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Abstract

This paper evaluates a set of computational algorithms for the automatic estimation
of human postures and gait properties from signals provided by an inertial body
sensor. The use of a single sensor device imposes limitations for the automatic
estimation of relevant properties, like step length and gait velocity, as well as for
the detection of standard postures like sitting or standing. Moreover, the exact
location and orientation of the sensor is also a common restriction that is relaxed
in this study.

Based on accelerations provided by a sensor, known as the ‘9×2’, three approaches
are presented extracting kinematic information from the user motion and posture.
Firstly, a two-phases procedure implementing feature extraction and Support Vector
Machine based classification for daily living activity monitoring is presented. Sec-
ondly, Support Vector Regression is applied on heuristically extracted features for
the automatic computation of spatiotemporal properties during gait. Finally, sensor
information is interpreted as an observation of a particular trajectory of the human
gait dynamical system, from which a reconstruction space is obtained, and then
transformed using standard principal components analysis, finally Support Vector
Regression is used for prediction.

Daily living Activities are detected and spatiotemporal parameters of human
gait are estimated using methods sharing a common structure based on feature
extraction and kernel methods. The approaches presented are susceptible to be
used for medical purposes.
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1 Introduction1

One of the consequences of chronic diseases and strokes is the limitation of2

the motion capacity and a straightforward lack of physical activity, having a3

direct impact on quality of life of the patient. By extracting spatiotemporal4

parameters from human gait and posture, medical treatments would count5

with valuable additional information, allowing a better diagnose and treatment6

assessment for diseases like Parkinson’s [1], diabetes [2], and for the early7

detection of other conditions like risk of falling, avoiding possible hip break8

episodes and its consequences in elderly people [3].9

Usual instruments to supervise patients mobility are based on the subjective10

perceptions of an observer or the use of large and expensive measurement11

equipment like posturometers or walkway systems [4]. Moreover, during the12

last decade several advances have been developed on wearable systems based13

on accelerometry for the automatic extraction of spatiotemporal gait param-14

eters [27] and daily activity monitoring [28]. Compactness and objectiveness15

of inertial based devices allow the development of truly ambulatory systems16

predicting and detecting gait anomalies in real-time, overcoming the need of17

questionnaires [5] and clinical trials, where users may act differently from real18

life conditioned by the environment (e.g., being observed) and other uncon-19

trolled variables like lack of memory of the patients.20

The use of inertial sensors to extract this information has been successfully ap-21

plied in diverse studies, e.g., [6]. Nevertheless, available systems for the reliable22

ambulatory extraction of spatiotemporal gait parameters usually require the23

use of several devices [7] and often carrying a bunch of wires along the body24

communicating devices [8,9]. Moreover, recently developed wireless ambula-25

tory systems [9,10] still need more than one device in order to extract features26

like step size, stride length, and step velocity from human gait using gyro-27

scopes tied at legs. Wearing these devices on the legs during daily life activity28

seems a drawback, leaving the application scope of this method to clinical29

environments. In the case of accelerometers, they are usually positioned at30

the dorsal side of the trunk, near the region of the L3 vertebra of the subject,31

since it is the Center of Mass (CoM) location. In this position, 3D CoM ac-32
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celeration, velocity and displacement can be estimated [10,11]. However, our33

studies on usability indicated that this position is not practical when sitting34

or performing some daily physical activities. To the best of our knowledge,35

there is no any user-friendly wearable device / location that patients may use36

outside the hospital.37

A measurement system composed by a single device would cover the need of38

an ambulatory solution easy to be worn during daily life. This system imposes39

a challenge for the extraction of reliable information from the limited signals40

obtained. This paper study the use of one of such simple systems, motivated41

by the high impact that it will have on the end-users acceptability. Other42

approaches using just one device [11], are sensitive to the precise location and43

adjustment of the sensor on the patient: lumbar zone, chest or lateral hip.44

Some of them inclusive requires a non-intuitive location (foot, knee, ankle),45

forcing the user to modify natural motions during sitting, standing and laying46

postures and transitions. Besides, works on ambulatory activity monitoring47

using a single sensor rely on the off line processing of logged data. The purpose48

of our research is to analyze human gait and posture using features extracted49

from signals provided online by a small-sized wearable sensor module located50

in the patient’s waist. Therefore, this system can be used everywhere during51

daily life avoiding the need of special infrastructure. The measurement system52

employed in this study is briefly described in Section 2 where a comparison53

with other devices is also presented.54

This work is based on two results, the first one is oriented to demonstrate that55

the system can be used to detect diverse human postures, thus, using kernel56

based algorithms, the system offers detection properties similar to those of57

already commercially available systems. Secondly, kernel methods are used to58

extract gait spatiotemporal properties from accelerometry data.59

The posture detection and gait properties estimation approaches may be dis-60

criminated as follows: (i) A two-phases procedure implementing feature extrac-61

tion from raw acceleration signals and Support Vector Machine (SVM) based62

classification; (ii) The use of Support Vector Regression (SVR) on heuristically63

extracted features from acceleration signals for step length and velocity esti-64

mation and (iii) an approach based on the assumption that sensor information65

encapsules information of an unknown dynamical system resulted during the66

human gait, standard principal component analysis and SVR completes this67

spatiotemporal properties estimation.68

The remaining of the paper is organized as follows. Section 2 reviews other ac-69

celerometry systems used to analyze human motion, it also presents a compar-70

ison with the accelerometry system used in this study. Section 3 presents the71

approach to identify among 5 common motion activities. Section 4 describes72

a regression approach to estimate step length and velocity from acceleration73
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signals collected from the subject’s waist. Section 5 tackles the same problem74

but using an approach based on intrinsic properties of a hidden dynamical sys-75

tem. Finally, Section 6 concludes the paper with some remarks and comments76

about future research.77

2 System Overview78

First a review of the features of some accelerometry based systems is presented,79

then the system used for this study is described and compared with other80

devices.81

2.1 Accelerometry Based Systems for Human Motion Systems82

Lately, detection and classification of human daily living activity have received83

wide attention from the research community. Besides the sensor used in this84

study, so-called ‘9x2’, there are already several commercial physical activity85

monitors that manage to detect several activities: Shimmer [29] is a small wire-86

less wearable sensor that can also record and wirelessly transmit physiological87

and kinematic data in real-time. Its small size, however, constraints battery88

duration to 3-4 hours when using a 50Hz sampling rate. Xsense MTi [31] is a89

system containing gyroscopes, accelerometers and magnetometers. The inter-90

nal low-power digital signal processor runs a real-time sensor fusion algorithm91

providing drift-free 3D orientation data. Xsense MTw [31] sends data using92

RF communication technology, however battery duration is reduced from 18.593

to 3.5 hours. The mcroberts DynaPort MiniMod [32] supports applications94

where a subject wears the sensor at the lower back for a longer period of time95

under free living conditions and it is able to analyze the patient’s quantity of96

movement.97

Other specialized platforms exist, having battery life as main feature, like98

activPAL [33]. It identifies and classifies individual’s free-living activity like99

sitting, standing and walking. Data can be collected during 10 days using a100

very low sampling rate, and no on-line process can be implemented. Physilog,101

developed at EPFL, [8] has not wireless data transmission. MicroStrain 3DM-102

GX1 [35] considers 9 axes of measurement, but it presents the same restrictions103

that Xsens MTi. Finally, Activity Monitor [33] is an IMU, worn in the wrist,104

developed to measure physical activity. It is endowed with RF for wireless105

communication.106

Special attention should be presented to the commercial platform MiniSun107

IDEEA (Intelligent Device for Energy Expenditure and Activity) [34] specifi-108

4



cally designed to measure movement, it may compute duration, frequency and109

intensity of diverse types of human physical activity (PA). The working prin-110

ciple of IDEEA is the constantly monitoring of the body and limb motions111

through five sensors attached to the chest, thighs, and feet. Data are then112

downloaded to a computer for off-line analysis at the end of each test. For113

the calibration of IDEEA, the subject was asked to sit in an upright position114

with feet and thighs parallel to the floor and the upper body in a vertical po-115

sition. Calibration takes 5 seconds, this process ensures a maximal deviation116

of 15 degrees in each direction. Although it detects locomotion well (such as117

walk-ing or running), activities involving mainly arm motion, such as rowing,118

swinging a ball or bat, operating a vacuum cleaner, etc., would not be correctly119

identified.120

These examples demonstrates that despite that human activity is already suc-121

cessfully identified using commercially available devices, it is either employing122

several sensors on the patient’s body or extracting data to be processed of-123

line, preventing the use of its outputs in real-time applications like tele-care,124

automatic infusion of drugs or ambient intelligence integration. Restricting125

the number of devices in the system and demanding on-line detection and126

extraction imposes challenges for the technical and algorithmic approaches.127

2.2 ‘9×2’ System Description128

The inertial system is a single unit device. All the electronic components plus129

a Li-on battery (1000mAh) are encapsuled in a 78× 37× 10mm black case. It130

weights 125g (battery included). The prototype also includes a wall battery131

charger. Fig. 1 shows the prototype and its corresponding µSD card.132

Internally, the system includes the classical elements of an Inertial Measure-133

ment Unit (IMU) as well as a system dedicated to the battery control and134

energy consumption optimization. The status of both, the battery level and135

the main application process, is shown to the user using a very simple user136

interface comprised of three LEDs (Light Emission Diodes). A switch allows137

the user to interact with the device at any time. Figure 1 shows the device.138

Table 1 shows a technical comparison of the analyzed commercial platforms.139

Presented information for each platform is its sampling rate, battery life, di-140

mensions, processing capacity, datalog function, wireless communication, and141

sensors included (accelerometers, gyroscopes and magnetometers).142
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Fig. 1. Sensor prototype

Name Hz hours dim CPU.Data.Wi Ac.Gy.Ma

CETpD-UPC 9x2 200 18 75x37x21 Y.Y.Y Y.Y.Y

Xsens MTi 120 9.4 53x38x20 N.N.N Y.Y.Y

Xsens MTw 150 3.5 58x34x14 N.N.Y Y.Y.Y

Shimmer 9DoF 50 3-4 53x32x19 N.N.N Y.N.N

Shimmer WSP – 3.5 50x25x12 N.Y.Y Y.N.N

miniSun IDEEA 32 60 70x55x18 ?.Y.N Y.N.N

mcroberts DynaPort 100 47 83x51x9 N.Y.N Y.N.N

PAL ActivPAL 20 240 53x35x7 N.Y.N Y.N.N

EPFL Physilog 200 14 61x50x18 N.Y.N Y.Y.N

Activity Monitor 50 24 46x36x15 N.N.Y Y.N.N

MicroStrain 3DM-GX1 100 15.4 90x64x25 ?.N.N Y.Y.Y

Table 1
IMU-based physical activity monitors. Presented information for each platform is
its sampling rate (Hz), battery life (hours), dimensions (dim), processing capac-
ity (CPU), datalog function (Data), wireless communication (Wi), and sensors in-
cluded, i.e., accelerometers (A), gyroscopes(Gy) and magnetometers (Ma)

3 Daily Living Activities Identification143

As a first approach to demonstrate the system properties and the type of144

on-line algorithms that are studied, this section presents an experience of145

treatment of acceleration data provided by the ‘9×2’. Identification of human146

activities is completed using kernel methods.147
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3.1 Methodology148

A test group of subjects was employed to collect data from the sensor while149

performing activities. The group was confirmed by 6 healthy subjects with no150

mobility limitations and aged 38.17± 12.6. Data was collected while subjects151

perform the following sequence of activities: Stay steady in vertical position,152

walk about 4 meters, sit down on a chair, stay sit down for a few seconds,153

stand up, walk, sit down again to finally stay sit down. This sequence was154

repeated 3 times for each subject and experiments were video recorded to155

enable labeling of activities.156

3.2 Activities Analysis157

Signals and video information from the following activities were manually158

isolated and analyzed,159

(1) Standing up. This activity lasts for 1 to 2.5 seconds with differentiated160

phases: forward bending, active raising, passive raising and downward161

bending. Timing and magnitude between phases may determine several162

pathological characteristics.163

(2) Sitting down. This action also ranges from 1 to 2.5 seconds. It is similar164

to inverse of standing up, these pairs of signals being the most similar in165

the group of activities.166

(3) Transition Movement. Due to high similarity between sit down and stand167

up activities, an auxiliary control state has been created to classify ac-168

tivities different from stand or sit signals. It can be viewed as an activity169

occurring just before (after) sitting down (standing up).170

(4) Walking activity. Step duration varies between 0.5 and 1.5 seconds, classi-171

fiers are trained to look for a complete walking episode instead of focusing172

on individual steps.173

(5) Steady activity. Acceleration signals for this activity are simple and pre-174

dictable, but it occurs on unbounded time windows. Steady activity is175

similar when user is sitting or standing.176

3.3 Signal Processing177

The duration of the activities to be classified ranges from 0.5 seconds, for178

walking, up to 2.4 seconds, for the stand up activity. Since raw data is obtained179

sampling at 50 Hz, the use of windows of 120 samples ensures the capture of180

the longest type of activity.181
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Let us define as182

a(k) = (ax(k), ay(k), az(k)) (1)183

to the acceleration vector provided by the sensor at time k. The following184

signals are empirically chosen and computed from Eq. (1)185

• Module: it allows to reduce data dimension and makes data independent186

from orientation [12]:187

r(k) =
√
a2x(k) + a2y(k) + a2z(k) (2)188

• Orientation angles: Earth gravity allows to calculate orientation for the
sensor device. Formulation works fine in static movement conditions. Impact
of low centripetal accelerations is not important [13], nevertheless impacts
or large accelerated movements incorporate error.

θ(k) = arctan
(
ax(k),

√
a2y(k) + a2z(k)

)
, φ(k) = arctan (ay(k), az(k))

• Vertical aV (k) and forward aF (k) components: Accelerations in the iner-
tial reference (fix frame) can be computed from the mobile reference using
the orientation angles. Features values are robust to the measuring device
orientation:

aF (k) = cos(θ(k))ax(k) + sin(θ(k))az(k)

aV (k) = − cos(φ(k)) sin(θ(k))ax(k) + sin(φ(k))ay(k) + cos(θ(k))(az(k) + g)189

190

• Energy expenditure indicators: acceleration signals are used to calculate the
integral of absolute value (IAA) and the integral of magnitude (IAV) 4 :

IAA =
∑
k

(|ax(k)|+ |ay(k)|+ |az(k)|) , IAV =
∑
k

r(k)dt

• Increments in the acceleration module,

∆r(k) = r(k)− r(k − 1).

Frequency-based features can be obtained by performing the Fast Fourier191

Transform (FFT) on the acceleration signals, however this approach is out192

of the scope of this research due to the high processing time demanded when193

implementing its computation within the microprocessor of the sensor.194

4 IAV has been identified as less accurate than IAA [14].
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Fig. 2. Intervals for the 5 activities based on ‘range θ’ feature.

3.4 Feature Selection195

Standard statistical properties of the previously defined signals, i.e., mean,196

max, min, range, standard deviation, entropy, etc, conform a huge set of fea-197

tures characterizing the behavior of the signal. This has already been proved198

to be useful in similar SVM-based works [15]. These features capture relevant199

information about the motion within a given time-window, enabling the pro-200

cess of data stream, i.e., input data for the classification algorithm containing201

relevant information of the correspondent window allows a batch process every202

half-size window.203

A data base with observations of the activities provided by different users is204

generated. Fig 2 presents a sample feature (‘range θ’) using boxplots, which205

bounds are defined on the 25% and the 75% percentile. All features are nor-206

malized so relevance and performance for each feature can be compared [16].207

Whiskers to bound intervals are defined as the most extreme data value within208

3
2
· IQR, where IQR is the interquartile range of the sample. Data outside the209

whiskers are considered as outliers.210

Giving a pair of intervals (A,B), let us define a separation value between them211

as,212

d = max

minA−maxB

minB −maxA
(3)213
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Separation between intervals is used to select discriminant features, i.e., inter-214

class distances are used to rank features similarly to [30]. A symmetric matrix215

Df ∈ R5×5 for any given feature f represents its separation to the remaining216

features. Note that the main diagonal in Df is composed by zeros. Whether217

different activities are represented by non overlapping data ranges, then sep-218

aration values are positive, therefore this feature classify the pair of implied219

activities by itself. Negative values of separation are interpreted as overlap-220

ping among classes. Nevertheless, separability among classes is improved using221

several features.222

The number of classes that a given feature can discriminate is given by the223

number of rows containing distances greater than a given threshold. This224

threshold may be fixed to zero if no overlapping among classes is desired.225

Three indicators were tested to incrementally select the best set of features:226

(1) The number of pair of activities that a single feature discriminates using227

a given threshold , i.e. the number of positive values for each distance228

matrix Df . Given that the main diagonal is null, the maximum num-229

ber of possible positive values is 20. Nevertheless, not a single feature230

demonstrated to be a discriminant for all classes.231

(2) The sum of distances between classes, a value representing how different232

is a feature for each class or activity. Since features are normalized and233

negative values for overlapping activities are considered, values from −20234

to +20 can be expected.235

(3) The sum of positive distances between classes. In this case only not over-236

lapping intervals are considered, being a particular case of the previous237

indicator. Here, values range from 0 to +20.238

3.4.1 Detection Results and Analysis239

Using the indicators presented above, features were ordered according to its240

class separability degree. The length of the vector of features was not restricted241

in order to check the method accuracy with different vector lengths. Five242

one-versus-rest SVM classifiers in a multi-class structure were trained with243

Gaussian kernel, inputs being assigned to the voted class. Whether no positive244

votes exist or more than one class voted, then no label is assigned. A 10-fold245

cross-validation procedure, with 3 repetitions, was performed for each length246

of the feature vector, ranging from 1 to 30 features.247

Figure 3 shows the maximum accuracy reached by any of the three feature248

vector for each possible length. The best result was obtained when the sum of249

positive distance between classes was used as indicator and the length of the250

feature vector is 7. Its correspondent accuracy is 91.06%, while the selected251

features are: ‘std ax(k)’,‘min ax(k)’, ‘std aV (k)’, ‘std aF (k)’, ‘min aF (k)’,‘std252
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θ(k)’ and ‘range θ(k)’, where ‘std’ stands for standard deviation. Table 2 con-253

tains the confusion matrix for this experiment. It can be noted how stand up /254

sit down and steady / walk are two groups of activities perfectly discriminated255

by the classifier. Stand up and sit down activities are sometimes labeled as256

a transition movement. It is used to happen when movement is starting or257

ending, so it is difficult to the classifier discriminate between actions.258

Label Stand up Sit down Steady Walk Transition

Stand up 75.56 14.44 0 0 10

Sit down 6.06 89.09 0 0 4.85

Steady 0 0 93.33 6.67 0

Walk 0 0 2.22 95.56 2.22

Transition 1.39 1.39 0 3.06 94.17

Table 2
Confusion Matrix (%) when the third indicator and a feature vector of length seven
is considered.

Signal processing takes, in the worst case, less than a half window of samples,259

so the final classifier identifies activities performed with a 1.2 seconds delay.260

Instead of using raw data as input variable to the kernel method, the use of261

features to represent the behavior of the acceleration speeds up the training262

and classification procedures, nevertheless it adds a processing layer which is263

also time consuming.264

Calculating the standard deviation related features requires relative high pro-265

cessing real time efforts that the ‘9×2’ can handle. Lower, but still high, accu-266
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racy results are achieved using features easier to be calculated. For instance, a267

90.03% accuracy has been obtained when a vector of easy-to-compute features268

is used.269

4 Estimating Spatiotemporal properties of Human Gait: first ap-270

proach271

Many motor complications affect spatiotemporal properties of the patients’272

gait [9]. Length and speed of the steps change due to the increment of the273

impact of the disease. In this section, a method based on SVM-regression (ε-274

SVR) is proposed to extract spatiotemporal properties from signals obtained275

from the ‘9×2’ system. Figure 4, shows the typical output of the sensor during276

the human walk. The device is sewed to a belt in order to obtain two main277

properties: step length and step velocity.278

4.1 Signal Processing for Gait Analysis279

Gait is analyzed based on triaxial accelerations signals from the device when280

located at any of both lateral sides of the waist. Raw data was low-pass filtered281

before any analysis using a second-order zero-lag Butterworth filter with a cut-282

off frequency of 15Hz, which is enough given that 99% of energy is contained283

below 15Hz [19].284

Accelerations signals obtained from the lateral side of the waist differ from285

usual signals obtained from the region near L3. Figure 4 shows anterior-286

posterior acceleration on normal gait obtained by the sensor from both lo-287

cations. The signal obtained from the L3 region is similar to that reported on288

the literature [11], where negative peaks of the anterior-posterior acceleration289

are due to the end of the single support phase and the beginning of double290

support phase. These peaks are preceded by a positive peak, produced in the291

feet-floor contact. On the other hand, when the accelerometer is located in292

the lateral side of the waist, the negative peaks are also observed, but not all293

the positive peaks appear. Only those contacts generated by the foot of the294

side where the sensor is located produce positive peaks.295

Next, the two-phases methodology for the gait analysis wearing the sensor in296

this position is presented.297
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Fig. 4. Forward acceleration obtained from L3 region, and lateral side of waist.

4.2 Features Definition298

Biomechanics characteristics of gait allow to automatically identifying steps299

from tri-axial acceleration signals [6]. Figure 5 shows how segments of acceler-300

ation signals related with a step are automatically detected in a pre-processing301

phase.302

Three features are empirically defined for this experimentation based on the303

acceleration vector a(k) (Eq. 1) and its module r(k) (Eq. 2) along each time-304

variant segmented acceleration signals:305

(1) the mean of acceleration modules,

r̄1,s =
1

Ts

ks,0+Ts−1∑
k=ks,0

r(k)

where Ts is the number of samples during the sth step, and ks,0 the starting306
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sample for the sth segmented step;307

(2) the sum of the absolute value of the components,

r̄2,s =
ks,0+Ts−1∑
k=ks,0

(|ax(k)|+ |ay(k)|+ |az(k)|)

which is related to the well-know Energy Expenditure Indicator IAA308

employed in the precedent experiment;309

(3) the mean of the absolute values of the time-step increments,

r̄3,s =
1

Ts − 1

ks,0+Ts−1∑
k=ks,0+1

|r(k)− r(k − 1)|

i.e the mean of the jerk absolute value.310

These features are affected by the stride dynamics, for instance, the energy311

expended on a stride is related to its length and velocity. The faster the step312

is the higher the acceleration signal values and its increments are, so the mean313

norm and the mean jerk reflects it.314

Additionally, the length and velocity of a given step, measured directly from
the experiments, are denoted as ls and vs, respectively. The problem at hands
can be formulated as find out mappings f(·) and g(·) such that,

ls = f(r̄1,s, r̄2,s, r̄3,s) , vs = g(r̄1,s, r̄2,s, r̄3,s)

The ε-Support Vector Regression [20] was the kernel method selected in order315

to extract this relationship from experimental data as it is able to establish316

non-linear relations between input and output.317
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4.3 Step length and Velocity estimation using ε-SVM - Experimentation318

Ten volunteers were asked to walk several times over a plain surface of 6 m.319

length while a tri-axial accelerometer recorded the measures. As mentioned320

before, the accelerometer was attached to a belt and it was approximately321

located at the lateral side of the waist. Its orientation depends on how the322

belt was worn by the volunteer, thus quite different positions and orienta-323

tions were used between volunteers. Experiments were recorded by a video324

camera. Two methods were used to obtain actual step length: footprints and325

visual markers. Firstly, volunteer’s shoe soles where painted and footprints326

left were measured. Secondly, visual markers distributed every 30 cm. were327

used to determine by video recordings step lengths. Actual step velocity was328

obtained by dividing step length by its duration obtained from recordings.329

These actual values are used as ground truth required to perform regressions330

against the sensor information. Local ethics committee approved the study,331

and subjects participation was informed consent. Technical information about332

the data acquisition procedures and experiments is available in [25].333

A ε-Support Vector Regression with a cubic polynomial kernel is designed334

based on the defined features. In order to evaluate its prediction ability, a335

randomly selected set composed by 80% of the steps is used to train the ε-336

SVR, and the remaining data is used to establish mean squared error (MSE)337

rate. Finally, ε-SVR is also compared against linear regression on the same338

training and evaluation sets for each repetition.339

Results for step velocity are summarized in Table 4.3. It can be observed that340

the mean MSE of ε-SVR is significantly lower than the error obtained with341

linear regression. A mean RMSE error of 14.64 cm/s is obtained when using342

ε-SVR for predicting new step velocities.343

Features used on predicting step length are the same used on step velocity344

combined with duration time of the step. Results are also summarized in Table345

4.3. MSE value for ε-SVR is much lower than obtained on linear regression.346

However, an MSE value of 340.9 cm2 is obtained, which is greater than the347

obtained for the case of velocity. It means that prediction of the step length348

is more complex than the estimation of the step velocity using the same set349

of features.350

5 Human Gait as a Dynamical System351

As a second approach for gait analysis, extending ideas from [21], human gait is352

analyzed as a dynamical system (DS), where internal states behave differently353
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Step velocity Step length

Regression Mean MSE (cm/s) Mean MSE (cm)

Linear 301.5 605.5

ε-SVR 214.37 340.9

Table 3
Summary of results for step velocity and step length.

according to the dynamic state of the system. Gait parameters are considered354

as unknown intrinsic properties of that DS. Acceleration signals are assumed355

to be a reliable source of information, where the intrinsic system is encoded in356

form of embedded time-series. Using this dynamical approach, a spectral ap-357

proximation is followed as in [22], where principal component analysis (PCA)358

is applied to a conveniently organized set of time series provided by sensor359

measurements. It allows to discriminate the internal dynamics of the system360

and correlate it with the actual spatiotemporal properties obtained during361

gait.362

Let us consider human gait as a completely determined, but unknown, dy-363

namical system, xk+1 = T (xk) ∈ X , where T is a unknown determinis-364

tic rule. Internal states xk cannot be directly observed, however a certain365

measure sk ∈ S ⊂ R is available, through a device sensor, for instance,366

which corresponds to the application of certain function f : X → S. A se-367

quence of measures conforms a m-tuple, rk(xk) = (sk−m+1, sk−m+2, ..., sk) =368

(f(xk), f(T (xk)), . . . , f(Tm−1(xk))), that is said to belong the reconstruction369

space, i.e., rk ∈ R, where R ⊂ Rm.370

The Takens theorem [23] establishes diverse conditions for the reconstruction371

space R to be an embedding of X , i.e. to encapsule dynamics of internal states372

x. A crucial condition is imposed to the size of rk in order to guarantee the373

embedding property,374

m > 2 · dim(X ) (4)375

The reconstruction of the state space is obtained from measurements of a376

triaxial accelerometer attached to one side of the patients’ waist 5 . The module377

of the acceleration vector r(k) (Eq. 2) is used as the sk measure of the current378

state of the DS. From this measure, the hidden dynamics of the system can be379

observed using the reconstruction space with the embedding property. Thus,380

the elements of the reconstruction space corresponding to the sth step are381

5 It will be now assumed the right side as the one of interest, nevertheless it must
be noted that the method is invariant to this selection.
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given by the vectors available in the time-series,382

rs(xk) = (r(k −m+ 1), r(k −m+ 2), ..., r(k))T k = ks,0 : ks,0 + Ts −m(5)383

where m < Ts. The value of m must satisfy (4) in order to obtain a valid384

reconstruction space. Nevertheless, as dim(X ) is unknown, a reasonable high385

value must be selected.386

Defining a matrix Rs, an arrangement of the rs(xk) vectors, is a reconstruction387

of the internal dynamics for the s-th step. From now on, notation is simplified,388

Rs = (r0 r1 · · · rns)
T , (6)389

thus, the i-th row in Rs corresponds to a point in the representation space390

that represents the state of the system x in the time-step k. The whole matrix391

represents a state trajectory of the states of the body dynamics (x0, ...xn)392

during the sth step.393

Since reconstruction of state space is based on module measures, the method394

is insensitive to the orientation of the device.395

5.1 Feature Selection396

The size of the reconstruction space R is determined by the chosen dimension397

m, which should be large enough for leading to a space with capacity to capture398

the system dynamics. At the same time, using a large number of sensor data,399

i.e., a large time-series, leads to a large representation space with the valuable400

information spread along the columns in (6).401

The use of principal component analysis theory (PCA) transforms the repre-402

sentation matrix R, a huge database of time-series provided by sensor signals,403

through a transformation matrix B ∈ Rm×m, so that relevant information of404

the DS behavior is concentrated in first latent variables,405

Y = RB (7)406

i.e., the columns of Y, namely yj, j = 0, . . . ,m. Moreover, each row of Y still407

corresponds to a given time-step of the state space.408

Only the first latent variables, containing most part of information, are em-409

ployed, then, discarded latent variables are considered to contain only noise.410

Distinguishing between relevant or noisily variables is performed by observ-411

ing its contribution: noisily variables hardly contribute in comparison to the412
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Fig. 6. Original and latent variables during both slow and fast gait

relevant ones. Fig. 6 shows an example of both, the original module for the413

acceleration and the first and second more informative latent variables dur-414

ing a gait episode, which includes fast and slow walking dynamics. Vertical415

line discriminates walking velocity during a gait episode, the first cycle cor-416

responding to a gait velocity of 35 cm/s, while the second one represents a417

magnitude of 189 cm/s.418

It can be observed how latent variables behave similarly to a sinusoidal signal.419

A direct relationship exists between amplitude of the new signal and human420

gait velocity. Therefore, the problem of estimating the stride length and ve-421

locity could be solved by using regression on latent variables. As depicted in422

Fig.6(b), both latent variables would discriminate a slow gait episode from a423

fast one, therefore, for the estimation of step length and velocity both variables424

(y1,y2) are chosen as input space for the regressor. First two latent variables425

contain main information described as covariance, as Fig. 8 presents. Only426

these two latent variables are out of the noise level.427
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Fig. 7. Recurrence plot of a volunteer

In fact, final features used for the regression are given by428

r̄4 = max
j

(wj · τ) (8)429

where430

wj =
√

(yj,1)2 + (yj,2)2, (9)431

and τ represents the step’s duration.432

The sum of the square components in (9) represents the instantaneous radius of433

the trajectory in the space formed by the first two latent variables. A graphical434

representation is presented in Fig. 7, where two different gait velocities are435

described.436

To the best of our knowledge, it does not exist any method to determine the437

correct reconstruction of the state space of a DS. Taken’s theorem is valid only438

for noiseless measures although it has been extensively and successfully applied439

for noisy cases. In this work, since we are measuring gait properties, recurrence440

plots may clarify whether our reconstruction is valid. Recurrence plots are a441

common technique helpful to visualize the recurrences of dynamical systems442

[26]. Given a sequence of (reconstructed) states x1, . . . , xn of a system, a matrix443

Mn×n is considered where each element mij may have two values: 1 when444

xi ≈ xj and 0 otherwise. Note that similarity is defined by ε-insensitivity. This445

matrix is plotted, and periodic motions are reflected by long and uninterrupted446

diagonals. The vertical distance between these lines corresponds to the period447

of the oscillation. Figure 9 shows the recurrence plot for a volunteer when448

using embedding dimension 30 and ε = 10.5. Similar results were obtained449

by the rest of volunteers. Periodic orbits are clearly distinguishable, which450
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Fig. 9. Recurrence plot of a volunteer

completely agrees with the periodic nature of gait, suggesting that a good451

reconstruction has been obtained.452

5.2 Results using Latent Variables453

The method presented was applied on real data obtained from the same exper-454

iment in the precedent case, for comparison purposes. This section compares455

the estimation results of spatiotemporal parameters using r4 and when signal456

characteristics r̄1, r̄2, r̄3 from the precedent experiment are used.457

Table 4 shows the best results obtained when predicting length and velocity458

for each regression model (m=30, sampling at 50Hz). In order to evaluate the459

prediction capability of the the regression using raw data, a randomly gener-460

ated set (80% of the samples) was used to train ε-SVR model, the remaining461

samples were used to establish the MSE error rate. This process was repeated462

one hundred times to obtain significant values. A 10-fold cross validation was463

performed in order to obtain prediction error measures on features extracted464

from latent variables. This process was repeated 30 times to establish signifi-465

cant values. For the embedding approach, the best result was obtained when466
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using ε-SV regression with a RBF kernel for both spatiotemporal parameters,467

which improves the results provided by other type of regressions, (e.g., poly-468

nomial or linear kernels). When using those features extracted from raw data,469

the best result was that provided by the ε-SV regression, using a cubic poly-470

nomial kernel. From the medical point of view these results may be accurately471

enough to value the subjects’ gait performance.472

Step velocity Step length

Regression Mean MSE (cm/s) Mean MSE (cm)

Direct (ε-SVR cubic kernel) 214.37 340.9

Embedding(ε-SVR RBF kernel) 110.2 240.2

Table 4
Summary of results for step velocity and step length.

A more understandable prediction error measures of the results are listed in473

Table 5 and 6, where a specific estimation and its errors are presented. The rel-474

ative error between the RMSE and the average value of each spatioxstemporal475

parameters is presented.476

5.3 Discussion477

Table 4 compares results from embedding approach against those obtained478

using a direct model, which are also presented in Table 4.3. Time embedding479

approach outperforms the direct model results. A single value calculated from480

the reduced reconstruction space outperforms predictions based on different481

features of the original signal. Figure 6 suggests that it would be easier to482

extract information from latent variables, and estimation results evidence it.483

Estimation errors are presented in Table 5 and 6. The embedding approach484

shows better performance on estimating both spatiotemporal parameters. Rel-485

ative errors between RMSE and the average value are also shown. Embedding486

approach provides an error of 15.3% for step velocity and 18.6% for step length.487

This apparently high error may not be a problem in most medical applica-488

tions, since step length and velocity assessment does not require an extremely489

precise measurements. A long ambulatory assessment of the step length and490

velocity of patients can be performed through this estimation method, since491

significative changes will be reflected on the estimations.492

A previous study which used 4 gyroscopes reported a RMSE of 7 cm/s for493

step velocity and 8 cm for step length [8]. Sensors should be located carefully494

in thigh and shanks, and they were sensitive to orientation. Such results are495

more accurate than those obtained by the embedding approach used in this496

study. However, it must be taken into account that this lower precision is a497
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Table 5
Velocity Error Case Analysis (Average Velocity = 68 cm/s)

Approach Vel Error (cm/s) - (%)

Embedding (ε-SVR RBF kernel) 10.50− (15.3%)
Direct (ε-SVR 3-degree polynom. kernel) 14.64− (21.3%)

Table 6
Length Error Case Analysis (Average Length = 83.24 cm)

Approach Length Error (cm) - (%)

Embedding (ε-SVR RBF kernel) 15.49− (18.6%)
Direct (ε-SVR 3-degree polynom. kernel) 18.46− (22.18%)

consequence of usability restrictions. An unique wearable sensor attached to498

the waist, which must be insensible to orientation provides quite different and499

irregular signals between volunteers. Thus, embedding approach has been able500

to adapt to such signals but resulting in higher errors.501

Using the reconstruction of the state space of human gait rather than em-502

ploying signal features is showed to be more precise for the estimation of503

gait parameters. Nevertheless, it is possible that other features could obtain504

more accurate estimations. In order to find them, a large process comprising505

feature definition, feature selection and testing should be done. By contrast,506

state space reconstruction combined with PCA analysis has provided a gait507

representation easily interpretable which made feature definition obvious.508

Step velocity estimations are more precise than those obtained for length.509

The reason may be caused by the nature of the sensor measurements which510

are accelerations. A measurement error induced by noise may affect length511

regression stronger than the case of velocity since there is a double cumulative512

relation which is likely to disturb.513

6 Conclusions514

Three approaches for detecting posture and activities and estimating spa-515

tiotemporal parameters of gait have been presented. A common structure516

based on feature extraction and kernel method is used. Posture changes and517

activities are detected by SVM classification over features obtained from the518

measurements of the 9×2 device. Thus, the device is comparable to some com-519

mercially available sensors. Moreover, spatiotemporal parameters of gait are520

estimated using either a direct model, which extracts features directly from the521

accelerations comprising a step, or by features extracted from a reconstructed522

space when the behavior is considered as a DS.523
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A new approach for gait parameters estimation is presented, based on the524

implicit modeling of the human gait as a DS. The state space reconstruction525

analyzed using PCA is shown to be a simple method to extract gait properties.526

The goodness of the reconstruction is empirically demonstrated. Human gait527

is a cyclical process and recurrence plots evidenced that trajectories in the528

state space reconstruction are also periodic. Furthermore, the trajectories in529

the latent space are also periodic since the first two variables are a pair of530

sinusoidal signals.531

The feature selection algorithm combined with kernel methods has provided532

perfect discrimination between activities. Furthermore, kernel methods for re-533

gression purposes have resulted in an accurate estimation of spatiotemporal534

parameters of gait. Using the reconstruction space as input space for the PCA535

analysis provides an efficient method, obtaining truthful estimations when ex-536

tracting the most interesting information that is spread along the dimensions537

of the reconstruction space.538

This method provides a comfortable way to extract gait parameters by using a539

unique sensor located at the waist lateral side. The approach used is insensitive540

to orientation and assumes changes in the exact location of the sensor between541

users. Results show slightly lower accuracies in comparison to other systems542

that use more sensors and are sensitive to the exact position of the devices.543

It seems that there exists a trade-off between comfortability and precision in544

inertial sensors for the estimation of gait parameters.545

The approaches presented are susceptible to be used for medical purposes. A546

long term ambulatory assessment of postures, activities and gait parameters547

is feasible by using the presented algorithms. However, it is considered that548

a main requirement should be accomplished: usability restrictions imposes a549

single device so that it may be used during daily life. As algorithms should be550

processed in the device, extracted information must be saved in order to be551

analyzed by physicians, future directions are on developing real-time versions552

of the algorithms presented.553

References554

[1] L. Rochester, A. Nieuwboer, K. Baker, V. Hetherington, M. Willems,555

F. Chavret, G. Kwakkel, E. Van Wegen, I. Lim, D. Jones, The attentional cost556

of external rhythmical cues and their impact on gait in parkinsons disease: effect557

of cue modality and task complexity, Journal of Neural Transmission 114 (10)558

(2007) 1243–1248. doi:10.1007/s00702-007-0756-y.559

[2] J. Petrofsky, S. Lee, S. Bweir, Gait characteristics in people with type 2 diabetes560

mellitus, European Journal of Applied Physiology 93 (5-6) (2005) 640–647.561

23



doi:10.1007/s00421-004-1246-7.562

[3] M. E. Rogers, N. L. Rogers, N. Takeshima, M. M. Islam, Methods to assess563

and improve the physical parameters associate with fall risk in older adults,564

Preventive Medicine 36 (3) (2003) 255–264. doi:10.1016/S0091-7435(02)00028-565

2.566

[4] K. E. Webster, J. E. Wittwer, J. A. Feller, Validity of the gaitrite walkway567

system for the measurement of averaged and individual step parameters of gait,568

Gait & Posture 22 (4) (2005) 317–21. doi:10.1016/j.gaitpost.2004.10.005.569

[5] A. Tromp, Fall-risk screening test: A prospective study on predictors for falls570

in community-dwelling elderly, Journal of Clinical Epidemiology 54 (8) (2001)571

837–844. doi:10.1016/S0895-4356(01)00349-3.572

[6] W. Zijlstra, A. L. Hof, Assessment of spatio-temporal gait parameters from573

trunk accelerations during human walking, Gait & Posture 18 (2) (2003) 1–10.574

doi:10.1016/S0966-6362(02)00190-X.575

[7] A. Salarian, H. Russmann, F. J. G. Vingerhoets, C. Dehollain, Y. Blanc, P. R.576

Burkhard, K. Aminian, Gait assessment in parkinson’s disease: Toward an577

ambulatory system for long-term monitoring, IEEE Transactions on Biomedical578

Engineering 51 (8) (2004) 1434–1443. doi:10.1109/TBME.2004.827933.579

[8] K. Aminian, B. Najafi, Capturing human motion using body-fixed sensors:580

Outdoor measurement and clinical applications, Computer Animation and581

Virtual Worlds 15 (2) (2004) 79–94. doi:http://dx.doi.org/10.1002/cav.v15:2.582

[9] S. Lord, L. Rochester, K. Baker, A. Nieuwboer, Concurrent validity of583

accelerometry to measure gait in parkinsons disease, Gait & Posture 27 (2)584

(2008) 357–359. doi:10.1016/j.gaitpost.2007.04.001.585

[10] A. Meichtry, J. Romkes, C. Gobelet, R. Brunner, R. Müller, Criterion validity586

of 3d trunk accelerations to assess external work and power in able-bodied gai,587

Gait & Posture 25 (1) (2007) 25–32. doi:10.1016/j.gaitpost.2005.12.016.588

[11] M. Brandes, W. Zijlstra, S. Heikens, R. van Lummel, D. Rosenbaum,589

Accelerometry based assessment of gait parameters in children, Gait & Posture590

24 (4) (2006) 482–486. doi:10.1016/j.gaitpost.2005.12.006.591

[12] N. Bidargaddi, A. Sarela, L. Klingbeil, M. Karunanithi, Detecting walking592

activity in cardiac rehabilitation by using accelerometer, 2007, pp. 555–560.593

doi:10.1109/ISSNIP.2007.4496903.594

[13] D. Giansanti, Does centripetal acceleration affect trunk flexion monitoring by595

means of accelerometers?, Physiological Measurement 27 (10) (2006) 999–1008.596

doi:doi:10.1088/0967-3334/27/10/006.597

[14] C. Bouten, K. Koekkoek, M. Verduin, R. Kodde, J. Janssen, A triaxial598

accelerometer and portable data processing unit for the assessment of daily599

physical activity, IEEE Transactions on Biomedical Engineering 44 (3) (1997)600

136–147. doi:10.1109/10.554760.601

24



[15] R. Begg, M. Palaniswami, B. Owen, Support vector machines for automated602

gait classification, IEEE Transactions on Biomedical Engineering 52 (5) (2005)603

828–838. doi:10.1109/TBME.2005.845241.604

[16] I. Guyon, A. Elisseeff, An introduction to variable and feature selection, Journal605

of Machine Learning Research 3 (2003) 1157–1182.606

[17] S.-W. Lee, K. Mase, K. Kogure, Detection of spatio-temporal gait parameters607

by using wearable motion sensors, IEEE Conference on Engineering in Medicine608

and Biology Society 7 (2005) 6836–96839.609
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