultiplying by $u_{0}^{t}$ we have

$$
u_{0}^{t}\left(P\left(\lambda_{0} ; p_{0}\right)+u_{0} u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0} v_{0}^{t}\right) x=0
$$

$$
\begin{aligned}
& 0=u_{0} u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0} v_{0}^{t}\left(\alpha v_{0}+w\right)= \\
& |\alpha|\left\|u_{0}\right\|^{2}\left\|v_{0}\right\|^{2} u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0} .
\end{aligned}
$$

Then $\alpha=0$.
Consequently, $x=w \in\left[v_{0}\right]^{\perp}$ and $x \in$ $\operatorname{Ker} u_{0} u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0} v_{0}^{t}$, so $x \in \operatorname{Ker} P\left(\lambda_{0} ; p_{0}\right)$ and $x=$ $\beta v_{0}$, but $x \in\left[v_{0}\right]^{\perp}$, then $\beta=0$.

Now we consider the normalization condition $v_{0}^{t} w_{2}=0$, and adding $u_{0} u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0} v_{0}^{t}$ from the left to equation (20) and using lemma 2 , we find vector $w_{2}$.

Using these calculations we have the following theorem.

Theorem 2. Let $\lambda_{0}$ be a double eigenvalue of the polynomial matrix $P\left(\lambda ; p_{0}\right)$, with a single eigenvector up to a non-zero scaling factor, and let $v_{0}, v_{1}$ be a Jordan chain and $u_{0}, u_{1}$ a left Jordan chain. We consider a perturbation of the parameter vector along the curve $p(\varepsilon)$ starting at $p_{0}$ satisfying the condition $\lambda_{1} \neq 0$.

Then, the double eigenvalue $\lambda_{0}$ bifurcates into two simple eigenvalues given by the relation

$$
\lambda=\lambda_{0}+\varepsilon^{1 / 2} \lambda_{1}+\varepsilon \lambda_{2}+o(\varepsilon)
$$

with $\lambda_{1}$ and $\lambda_{2}$ as (18) and (19) respectively.

## 4-2. Perturbation of a $\ell$-multiplicity eigenvalue with single eigenvector

Now, we analyze the general case.
Analogously, substituting (12) into (11) we obtain

$$
\begin{aligned}
& P(\lambda ; p(\varepsilon))=\left(\lambda_{0}+\varepsilon^{1 / \ell} \lambda_{1}+\varepsilon^{2 / \ell} \lambda_{2}+\ldots+\varepsilon \lambda_{\ell}+\ldots\right)^{k} I_{n}+ \\
& \left(\lambda_{0}+\varepsilon^{1 / \ell} \lambda_{1}+\ldots\right)^{k-1}\left(A_{k-1_{0}}+\ldots+\varepsilon^{\ell} A_{k-1_{\ell}}+\ldots\right)+ \\
& \ldots+ \\
& \left(\lambda_{0}+\varepsilon^{1 / \ell} \lambda_{1}+\varepsilon^{2 / \ell} \lambda_{2}+\ldots\right)\left(A_{1_{0}}+\varepsilon A_{1_{1}}+\varepsilon^{2} A_{1_{2}}+\ldots\right)+ \\
& A_{0_{0}}+\varepsilon A_{0_{1}}+\varepsilon^{2} A_{0_{2}}+\ldots= \\
& \left(\lambda_{0}^{k} I_{n}+\lambda_{0}^{k-1} A_{k-1_{0}}+\ldots+\lambda_{0} A_{1_{0}}+A_{0_{0}}\right)+ \\
& \varepsilon^{1 / \ell}\left(k \lambda_{0}^{k-1} \lambda_{1} I_{n}+(k-1) \lambda_{0}^{k-2} \lambda_{1} A_{k-1_{0}}+\ldots+\lambda_{1} A_{1_{0}}\right)+ \\
& \varepsilon^{2 / \ell}\left(\left(k \lambda_{0}^{k-1} \lambda_{2}+\frac{1}{2} k(k-1) \lambda_{0} \lambda_{1}^{2}\right) I_{n}+\left((k-1) \lambda_{0}^{k-2} \lambda_{2}+\right.\right. \\
& \left.\left.\quad \frac{1}{2}(k-1)(k-2) \lambda_{0} \lambda_{1}^{2}\right) A_{k-1_{0}}+\ldots+\lambda_{2} A_{1_{0}}\right)+\ldots
\end{aligned}
$$

If $v$ is an eigenvector for the eigenvalue $\lambda$ we have that
$P(\lambda ; p(\varepsilon)) v=P(\lambda ; p(\varepsilon))\left(v_{0}+\varepsilon^{1 / \ell} w_{1}+\varepsilon^{2 / \ell} w_{2}+\ldots\right)=0$
Then, we find the chain of equations for the unknowns $\lambda_{1}, \lambda_{2}, \ldots$ and $w_{1}, w_{2}, \ldots$

$$
\begin{gather*}
P\left(\lambda_{0}, p_{0}\right) v_{0}=0  \tag{21}\\
\lambda_{1} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{0}+P\left(\lambda_{0} ; p_{0}\right) w_{1}=0  \tag{22}\\
P\left(\lambda_{0} ; p_{0}\right) w_{2}+\lambda_{1} P^{\prime}\left(\lambda_{0} ; p_{0}\right) w_{1}+ \\
\frac{1}{2} \lambda_{1}^{2} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}+\lambda_{2} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{0}=0 \tag{23}
\end{gather*}
$$

$$
\begin{align*}
& \lambda_{3} P^{\prime}\left(\lambda_{0}, p_{0}\right) v_{0}+\frac{1}{3!} \lambda_{1}^{3} P^{\prime \prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}+ \\
& \quad \frac{1}{2} \lambda_{1} \lambda_{2} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) v_{0}+\lambda_{2} P^{\prime}\left(\lambda_{0} ; p_{0}\right) w_{1}+ \\
& \frac{1}{2} \lambda_{1}^{2} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) w_{1}+\lambda_{1} P^{\prime}\left(\lambda_{0} ; p_{0}\right) w_{2}+P\left(\lambda_{0} ; p_{0}\right) w_{3}=0, \tag{24}
\end{align*}
$$

$$
\begin{align*}
& P\left(\lambda_{0} ; p_{0}\right) w_{\ell}+\lambda_{1} P^{\prime}\left(\lambda_{0} ; p_{0}\right) w_{\ell-1}+ \\
& \frac{1}{2} \lambda_{1}^{2} P^{\prime \prime}\left(\lambda_{0} ; p_{0}\right) w_{\ell-2}+\lambda_{2} P^{\prime}\left(\lambda_{0} ; p_{0}\right) w_{1}+\ldots+  \tag{25}\\
& \lambda_{\ell-1} P^{\prime}\left(\lambda_{0} ; p_{0}\right) w_{1}+P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0}=0,
\end{align*}
$$

where $P_{1}\left(\lambda_{0} ; p_{0}\right)=\lambda_{0}^{k-1} A_{k-1_{1}}+\lambda_{0} A_{k-2_{1}}+\ldots+$ $\lambda_{0} A_{11}+A_{01}$.

Equation (21) is satisfied because $v_{0}$ is an eigenvector corresponding to the eigenvalue $\lambda_{0}$. Comparing equation (22) with (3) for $i=1$ we observe that $w_{1}=\lambda_{1} v_{1}+\beta v_{0}$ is a solution, comparing equation (23) with (3) for $i=2 w_{2}=\lambda_{1}^{2} v_{2}+\lambda_{2} v_{1}$ is a solution, following in this sense $w_{3}=\lambda_{1}^{3} v_{3}+\lambda_{1} \lambda_{2} v_{2}+\lambda_{3} v_{1}$ etc.
Theorem 3. Let $\lambda_{0}$ be a $\ell$-multiplicity eigenvalue of the polynomial matrix $P\left(\lambda ; p_{0}\right)$, with a single eigenvector up to a non-zero scaling factor, and let $v_{0}, \ldots, v_{\ell-1}$ be a Jordan chain and $u_{0}, \ldots, u_{\ell-1}$ a left Jordan chain. We consider a perturbation of the parameter vector along the curve $p(\varepsilon)$ starting at $p_{0}$. Suppose $u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0} \neq 0$, then, the eigenvalue $\lambda_{0}$ bifurcates into $\ell$ simple eigenvalues given by the relation

$$
\lambda=\lambda_{0}+\varepsilon^{1 / \ell} \lambda_{1}+o(\varepsilon)
$$

with

$$
\lambda_{1}=\sqrt[\ell]{\frac{-u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0}}{\frac{1}{\ell!} u_{0}^{t} P^{\ell}\left(\lambda_{0} ; p_{0}\right) v_{0}+\ldots+u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{\ell-1}}} .
$$

Remark 2. Condition $u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0} \neq 0$ holds for almost all perturbations.

Proof. To find the value of $\lambda_{1}$ using $w_{1}=\lambda_{1} v_{1}+\beta v_{0}$ in equation (16) and premultiply it by $u_{0}^{t}$ and taking into account remark 1 and normalization condition $u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{i}=0$, we obtain
$\lambda_{1}^{\ell}\left(\frac{1}{\ell!} u_{0}^{t} P^{\ell}\left(\lambda_{0} ; p_{0}\right) v_{0}+\frac{1}{(\ell-1)!} u_{0}^{t} P^{\ell-1}\left(\lambda_{0} ; p_{0}\right) v_{1}+\right.$
$\left.\ldots+u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{\ell-1}\right)+u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0}=0$. $\left.\ldots+u_{0}^{t} P^{\prime}\left(\lambda_{0} ; p_{0}\right) v_{\ell-1}\right)+u_{0}^{t} P_{1}\left(\lambda_{0} ; p_{0}\right) v_{0}=0$.

Now, corollary 1 ensures the result.

## 5. Conclusion

In this paper the perturbation of a multiple eigenvalue with a simple eigenvector of a monic polynomial matrix smoothly depending on parameters is analyzed.

## References

[1] A.L. Andrew, K.-W. E. Chu, P. Lancaster, Derivatives of eigenvalues and eigenvectors of matrix functions, SIAM journal on matrix analysis and applications, 14, (4), pp. 903-926, (1993).
[2] P. Benner, V. Mehrmann, H. Xu, Perturbation Analysis for the Eigenvalue Problem of a Formal Product of Matrices, BIT, Numerical Mathematics, 42, pp. 1-43, (2002).
[3] E. King-Wah Chu, Perturbation of eigenvalues for matrix polynomials via the Bauer-Fike Theorems, SIAM journal on matrix analysis and applications, 25, (2), pp. 551-573, (2004).
[4] Má I. García, Introducción a la Teoría de Matrices Polinomiales. Edicions UPC, Barcelona, 1999.
[5] Ma ${ }^{\text {a }}$ I. García-Planas, Kronecker Stratification of the Space of Quadruples of Matrices. SIAM Journal on Matrix Analysis 19 (4), pp. 872-885, (1998).
[6] Ḿa I. García-Planas, S. Tarragona, Perturbation analysis of simple eigenvalues of polynomial matrices smoothly depending on parameters. Proceedings of ALAMA 2010. pp. 1-7, (2010).
[7] I. Gohberg, P. Lancaster, L. Rodman, "Matrix Polynomials", Academic Press, New York, 1982.
[8] T. Kato, "Perturbation Theory for Linear Operators", Springer-Verlag, Berlin, 1980.
[9] A. P. Seyranian, A.A. Mailybaev, "Multiparameter Stability Theory with Mechanical Applications" World Scientific, Singapore, 2003.
[10] G.W. Stewart, J. Sun, "Matrix Perturbation Theory", Academic Press, New York, 1990.

