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ABSTRACT: The combination of passive and active schemes hasbeen increasingly considered in the structural control community
as a promising way to design efficient smart hybrid base isolation systems for seismic protection. This paper considers ahybrid
system in which an active feedback control law is derived to be applied in parallel with a passive isolation device. The active control
uses the restoring force supplied by the passive isolator asthe main feedback signal. This paper can be divided in two main parts:
in the first one, the paper presents the theoretical formulation and stability analysis in the active control strategy; in the second part,
a set of numerical simulations is performed when the force issupplied in a semi-active way to validate and discuss the efficiency
of the approach in a more realistic scenario. Moreover, the performance of the proposed semi-active control algorithm is compared
with passive-off, passive-on and clipped-optimal controllers. The proposed control scheme reduces the base displacement without
increasing the floor accelerations.
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1 INTRODUCTION

Structural control systems have shown great interest in thelast
decades for hazard mitigation in civil structures [9]. Passive
control systems have been widely used to mitigate vibrations
due to external dynamic loadings [15], [22]. The basic concept
of base isolation is to make the structure behave like a rigidbody
through a certain degree of decoupling from the ground motion.
However, for the purpose of maintaining the seismic response
of structures within safety, service and comfort limits, the
combinationof passive base isolators and feedback controllers
(applying forces to the base) has been proposed in recent years.
Applications of hybrid control systems consisting on active
([4], [16], [17], [18]) or semi-active ([3], [7], [14]) systems
installed in parallel to base isolators have the capabilityof
reducing response quantities of base-isolated structuresmore
significantly than passive dampers. The idea of adding a
feedback control is based on the premise that a control action
is to be applied at the base with force magnitudes which are not
excessive due to the high flexibility of the isolators. The main
benefit of the inclusion of the control is that the assistanceof
such a force can help prevent large displacements of the base
isolator, which could endanger the integrity of the scheme.

In this paper we firstly consider this kind of hybrid systems
in which an active feedback control law is derived to be applied
in parallel with a passive isolation device. The active feedback

control law uses the restoring force supplied by the passive
isolator as the main feedback signal.

Since semi-active controllers in hybrid base-isolation systems
can achieve almost the same performance as an active base
isolation system in protecting the safety of building against
strong earthquakes [13], we also present the semi-active
realization of the proposed active scheme. In this sense, the
magnetorheological (MR) fluid dampers –considered as semi-
active devices– are represented using the normalized Bouc–Wen
model [11]. Because the force generated in the MR dampers is
dependent on the local responses of the structural system, the
desiredcontrol force cannot always be produced by the devices.
Only the control current or voltage can be directly controlled
to increase or decrease the force produced by this devices. In
this work, a new practical method [2], [3] is used to compute
the command current of the MR dampers. The whole method
is finally simulated by considering a three-dimensional smart
base-isolated benchmark building [16].

The paper is structured as follows. Section 2 is dedicated
to designing the force-derivative feedback control law and
it is divided into two subsections: Subsection 2.1 presents
the dynamic model of the base-isolated structure; Subsection
2.2 describes the desired control force which is based on a
force-derivative feedback controller for hysteretic base-isolated
structures. The semi-active realization od the proposed control
scheme is developed in Section 3. The inverse model that

Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011
Leuven, Belgium, 4-6 July 2011
G. De Roeck, G. Degrande, G. Lombaert, G. Müller (eds.)
ISBN 978-90-760-1931-4

1839



provides a suitable context to compute the command current
of MR dampers analytically is described in Subsection 3.1;
meanwhile the algorithm for selecting the command signal is
concisely stated in Subsection 3.2. The smart base-isolated
structure that serves as a benchmark problem for numerical
testing is presented in Section 4 together with some numerical
simulations to analyze the performance of the proposed semi-
active scheme. Final comments are given in Section 5.

2 FORCE-DERIVATIVE FEEDBACK CONTROL LAW DE-
VELOPMENT

There exists a wide range of control algorithms that are
applied to base-isolated buildings: clipped-optimal control [7],
[12], [26]; maximum energy dissipation algorithms [14]; and
modulated homogeneous friction algorithms, among others.
Each of these controllers is able to reduce the structural response
to some degree. From a structural point of view, a reasonable
controller has to reduce the base displacement while decreases
or slightly increases the accelerations. Li and Ou [13] showed
that the active control forces in base-isolated structureshave
damping characteristics. In this study, an active force-derivative
feedback controller will be applied in a semi-active way to
the eighth-storied base-isolated benchmark building [16]. The
control forces will be applied at the base through manipulation
of the command currenti at the MR dampers.

2.1 System description

The system description considers a nonlinear base-isolated
building structure as shown in Figure 1. More precisely,
the control design is based on a dynamic model composed
of two coupled subsystems, namely, the main structure or
superstructure (Sr ) and the base isolation (Sc):

Sr : Mẍ =−MJẍg−Cṙ −Kr (1)

Sc : mẍ+ cẋ+ kx= c1ṙ1+ k1r1−mẍg−Φ+u (2)

whereẍg is the absolute ground acceleration,x= [x1,x2, . . . ,x8]
T ∈

R8 represents the horizontal displacements of each floor with
respect to the ground. The mass, damping and stiffness of theith
storey is denoted bymi ,ci andki , respectively,r = [r1, . . . , r8]

T ∈
R8, represents the horizontal displacements of thei-th floor
relative to the(i − 1)-th floor. The base isolation is described
as a single degree of freedom with horizontal displacementx. It
is assumed to exhibit a linear behavior characterized by mass,
damping and stiffnessm,c andk, respectively, plus a nonlinear
behavior represented by a hysteretic restoring forceΦ. This
restoring force can be supplied by some base isolation device.
The matricesM ,C,K andJ of the structure have the following
form:

M = diag(m1,m2, . . . ,m8) ∈ R8×8

J = [1, . . . ,1]T ∈ R8

C = (ci j ) ∈ R8×8, ci j =





ci , i = j
−ci+1, j − i = 1
0, otherwise

K = (ki j ) ∈ R8×8, ki j =





ki , i = j
−ki+1, j − i = 1
0, otherwise

Finally,u is the active control force supplied by an appropriate
actuator.

The model in equations (1)-(2) is used to design an
appropriate control law. The applicability and efficiency of the
proposed controller will be then shown using a more realistic
and complex model.

The equation of motion of the base (2) can be written in the
form

Sc : mẍ+ cẋ+ kx=c1(ẋ1− ẋ)+ k1(x1− x)︸ ︷︷ ︸
δ [x,ẋ,x1,ẋ1]

−Φ−mẍg︸ ︷︷ ︸
∆(t)

+u.

It is well accepted that the movement of the superstructureSr

is very close to the one of a rigid body due to the base isolation
[18]. Then it is reasonable to assume that the motion of the first
floor relative to the base will be very small. Therefore, it isalso
reasonable that the interaction forceδ [x, ẋ,x1, ẋ1] will be small
in comparison with the rest of the forces acting on the base [14].
Consequently, the following simplified equation of motion of
the base can be used in the subsequent controller design:

S̃c : mẍ+ cẋ+ kx=−Φ−mẍg+u. (3)

2.2 Force-derivative feedback controller

Force-feedback controllers have received great attentionin the
active cable control of cable-stayed bridges [6], where the
concept of integral force feedbackis introduced, offering a
sufficient increase of structure damping by suitable sensor-
actuator-pairs integrated between the stay-cables and the
bridge deck. The static loads are compensated by hydraulic
accumulators without permanent power supply. Moreover,
force-feedback controllers have been seen in active vibration
isolation [5], [19], where it is shown that the force feedback
implementation benefits from alternating poles and zeros which
allows a control law with guaranteed stability, making it
very attractive when the payload to be isolated from the
disturbance source is very flexible, such as in large space
structures. At the same time, other applications have been
seen in piezoelectric actuators for vibration control of civil
structures used (decentralized)integral force feedbackcontrol
[21], vehicle vibration control using MR dampers [23], and
hybrid structural simulation [1] and [25].

Assuming that the earthquake disturbance is unknown but
bounded, the following force-derivative feedback controller is
proposed:

u=−ζ Φ̇, (4)

whereζ is a positive real number. From an active control point
of view, the force which has to be supplied by the actuator is
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based on the measured force which is currently supplied by the
isolator device.

More precisely, the following assumptions are stated for
system (3):

Assumption 1:The forceΦ is described by the normalized
version of the Bouc–Wen model [10]:

Φ(t) = κẋẋ(t)+κww(t), (5)

ẇ(t) = ρ(ẋ(t)−σ |ẋ(t)||w(t)|n−1w(t)

+ (σ −1)ẋ(t)|w(t)|n), (6)

where ẋ is the velocity andκẋ,κw,ρ ,σ and n are the system
parameters.

Assumption 2:The earthquake disturbance−mẍg(t) is un-
known but bounded; i.e., there exists a known constantG such
that|ẍg(t)| ≤ G, ∀t ≥ 0.

Moreover, Theorem 1 in [10] guarantees the existence
of a computable upper boundρw on the internal dynamic
variablew(t), i.e., |w(t)| ≤ ρw, ∀t ≥ 0, independentlyon the
boundedness ofx(t).

The following theorem states the bounded-input bounded-
output stability of the proposed controller.

Theorem 1:Consider the nonlinear system in equation (3)
and the force-derivative feedback control law

u=−ζ Φ̇, (7)

under the assumption of the boundedness of the earthquake
disturbance. Then, the closed-loop system in equations (3)and
(7) is bounded-input bounded-output stable.
Proof. This proof is based on the boundedness of the earthquake
disturbance−mẍg.

The closed-loop system in equations (3) and (7) yields

mẍ+ cẋ+ kx=−(κẋẋ+κww︸ ︷︷ ︸
Φ

)−mẍg− ζ (κẋẍ+κwẇ)︸ ︷︷ ︸
Φ̇

.

Applying the Laplace transform to the equation of motion of
the base, we obtain

[
(m+ ζκẋ)s

2+(c+κẋ)s+ k
]
x(s) =

−mẍg(s)− [ζκws+κw]w(s),

where x(s),w(s) and ẍg(s) are the Laplace transform of the
signalsx(t),w(t) and ẍg(t), respectively. The direct transfer
function between the ground motion ¨xg, the hysteretic variable
w, and the controlled base displacementx is

x(s) =

Tg(s)︷ ︸︸ ︷
−m

(m+ ζκẋ)s2+(c+κẋ)s+ k
ẍg(s)

− ζκws+κw

(m+ ζκẋ)s2+(c+κẋ)s+ k︸ ︷︷ ︸
Tw(s)

w(s)

= Tg(s)ẍg(s)−Tw(s)w(s)

It can be shown, using the Nyquist stability criterion, thatthe
transfer functionsTg(s) and Tw(s) are stable. Therefore, the
boundedness of theinput signals ¨xg(t) and w(t) guarantees
the boundedness of theoutput signal x(t), that is, the base
displacement. �

3 SEMI-ACTIVE IMPLEMENTATION

In this work, the active control force is not applied directly to the
base through an active actuator. Contrarily, we use MR dampers
to perform a semi-active realization. The first step used to design
a semi-active control strategy is the selection of anactivecontrol
law that makes the closed-loop system stable. In our case, this
active control law is based on the derivative of the force which
is currently supplied by the isolator device. The second step is
the use of a semi-active MR damper, with forceFMRp, to try
to follow the activedesiredforce given by equation (7). That
is, we use: (a) a passive isolator device described by equations
(5)-(6) with fixed parameters and (b) a semi-active MR damper
that tries, by updating the currenti, to apply a force equal to
the derivative of the force of the passive isolator device times
a design parameter−ζ . Even though this strategy can seem
redundant, in the event of a fault, the system continues acting
in a passive way. The next sections are concerned on how to
compute the command current to carry out this objective.

x0

x1

m

m1

k

k1

k1

c

c1

c1

Φ

u

ẍg

x8
m8

r1

Figure 1. Two degree-of-freedom (2DOF) model.

3.1 The inverse model

The inverse model will provide a suitable tool to compute the
command current of MR dampers analytically. Consider the
normalized form of the Bouc–Wen model for MR dampers (see
the Appendix for further details):

FMR(t) =
[
κẋ,ai(t)+κẋ,b

]
ẋ(t)

+
[
κw,ai2(t)+κw,bi(t)+κw,c

]
w(t),

whereFMR(t) is the output force of the MR damper. The inverse
model, that is, the computation of the currenti as a function of
the velocity and force, is based on the following simplification:
(a) the internal dynamic variablew(t), which is unmeasurable,
is replaced by the sign of the velocity:

w(t) = sgn(ẋ) ∈ {−1,1}.
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We remark that, in the normalized version of the Bouc–Wen
model, the value of this internal dynamic variable lies within
the range[−1,1].

As a result of this simplification, the MR damper model is

FMR(t) =
[
κẋ,ai(t)+κẋ,b

]
ẋ(t)

+
[
κw,ai2(t)+κw,bi(t)+κw,c

]
sgn(ẋ)

= [κw,asgn(ẋ)] i2(t)+
[
κẋ,aẋ(t)+κw,bsgn(ẋ)

]
i(t)

+
[
κẋ,bẋ(t)+κw,csgn(ẋ)

]

The currenti(t) can be found by solving the quadratic equation

κw,asgn(ẋ)︸ ︷︷ ︸
a2

i2(t)+
[
κẋ,aẋ(t)+κw,bsgn(ẋ)

]
︸ ︷︷ ︸

a1

i(t)

+κẋ,bẋ(t)+κw,csgn(ẋ)−FMR(t)︸ ︷︷ ︸
a0

= 0.

Thereby, the final form of the inverse model will be:

i(ẋ,FMR) =
−a1±

√
a2

1−4a2a0

2a2
(8)

where

a0 = κẋ,bẋ(t)+κw,csgn(ẋ)−FMR(t)

a1 =
[
κẋ,aẋ(t)+κw,bsgn(ẋ)

]

a2 = κw,asgn(ẋ)

3.2 The selection of the command current i

It is well known that the force generated by the MR damper
cannot be commanded; only the voltagevor the currenti applied
to the MR damper can be directly changed [7]. In the clipped-
optimal control algorithm [7], the command voltage takes the
values zero or the maximum, according to

v=VmaxH {( fd−FMR)FMR} , (9)

where Vmax is the maximum voltage to the current driver
associated with saturation of the magnetic field in the MR
damper,H(·) is the Heaviside step function,fd is the desired
control force andFMR is the measured force of the MR damper.
In some situations, when the dominant frequencies of the system
under control are low, large changes in the forces applied tothe
structure may result in high local acceleration [26]. In this sense,
a modification to the original clipped-optimal control algorithm
in which the control voltage can be any value between zero
and aVmax, was proposed in [26], where the control voltage
is determined using a linear relationship between the applied
voltage and the maximum force of MR damper. A similar
approach can be found in [8], where a force-feedback control
scheme is employed to overcome the difficulty of commanding
the MR damper to produce an arbitrary force. In this paper we
consider the same idea of changing the voltage but changing the
current according to the inverse model in equation (8). More
precisely, to induce the MR damper to generate approximately
the desired control forcefd, the algorithm for selecting the
command signal can be concisely stated as

i =
−a1±

√
a2

1−4a2a0

2a2
(10)

base 

isolator device

MR damper 

inverse model 

reference force 

structure 

semi-active 

controller 

Φ
Φ ẋ

i

fd

ẍg

FMRp

FMRp

Figure 2. Block diagram of the semi-active control system for
a single MR damper.

where

a0 = κẋ,bẋ(t)+κw,csgn(ẋ)− fd(t)

a1 =
[
κẋ,aẋ(t)+κw,bsgn(ẋ)

]

a2 = κw,asgn(ẋ)

and fd is computed according to

fd =−ζ Φ̇. (11)

Both equations (10)-(11) define a semi-active controller. Figure
2 illustrates the corresponding closed-loop system.

Based on this desired force, the corresponding command
current that has to be applied to the damper will be calculated
according to equation (10). Letiα andiβ be the two roots of this
equation and let[0, imax] be the range of admissible current. The
applied currentia will finally be

ia =





max{iα , iβ}, iα , iβ ∈ [0, imax]
min{iα , iβ}, min{iα , iβ} ∈ [0, imax],

max{iα , iβ} 6∈ [0, imax]
imax, iα , iβ > 0, min{iα , iβ} 6∈ [0, imax]
max{iα , iβ}, min{iα , iβ}< 0,

max{iα , iβ} ∈ [0, imax]
imax, min{iα , iβ}< 0,

max{iα , iβ} ≥ imax

0, max{iα , iβ}< 0
ℜ(iα), iα ∈ C\R, 0≤ ℜ(iα )≤ imax

0, iα ∈ C\R, ℜ(iα )< 0
imax, iα ∈ C\R, ℜ(iα )> imax

In the implementation of this formula, the values are truncated
between zero andimax when the current does not belong to
the range of admissible values. When the roots are complex
conjugates, we just consider the real part, and then we applythe
same truncation.

This process helps the damping force generated by the MR
dampers become more closer to the desired control force,fd.
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Figure 3. Elevation view with devices.

Figure 4. A representative figure of the benchmark structure.

4 NUMERICAL RESULTS

The performance of the semi-active control algorithm presented
in Section 3 is now evaluated through numerical simulation
using the smart base-isolated benchmark building. The smart
base-isolated benchmark building [16] is employed as an
interesting and more realistic example to further investigate
the effectiveness of the proposed design approach. This base-
isolated building is an eight-storey frame building, similar to
existing building in Los Angeles, California. The results are
also compared with the clipped-optimal control algorithm in
equation (9) [7] and also with two limit cases:passive offand
passive on, that corresponds to the cases ofzerocurrent applied
to the damper andmaximumcurrent applied to the damper.
The evaluation is reported in terms of the performance indices
described in Table 1. The controlled benchmark structure is
simulated for seven earthquake ground accelerations defined in
the benchmark problem (Newhall, Sylmar, El Centro, Rinaldi,
Kobe, Ji-Ji and Erzinkan). The performance indices larger
than 1 indicate that the response of the controlled structure is
bigger than that of the uncontrolled structure. Table 2 shows the
average evaluation criteria for all 14 cases (the seven prescribed
earthquakes in two orthogonal directions). The performance
indices larger than one in Table 2 are underlined. Figure 5 show
the time history response of the base-isolated building under the
Erzinkan earthquake for different control cases. It is clear in

Figure 5 that the proposed semi-active controller reduces the
base displacements in 75% from the passive-off case.
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Figure 5. Response time history of the building subjected to
Erzinkan earthquake (FP-y and FN-x) base displacement at
the center of mass (2000kN MR damper)

Table 1. Performance indices, where,i = isolator number,
1, . . . ,nMR; k= device number, 1, . . . ,Nd; f = floor number,
1, . . . ,Nf ; q = earthquake number, 1, . . . ,7; t = time, 0≤
t ≤ Tq; 〈·〉 = inner product; ‖ · ‖ = vector magnitude
incorporating NS and EW components.

Peak base shear Peak structure shear

J1 =
maxt ‖V0(t,q)‖
maxt ‖V̂0(t,q)‖

J2 = maxt ‖V1(t,q)‖
maxt ‖V̂1(t,q)‖

Peak base displacement Peak inter-storey drift

J3 =
maxt ,i ‖di(t,q)‖
maxt ,i ‖d̂i(t,q)‖

J4 =
maxt , f ‖df (t,q)‖
maxt , f ‖d̂f (t,q)‖

Peak Floor acceleration Peak control force

J5 =
maxt , f ‖af (t,q)‖
maxt , f ‖âf (t,q)‖ J6 = maxt ‖∑k Fk(t,q)‖

maxt ‖V0(t,q)‖
RMS base displacement RMS floor acceleration

J7 = maxi ‖σd(t,q)‖
maxi ‖σd̂(t,q)‖

J8 =
maxf ‖σa(t,q)‖
maxf ‖σâ(t,q)‖

Energy dissipated by MR damper

J9 =
∑k

[∫ Tq
0 Fk(t,q)υk(t,q)dt

]

∫ Tq
0 〈V0(t,q)U̇g(t,q)dt〉

5 CONCLUDING REMARKS

In this paper we have considered a hybrid system in which
an active feedback control law has been derived to be applied
in parallel with a passive isolation device. The active control
uses the restoring force supplied by the passive isolator asthe
main feedback signal. A set of numerical simulations have
been performed when the force is supplied in a semi-active
way to validate and discuss the efficiency of the approach in
a more realistic scenario. With respect to the implementation
issues, a new practical method has been defined to compute
the command voltage of the dampers according to the desired
control force. The whole method is simulated by considering
a three-dimensional smart base-isolated benchmark building
which is used by the structural control community as a state-
of-the-art model for numerical experiments of seismic control
attenuation. The performance indices demonstrate that the
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Table 2. Average evaluation criteria for different controllers
using 2000 kN MR dampers for earthquake excitations in
both directions.

Indices F. Feedback Clipped Passive-On Passive-Off
J1 0.83 0.82 0.81 0.83
J2 0.83 0.81 0.82 0.86
J3 0.59 0.54 0.48 0.41
J4 0.85 0.87 0.94 1.09
J5 0.92 1.00 1.15 1.40
J6 0.29 0.33 0.45 0.14
J7 0.44 0.36 0.28 0.23
J8 0.59 0.57 0.59 0.58
J9 0.73 0.79 0.85 0.88

proposed semi-active method can effectively suppress structural
vibration caused by earthquake loading and can provide a
desirable effect of structural performance.

APPENDIX

THE MAGNETORHEOLOGICAL DAMPER MODEL

The normalized version of the Bouc–Wen model [10] is an
equivalent representation of the original Bouc–Wen model [24].
For MR dampers in shear mode it takes the form:

FMR(t) = κẋẋ(t)+κww(t), (12)

ẇ(t) = ρ(ẋ(t)−σ |ẋ(t)||w(t)|n−1w(t)

+ (σ −1)ẋ(t)|w(t)|n), (13)

whereFMR(t) is the output force of the MR damper, and ˙x(t)
is the velocity. The system parameters, which are current-
dependent, areκẋ(i) > 0, κw(i) > 0, ρ(i) > 0, σ(i) > 1/2, and
n(i) ≥ 1. These parameters control the shape of the hysteresis
loop and their meaning can be found in [11]. The state variable
w(t) has not a physical meaning so that it is not accessible to
measurements.

The MR damper model in equations (14)-(15), which is
based on the normalized Bouc–Wen model in equations (12)-
(13), was obtained from a model validation of a large-scale
magnetorheological damper at Kinki University (Osaka, Japan)
using both constant and varying current along with a varying
displacement signal [20]. This normalized Bouc–Wen model
depicts its current dependent parameters in equations (17)-(19):

FMR(t) =
[
κẋ,ai(t)+κẋ,b

]
ẋ(t)

+
[
κw,ai2(t)+κw,bi(t)+κw,c

]
w(t) (14)

ẇ(t) =
[
ρai2(t)+ρbi(t)+ρc

]
·

·
(
ẋ(t)−σ |ẋ(t)||w(t)|n−1w(t)

+(σ −1)ẋ(t)|w(t)|n) (15)

w(0) =
F(0)−

[
κẋ,ai(0)+κẋ,b

]
ẋ(0)[

κw,ai2(0)+κw,bi(0)+κw,c
] (16)

κẋ(i) = κẋ,a i +κẋ,b = 328.47i +35.14N/mm (17)

κw(i) = κw,ai2+κw,bi +κw,c

=−136910i2+62530i +600N (18)

ρ(i) = ρai2+ρbi +ρc

= 12.25i2−3.8i +0.93mm−1 (19)

The parametersn and σ barely show dependence on the
current; therefore, constant average values are considered, n=
1.63 andσ = 1.85.
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