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Abstract: Hysteresis is a property of systems that do not instantly follow the forces applied
to them, but react slowly, or do not return completely to their original state. A velocity based
active vibration control, along with a special class of hysteretic models using passive functions are
presented in this paper. This hysteretic model is based on a modification of the Bouc—Wen model,
where a nonlinear term is replaced by a passive function. The proposed class retains the rate-
independence property of the original Bouc—Wen model, and it is able to reproduce several kinds
of hysteretic loops that cannot be reproduced with the original Bouc—Wen model. Using this class
of hysteretic models, a chattering velocity-based active vibration control scheme is developed
to mitigate seismic perturbations on hysteretic base-isolated structures. Our hysteretic model is
used because of its simplicity in proving the stability of the closed-loop system; i.e., a controller
is designed using the proposed model, and its performance is tested on the original hysteretic
system, modeled with Bouc-Wen. Numerical experiments show the robustness and efficiency of

the proposed control algorithm.

1. INTRODUCTION

The physical property called hysteresis can be defined as a
memory-dependent (and also path-dependent) relation be-
tween excitation and response. It is a natural phenomenon
encountered in a wide variety of processes like biology,
optics, electronics, ferroelectricity, magnetism, mechanics,
and structural systems, among other areas [Ismail et al.,
2009, Oh and Bernstein, 2005]. On structural systems,
hysteresis appears as a natural reaction of materials used
to supply restoring forces against movements to dissipate
energy [Ikhouane and Rodellar, 2007]. Models of hysteresis
have been reported, for instance, in [Chua and Bass, 1972,
Clarke, 2005, Song and Kiureghian, 2006, Bertotti and
Mayergoyz, 2005, Pozo et al., 2009]. Within the fields of
civil and mechanical engineering, the Bouc—Wen model
has been extensively employed to describe the hysteresis
behavior of these systems [Ismail et al., 2009, Ikhouane
and Rodellar, 2007]. However, this dynamic model is quite
complex as it has seven unknown parameters, which are
not completely linearizable; this could represent a problem
in the control design. Despite the versatility of the Bouc—
Wen model in describing several hysteresis loops, this
model cannot describe, for instance, asymmetric loops [Fil-
iatrault, 1999, Song and Kiureghian, 2006], the tendency
of change of hysteretic loops [Wu et al., 2002], pinching-like
behavior, initial residual strain [Mostaghel, 1999], or the
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Stribeck effect [Auricchio et al., 2001]. Based on Bouc-Wen
model, we present a generalization of it that captures these
behaviors, not losing the Bouc-Wen model properties. On
the other hand, for the purpose of maintaining the seismic
response of structures within safety, service and comfort
limits, the combination of base isolators and feedback
controllers (applying forces to the base) has been proposed
in recent years. Active control, in front of passive or semi-
active strategies, has the advantage of adaption to a wide
range operating conditions and structures [Baratta and
Corbi , 2003, Spencer and Nagarajaiah, 2003, Pozo et al.,
2006]

Two topics are developed in this paper. First, a class
of hysteretic models using passive functions is presented.
This class is based on a modification of the Bouc—Wen
model, where the nonlinear term is replaced by a pas-
sive function. The proposed class maintains the rate-
independence property [Oh and Bernstein, 2005] of the
original Bouc—Wen model, and it is able to reproduce
several kinds of hysteretic loops that cannot be repro-
duced with the original Bouc-Wen model. Furthermore,
selecting appropriated parameters, our hysteretic model
can accurately capture the hysteretic Bouc—Wen behavior.
That is, different hysteretic behavior can be described by
this model. Second, the problem of controlling hysteretic
structural systems is addressed. The control objective is to
design an active vibration controller that mitigates seismic
disturbances on hysteretic base-isolated structures. Using
velocity measurements, a chattering controller with a sim-
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ple architecture for implementation is proposed. Lyapunov
theory is invoked to validate the proposed controller, where
we used the proposed hysteretic model because of its
simplicity in proving the closed-loop stability. Moreover,
numerical experiments applied to a base isolation system
under the effect of seismic disturbances, where the original
Bouc—Wen model is used to simulate the hysteretic behav-
ior of the isolation, show the robustness and the efficiency
of the proposed control algorithm. That is, we present
a very simple and effective active control strategy that
can be developed for actual hysteretic systems, adequately
modeled by the proposed hysteretic model.

This paper is structured as follows. The proposed class of
hysteretic models based on passive functions is presented
in Section 2. Some particular cases, illustrating a set of
hysteretic loops and its relation with some hysteretic loops
observed experimentally, are presented. Moreover, numer-
ical validation of the congruence of our model compared
with the Bouc—Wen model is showed. In Section 3, a
chattering controller is designed, based on velocity mea-
surements only. Section 4 presents numerical simulations
of a controlled base-isolated structure to give an overview
of the controller’s robustness. Finally, our conclusions are
drawn in Section 5.

2. A CLASS OF PASSIVE HYSTERETIC MODELS

In this section, a class of hysteretic models is studied
using a second-order structural hysteretic system given
by [Ikhouane and Rodellar, 2007] (pag. 24) and [Ikhouane
et al., 2005]:

mi(t) + ci(t) + ®(xz,t) = f(t) + u(t), (1)
and

O(z,t) =akz(t) + (1 — a)Dkz(t), (2)

() =D~ (Ai(t) — Bla(t)][=(6)]" " 2(1)
=i (t)[2(t)[") ®3)
where m and ¢ are the mass and the damping coefficients,
respectively; ® represents the nonlinear restoring force;
x gives the base displacement position (relative position
with respect to foundation); f(t) = —md, is the excitation
force, where &, is the earthquake ground acceleration and
u(t) is the (active) control input. Note that an upper

bound exists for the seismic perturbation, that is, there
exists an unknown positive constant F' such that:

lf@)| < F forall ¢>0. (4)

Equations (2)-(3) represent the restoring force ®(x,t) by
superposing an elastic component akz and a hysteretic
component (1 — o)Dkz, in which D > 0 is the yield
constant displacement and « € (0,1) is the post- to pre-
yield stiffness ratio; A, 5,n and A are the non-dimensional
Bouc—Wen model parameters. We set 5 — A > 0, which
corresponds to a special case of physical hysteretic be-
havior [Ikhouane and Rodellar, 2007]. These parameters
control the shape and size of the hysteresis loop [Smyth
et al., 2002]. So, the Bouc-Wen model parameters are
a,k,D, A, 8,n and \. The variable z(¢) is an internal state
which is not accessible for measurements. The schematic
representation of the system (1)-(3) is given in Figure 1.

Base

Active controller

Isolation
system

Foundation

(a) (b)

Fig. 1. (a) Base isolation system and (b) schematic model
of structural hysteretic system (1)-(3).

To deduce a class of hysteretic models using passive
functions, the nonlinear terms in (3) are replaced by a
family of passive functions as follows:

2(t) = Gli g(2)) = D (Ai() - g(=(1) 6] ), (5)

where the function g(z) is a passive function satisfying

z(t) - g(2(t)) >0 and g¢g(0)=0 forall ¢>0. (6)

Proposition 1. The dynamic system 2(t) = G(&,¢(z))) in
equation (5) is rate-independent, with G continuous

Proof. The system (5) is a special case of the Duhem
model, and therefor it is rate-independent [Oh and Bern-
stein, 2005, Padthe et al., 2008]. Note that the passivity
property of the function g(z(t)) gives a sufficient, but not
necessary, condition for the rate-independence. Let’s see
it. Consider 7(t) be a positive time-scale (see [Oh and
Bernstein, 2005]). Then 7(0) = 0 and, thus, z;(0) =
z(7(0)) = 2(0) = zp. Now, for all ¢ > 0, consider

d%(t) _ (Adl;(ﬂ — gz (1)) dﬁf”’)
) .

. dz(7) 1, .dx(T) . dx(T)

&\ p AN ety
Tar T ar 9(=(m) |7 dr

Since T is a positive time scale, 7(t) > 0. Hence, it follows

that:

P pot (B0 oy [ 200
L0 — o (a2~ getrp |52,
as required. O

Remark 1. Function G(i,g(z)))) is positively homoge-
neous with respect to #; that is D~} (Aaz — g(2)|az|) =
aD™!(Az — g(2)|2]).

To illustrate a set of hysteretic loops that can be captured
by the proposed model in equation (5), we carry out a few
simulations. For this purpose, consider the system (1)-(2)
withm =1kg,¢c=0Ns/m, k=1N/m,D=1m, f(t)=0
N, a =0, A =1, and u(t) = sin((0.03¢ 4+ 0.2)t) [Smyth
et al., 2002]. The following cases are studied (hereafter we
omit to specify time dependency to simplify writing):

e Case 1: g(z) = Az,
e Case 2: g(z) = tanh(z),
' _ [ sin(1.52) , |2| < 0.5
o Case 3: g(z) = { 0.52% , otherwise ’
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Fig. 2. Hysteretic loops for cases 1 and 2.
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Fig. 3. Hysteretic loops for cases 3 and 4.

sin(0.75) , z > 0.5

e Case 4: g(z) = § Sn(1:52), € (0, 0.5)

2, ze(—0.5,0]
0.52%, otherwise
e Case 5:g(z) = posech(Z) - tanh(Z), where pp = 1 and

a=1.

Using cases 1 and 2, asymmetric hysteretic loops (with
respect to the origin) are seen in Figure 2, this behavior
can also be offered in [Smyth et al., 2002]. This hysteretic
behavior may be attributed to materials that have an
initial residual strain, like a building structural frame. This
initial residual deformation, which will be permanent and
progressive with time, is due to the multiple cycles (low
and high frequency) along the structure life, attributed to
earthquakes, wind loading, ultimate loads, service loads,
structural degradation, among many others. A subsequent
peak of an earthquake acceleration will catalyze a further
displacement of the structure from its origin. In case
3, shown in Figure 3, the asymmetric loops resemble a
pinching-like behavior in the main loop, as observed in
[Mostaghel, 1999]. This may be attributed to reinforced
concrete structures where this type of behavior is common
under dynamic loads. Case 4 (Figure 3) shows a type of
behavior often seen in electrical substations [Filiatrault,
1999]. Finally, in case 5 (Figure 4), the passive function
g(z) captures the Stribeck effect as in [Liu and Chen, 1993]
and [Wilde et al., 2000]. The above hysteretic loops cannot
be reproduced with the original Bouc-Wen model.

To complete this section a comparison with the Bouc—Wen
model is presented. Let the system (5) be as follows:

=Dt (Ai — (a12 + agz® + (1323) |x|) ) (7)

that is, g(2) = a1z + a22? + a3z in equation (5). First, we
consider the Bouc-Wen dynamic (3) with the following
nominal values: D = 1 m, A = 1.2, 8 = 3, A = 3
and n = 1.1, as in [Ikhouane and Rodellar, 2007]. For
the proposed model (7), we take D = 1 m, A = 0.9,
a; =4.15, ag = 0, and ag = 0.6. Both models, (7) and (3),
have &(t) as their input signal. Selecting &(t) = sin(t) +

Fig. 4. Hysteretic loops for case 5.

sin(3t) + sin(7t) + sin(9¢) the simulation results of the
system response (z(t)) are shown in Figure 5. This figure
shows that it is feasible to find a passive function g(z)
such that the system (5) can reproduce the Bouc-Wen
hysteresis behavior.

The passivity of the function introduced in equation (5)
makes this model appropriate for control design. This
control design is then presented in the next section.

The control objective is to design a static controller that
reduces the vibrations produced by the seismic disturbance
by using only velocity measurements. The next theorem
states the main contribution with respect to the control
design.

Theorem 2. The system in equations (1), (2) and (5)
defines a bounded-input bounded-output (BIBO) stable
system with:

u=—psgn() (8)

where p is a positive constant design parameter. Moreover,
when p > F where F is given by (4), a Lyapunov-stable
system is obtained and the controller (8) mitigates the
seismic disturbance.

Proof. Given the Lyapunov function

as an energy expression, the time derivative along the
system in equations (1), (2) and (5) yields
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_ 2
V:&k$¢+¢j+ wzz
m mA
1 1 — a)D?
=— <x [ma + akx] + sz)
m A

% <x [—ci — (1 — o) Dkz + f(t) — psgn(i)]

(1 - a)D%*k )
T T

% (—cg'c2 — (1 — a)Dkzi + f(t)& — psgn(d)®

L= a)D%, {114&: - 1179(2)|¢|D

A D
:% (—cx'z + ()i — pli| - a_jéof)Dng(z)'”b)
<L e ooy i - S0P o)
—_———— S—~—
>0 >0

< (i~ (p— F)Ji]).

When p > F, since g(z) is a passive function, we obtain
V <0, implying that the closed-loop system (1), (2), (5)
and (8) is stable in the Lyapunov sense. To demonstrate
the seismic attenuation, let us compare the Lyapunov time
derivatives of the open-loop and closed-loop systems, i.e.,
VOL and VCL~ From (9)7

. ) 1 ) .
Ver =Vor — me‘ = Vor < Vor. (10)

Next we define the transient decay rate for both cases as
in [Liu and Chen, 1993]:

~V(x)

Viz)

< =
From (10), we deduce that
Cer > CoL-

We conclude that the closed-loop system has a larger tran-
sient decay rate response than the uncontrolled system,
thus mitigating the seismic disturbance.

When p < F, it has been obtained that
. 1
V<= (=ci®—(p— F)|i
< (e~ (p— Pl
which can be rewritten as
. 1
V< ——(c|lz| — (F — z|.
< = (cd| = (F = p)) 2]

Thus, when |&| > ? then V < 0, implying that the
closed-loop system (1), (2), (5) and (8) remains bounded.(J

Fig. 5. A Comparison between the proposed (dotted-line)
and the Bouc-Wen (solid line) models.

Remark 2. Note that if accelerometers are employed in-
stead of velocity sensors, velocity information can still be
extracted [Pozo et al., 2008]. In fact, only the sign of
the velocity, quantity that can be achieved implicitly, is
required (peaks at displacement signal).

Remark 3. The signum function in the control law in The-
orem 2, which is commonly used in sliding mode control
theory, produces chattering [Edwards and Spurgeon, 1998].
One way to avoid chattering is to replace the signum
function by a smooth sigmoid-like function such as

o
Vé(x(t))—m7

where § is a sufficiently small positive scalar.

(11)

Remark 4. For control implementation, the gain p satis-
fying the condition of Theorem 2 may be too large for
an actuator to provide. In this case, the controller perfor-
mance is evaluated using some realistic value of this gain.
This is the objective of the following sections.

Remark 5. It has been also proven [Pozo et al., 2008] that
the proposed controller also stabilizes the system under
the Bouc—Wen model.

3. SIMULATION AND EXPERIMENTAL PROPOSAL

In this section, a numerical example is presented to demon-
strate the effectiveness of the proposed controller defined
in Theorem 2. We test the robustness of the control scheme
(11) when it is applied to a more complex realistic struc-
ture: a hysteretic, base-isolated, eight-story building that
is similar to existing buildings in Los Angeles (California)
[Narasimhan et al., 2006] (see Figure 6). As said in section
2, selecting appropriated parameters of the proposed hys-
teric model (5), it can capture the hysteretic Bouc-Wen
behavior. So, despite the numerical simulation are done
using the original hysteretic Bouc-Wen model, the stability
is preserved.

We set § = 0.05 in (11) and p = 5.05mg N in (8),
where my = 3565.7 x 10% is the building base mass.
These values are designed by trial and error, taking into
account that these earthquakes represent a wide range
of magnitudes and frequencies. With this controller gain,
the maximum controller force is about 50% of the total
building mass (see Table 1). The evaluation is reported in
terms of two performance indices: )1, defined as the peak
base displacement in the controlled structure normalized

Fig. 6. Model of a hysteretic, base-isolated, eight-story
building that is similar to existing buildings in Los
Angeles (California).
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by the corresponding displacement in the uncontrolled
structure, and @2, is the peak absolute floor acceleration in
the controlled structure normalized by the corresponding
acceleration in the uncontrolled structure. The controlled
structure — whose parameters are described in Tables 1-2
— is simulated for seven earthquake ground accelerations
(Newhall, Sylmar, El Centro, Rinaldi, Kobe, Ji-Ji and
Erzinkan) and Table 3 presents the values of indices
Q1 and Q2 under these earthquakes. All the excitations
are used at their full intensity for the evaluation of the
performance indices. Performance indices larger than 1
indicate that the response of the controlled structure
is larger than that of the uncontrolled structure. These
quantities are highlighted in bold. In this paper, the
controllers are assumed to be fully active. These actuators
are used to apply the active control forces to the base of the
structure. In this control strategy, almost all the response
quantities are substantially reduced from the uncontrolled
cases. More precisely, the reduction in base displacement is
around 90% in all cases, and the floor accelerations are also
reduced by 38-75% in a majority of earthquakes (except
Newhall). For the El Centro case, where Q2 = 1.3292,
this value is above one. This could be because of the
earthquake behavior , such as: frequency contents, time
duration, dynamic range, DC-component, etc. However,
this value can be improved if we increase the controller
gain.

The benefit of this active control strategy is the reduction
of base displacements (Q1) without increasing the acceler-
ation (Q2). The reduction of the peak base displacement
@1 of the base-isolated building is one of the most impor-
tant criteria during strong earthquakes. At the same time,
reducing acceleration levels is crucial for non-structural
components, which account for 75% of the damage during
an earthquake.

For the base-isolated buildings, superstructure drifts are
reduced significantly compared to the corresponding fixed
buildings because of the isolation from the ground motion.
Hence, a controller that reduces or does not increase the
peak superstructure, while reducing the base displacement
significantly, is desirable for practical applications [Xu
et al., 2006]. In this respect, the proposed active controller
performs well.

3.1 Time-history plots

Figures 7-9 show the time-history plots of various response
quantities for the uncontrolled building and the building
with active controllers using one of the seven earthquakes.
More precisely, Figure 7 presents the plots for the base
displacement under Erzinkan for both the uncontrolled
and the controlled scenarios. The quantities plotted in
Figure 8 are the absolute acceleration of the base for the
uncontrolled and controlled situations. The magnitude of
the control signal in Figure 9! seems reasonable in com-
parison to the seismic excitation acceleration a(t) plotted
in Figure 10.

Looking at Figure 7, it is clear that the controlled relative
displacement of the base is significantly reduced compared

L This control signal is not of the signum display because we are
employing its smooth version (see Remark 1).

Table 1. Model coefficients of the hysteretic
base-isolated eight-story building.

mass stiffness damping

(%1000 kg) (N/m) (Ns/m)

base 3565.7 919422 101439
1st floor 2580 12913000 11363
2nd floor 2247 10431000 10213
3rd floor 2057 7928600 8904
4th floor 2051 5743900 7578
5th floor 2051 3292800 5738
6th floor 2051 1674400 4092
7th floor 2051 496420 2228
8th floor 2051 496420 704

Table 2. Parameters of the hysteresis model in
Equations (2)-(3)

a=0.5 A=1
k = 6466100 N/m (B =0.5
D =0.0245 m A=0.5

n=1

Table 3. Performance indices obtained by the
numerical simulations.

Q1 Q2

Newhall 0.1854 1.0290
Sylmar 0.1122  0.9660
El Centro 0.0488 0.8491
Rinaldi 0.1949  0.8200
Kobe 0.3722  0.7053
Ji-Ji 0.0220  0.1808
Erzinkan  0.0633  0.2530

I
o

e

=)

Displacement (meters)

=

-03
--- controlled_|

5 10 20 25 30

15
Time (seconds)

Fig. 7. Time-history response under Erzinkan excitation.
Closed-loop displacement (dashed) and open-loop dis-
placement (solid).

Acceleration (m/s?)

15
Time (seconds)

Fig. 8. Time-history response under Erzinkan excitation.
Closed-loop acceleration (dashed) and open-loop ac-
celeration (solid).

to the uncontrolled case. Figure 8 shows that the reduction
in the absolute base acceleration is not as drastic but is
still significant.
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Fig. 9. Control signal (acceleration w(t)/m).
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Fig. 10. Erzinkan earthquake ground acceleration.

4. CONCLUSIONS

A class of passive Bouc-Wen models has been presented
in this paper where a nonlinear term of the original Bouc—
Wen model has been replaced by a passive function. The
proposed class maintains rate-independence property and
reproduces hysteretic loops that have been previously ob-
served. Furthermore, selecting appropriated parameters,
this class of hysteretic model can capture the Bouc-Wen
model behavior. Using the proposed hysteretic model
representations due to its simplicity, a control scheme
using only velocity measurements has been developed.
The robustness of the controller is tested using the origi-
nal Bouc—Wen model through numerical simulations. The
controller’s performance has been validated with numeri-
cal experiments in a more realistic base-isolated building
structure.
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