
A Unifying Framework for the Definition of Syntactic

Measures over Conceptual Schema Diagrams (extended

version)

Dolors Costal, Xavier Franch

Universitat Politècnica de Catalunya (UPC)

c/ Jordi Girona 1-3, Barcelona E-08034, Spain

{dolors|franch}@essi.upc.edu

Abstract. There are many approaches that propose the use of measures for

assessing the quality of conceptual schemas. Many of these measures focus

purely on the syntactic aspects of the conceptual schema diagrams, e.g. their

size, their shape, etc. Similarities among different measures may be found both

at the intra-model level (i.e., several measures over the same type of diagram

are defined following the same layout) and at the inter-model level (i.e.,

measures over different types of diagrams are similar considering an

appropriate metaschema correspondence). In this paper we analyse these

similarities for a particular family of diagrams used in conceptual modelling,

those that can be ultimately seen as a combination of nodes and edges of

different types. We propose a unifying measuring framework for this family

and illustrate its application on a particular type, namely business process

diagrams.

Keywords: conceptual schema measure, conceptual schema diagram, metamodelling,

MOF.

1 Introduction

Measuring is a fundamental activity for assessing the quality of deployed information

systems (“you can’t control what you can’t measure” [1]). Although most of the

existing proposals on software measurement formulate measures for the final software

product (e.g., measurement of system performance, reliability, etc.), there is also an

important amount of work done on measuring conceptual schemas of the system.

These conceptual schema measures act as estimators in the earliest phases of software

development and may help to detect defects in a cost-effective manner.

Jorgensen and Shepperd reported [2] that in despite of the fact that formal

estimation models have existed for many years, the dominant estimation method is

still based on expert judgment, which makes measure evaluation subjective and time-

consuming and hampers measure reuse. A usual way to minimize expert judgement is

to formulate measures based on the structure of conceptual schemas.

There are many approaches that follow this idea to propose syntactic measures

over different types of conceptual schema diagrams, such as Entity-Relationship

2 Dolors Costal, Xavier Franch

Diagrams [3], Business Processes [4], Class Diagrams [5], Activity Diagrams [6], Use

Cases [7], Workflow Diagrams [8], and Goal-Oriented Diagrams [9]. These measures

present some similarities both at the intra-model level (i.e., several measures over the

same type of diagram are defined following the same layout) and at the inter-model

level (i.e., measures over different types of diagrams are similar considering an

appropriate metaschema correspondence).

An analysis of these existing proposals shows that there is a lack of a reference

framework for formulating the measures, a lack of guidelines for defining them, and a

lack of support for porting them from one kind of diagram to another in spite of these

similarities. Our work addresses these issues. To do so, we formulate an approach at

the metamodel level such that general-purpose measures can be defined by means of

OCL expressions and then we show how they can be specialized and adapted into

particular measures for the different types of diagrams mentioned above.

The remainder of the paper is organized as follows. In Section 2 we present an

overview of some existing suites of conceptual schema measures. In Section 3 we

present our metamodelling framework. In Section 4 we provide an overview of the

intended structure of a catalogue of general-purpose measures. In Section 5 we

illustrate with an example the use of this catalogue for defining a particular suite of

measures for business process diagrams. Finally, in Section 6 we present the

validation of our work and in Section 7 we present the conclusions and future work.

2 Background

Measures are applied over different types of conceptual schema diagrams for

evaluating different quality attributes. For instance, measures over class diagrams are

likely to focus on aspects like maintainability, understandability, etc., whilst measures

over business process diagrams may address concepts like liveliness and throughput.

The definition, reuse, comparison and validation of these measures has been

recognized as a challenge by others (e.g., [10]) triggering then some research that we

try to summarize below.

We explore here proposals of measures for: entity-relationship diagrams; class

diagrams; business process management diagrams; statechart diagrams; and i*

diagrams. The purpose of this section is not to provide a comprehensive state of the

art, that would require a paper by itself, but to show the typical structure-based

measures that are defined in these formalisms. Table 1 summarizes some

representative measures from the existing proposals.

• Measures over E-R diagrams. They triggered the definition of conceptual schema

measures. Some of them are present in virtually all proposals of measure suites,

like counting number of entities, computing some ratios, etc. Works by Moody

[11] and Si-Said Cherif et al. [3] provided a quite comprehensive set of measures

that were designed to assess qualities like complexity, analysability and simplicity

(i.e., the measures act as indicators of these high-level schema properties).

• Measures over class diagrams. Class diagram measures are an evolution of

measures on E-R diagrams, as proposed for instance in [3]. Chidamber and

Kemerer [5] offered a quite comprehensive measure suite, and Genero et al.

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 3

proposed also others related to maintainability and more interestingly, a

comprehensive survey including information about their validation [12].

Table 1. Overview of some conceptual schema measures.

Diagram Measure Property Measured Ref.

Number of Entities (E) Simplicity [11] E-R

Diagrams Number of Entities and Relationships (E+R) Simplicity [11]

Depth of Inheritance Tree (DIT) Complexity (behaviour) [5]

Number of Children (NOC) Reusability [5]
Class

Diagrams
Number of Associations (NAss) Maintainability [12]

Activity Automation Factor (AAF) Performance [4]

Branching Automation Factor (BAT) Performance [4]
Business

Processes
Coupling (Coup) Maintainability [8]

Number of Activities (NA) Maintainability [13] Statechart

Diagrams Number of Transitions (NT) Maintainability [13]

Number of SD elements Complexity [14]
i* Diagrams

Predictability Accuracy [15]

• Measures over business process diagrams. Business process diagrams are a

totally different type of diagram than the two previous ones structure-wise. Among

the existing proposals, we mention: a set of 8 structural measures for goal based

business process design and evaluation [4]; and coupling and cohesion over

workflow models [8].

• Statechart diagrams. Genero et al. [13] propose and validate five measures to

assess maintainability of UML statechart diagrams that count numbers of states,

transitions and their relationships.

• Measures on i* diagrams. There are a few proposals of measures over i* models.

Among them we remark the ones defined in the REACT method [14] which count

the different elements of Strategic Dependency (SD) models for obtaining different

values. The work in [15] evaluates Strategic Rationale (SR) models by analysing

the structure of their means-end and task-decompositions.

A minor point is worth to be remarked. We are using the term “measure” instead of

“metric” that for instance is used in a great deal of the papers cited in this section. We

have followed the advice by N. Habra et al. [16] among others, that recommend to

avoid the use of the term “metrics”: “Though they are widely used in software

engineering, we believe that their use causes ambiguity and possibly confusion by

suggesting erroneous analogies, e.g. with the mathematical metric in topology, with

the metric system of units, etc.”.

In the graph theory area [17], many measures over graphs have been defined. In

this work, we will focus on graph measures which evaluate properties that are

relevant to assess the quality of conceptual schema diagrams.

3 A Metamodelling Approach for Measure Definition

From the analysis of related work, we observe that conceptual schema measures are

all based on the application of a numerical function (e.g., counting or weighting) on

the elements that form the language used to create the diagrams under measurement.

4 Dolors Costal, Xavier Franch

For instance, measures over UML class diagrams are based on the number of

associations, the number of attributes, etc., and combinations of them. Therefore, we

aim at defining a metamodelling approach able to cope with this similarity by

unifying the different language metaschemas into one for measurement purposes.

We may observe that the different kind of diagrams targeted in this paper may be

reduced to a similar syntactic structure: they are all like graphs such that they differ in

their types of nodes and links. Therefore, we make the decision of defining a

semantically agnostic metaschema that just reflects this syntactic structure. We adopt

as starting point the metaschema for gap typology definition as proposed by Rolland

et al. [18] that we modify for adapting it to our needs.

Fig. 1 shows the metaschema. An Element is classified according to two different

criteria. First, a distinction between Simple Element and Compound Element is made.

Second, an element is classified as a Node or an Edge. A Compound Element is

decomposed into finer-grained elements, which can be Simple or again Compound.

Elements have one (or eventually more) category and optionally a name. Edge

elements are connectors between pairs of elements. One of the connected elements

plays the role of the source and the other is the target. Edges may have an order to

indicate the possible ordering among edges from the same source. It is important to

remark that an edge may involve some other edge as source or target, which is quite

convenient for being applicable in some contexts. There is a designated compound

element that represents a whole Diagram. Finally, an element may have associated

one or more Property and assign a value to it. Since the final metaschema has

significant differences with Rolland’s original one, we name it differently, concretely

we called it Graph-like Metaschema, or GLMS for short. The measures defined over

this metaschema will be named GLMS-measures.

Fig. 1. Graph-like metaschema, adapted from [18].

Table 2 shows the mapping of some concepts from some of the conceptual

modelling languages mentioned in the previous section, to GLMS’ concepts, with

focus on nodes and edges.

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 5

Table 2. Correspondence of the GLMS into the concepts of several modelling languages

Diagram Node Edge Property

E-R diagram Entity, Attribute Relationship Multiplicity?

Class diagram Class, Attribute Inheritance, Association Which attribute is key?

Business process diagram Task, Document Precedence, Owner Task executed by human?

i* diagram Actor, Dependum Means-end, Dependency Committed dependency?

Fig. 2 shows the metamodelling framework that we are proposing. At the M2 level of

the four-level metamodel hierarchy [19] we have the several metaschemas for the

different conceptual modelling languages: UML diagrams, E-R diagrams, business

process modelling formalisms like BPMN, etc. But also the GLMS itself needs to be

placed at M2, according to the metamodelling hierarchy classification criteria. Thus,

the correspondences established in Table 2 are in fact sub-typing relationships (e.g.,

E-R diagram is subtype of Diagram). Then, GLMS-measures may be defined (through

OCL). They are inherited in the modelling languages metaschemas, and then can be

combined as needed to define the measures that apply to this particular language.

Fig. 2. Defining model measures in a metamodeling-based framework.

To give an overview let’s consider the process of definition of one of the simplest

measures, the Number of Entities and Relationships (E+R) measure on ER diagrams:

• At the GLMS we can define a GLMS-measure that counts the number of

occurrences of a particular category of element cat in a diagram:

context Diagram::byCategoryCountDiagram(cat: String): Integer

• The E-R metaschema is coupled with the GLMS. In particular, the metaclass Entity

is defined as subclass of Node whilst Relationship is defined as subclass of Edge.

Also, the metaclass E-RDiagram is defined as subclass of Diagram.

• As a consequence of this subtyping , a measure is induced by inheritance:

context E-RDiagram::byCategoryCountDiagram(cat: String): Integer

• The E+R measure may be defined on top of this inherited measure as:

 context E-RDiagram::E+R(): Integer

 post result = self.byCategoryCountDiagram(“Entity”) +

 self.byCategoryCountDiagram(“Relationship”)

6 Dolors Costal, Xavier Franch

More details are rendered in the next sections. In particular:

• Which measures need to be defined over the GLMS?

• How these measures can be inherited over modelling languages metaschemas?

4 Defining Measures over the Graph-like Metaschema

To make our approach usable, we need to define a comprehensive catalogue of

GLMS-measures. It is not a goal of this paper to produce such a catalogue. However

we outline here a preliminary classification of GLMS-measures in the basis of the

papers surveyed in our state of the art analysis. What is really interesting at this point

is that the measures can be classified according to several dimensions:

• Condition. We can measure elements that fulfil some condition regarding their

attributes (attribute conditional measures, e.g. number of elements of a category),

regarding some structural condition (structural conditional measures, e.g. number

of nodes that have not edges stemming out) or regarding a property (property

conditional measures, e.g. number of nodes that have a given value for a property).

More than one condition may be checked in a given measure.

• Result. For a particular concept, we can compute the value as such (absolute

measures), with several variations: counting, obtaining the maximum, distance, etc.

We can divide this absolute value by a superconcept (normalized measures, e.g.

number of elements of a category divided by the total number of elements) or we

can compute a ratio compared to some other concept (crossed measures, e.g.

number of nodes divided by number of edges). Also, sometimes we are more

interested in getting the elements that apply for the computed concept that the

result itself, allowing to use this measure as a filter for another (filtering measures,

e.g. obtaining the set of elements that fulfil some structural condition).

• Input. The measures may be applied to a full diagram (diagram measures) or just

to a part of it (subdiagram measures). This second case is often used after a

filtering measure has restricted the diagram to some elements (probably of

different categories). A particular case of the second type is when the measures

apply to just one element (individual measures).

Table 3 presents a sample of the catalogue exploring different variations of a measure

for counting elements that belong to a category. GLMS-measures are defined as

operations specified in OCL [20]. M1 gets the set of elements of a particular category

from a subdiagram. M2 is an M1’s particularization in which the subdiagram is the

full diagram. M3 is the one used in the previous section. M4 defines a property-

conditional normalized measure over the diagram: since it depends on a property, the

name of the property and the required value are added as parameters; since it is

normalized, the special case of having no elements of the category has to be treated

separately. M5 is an example of structural conditional measure that counts the number

of nodes of a certain category cat1 connected through an outgoing edge to nodes of

another category cat2. M6 shows the combination of several condition types by

counting the same than M5 but also checking property values in the involved

elements. We may see how some measures can be defined on top of others, e.g. M3

on top of M2 and M2 on top of M1, making easier the definition process. In

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 7

particular, M4, M5 and M6 show the combination of existing measures into one using

filtering versions. We remark also the use of the following lexical pattern for naming

measures according to their classification: condition-result-input, e.g. in M1,

condition = byCategory, result = Filtering, input = Subdiagram.

Table 3. Some GLMS-measures. Unless otherwise stated, parameters are of type String. “SSN”
stands for “Set(Sequence(Node))”. The commented version of this OCL expressions can be
found in Appendix 1.
M1. Attribute conditional, filtering, subdiagram
context Diagram::byCategoryFilteringSubdiagram(se:Set(Element),cat):Set(Element)

post: result = se->select(e | e.category->includes(cat))
M2. Attribute conditional, filtering, diagram
context Diagram::byCategoryFilteringDiagram(cat): Set(Element)

post: result = byCategoryFilteringSubdiagram(Element.allInstances(), cat)
M3. Attribute conditional, counting, diagram
context Diagram::byCategoryCountDiagram(cat): Integer

post: result = self.byCategoryFilteringDiagram(cat)->size()
M4. Property conditional, normalized, diagram
context Diagram::byCategoryByPropertyNormalizedDiagram(cat, np, val): Real

post: byCategoryCountDiagram(cat) = 0 implies result = 0

post: byCategoryCountDiagram(cat) > 0 implies

 result = byCategoryFilteringDiagram(cat)->

 select(e | e.assignment->exists(a | a.property.name = np and

 a.value = val))-> size()

 / byCategoryCountDiagram(cat)

M5. Attribute and structural conditional, absolute, diagram
contextDiagram::byCategoryByTargetElementCategoryCountDiagram(cat1,cat2):Integer

post: result = byCategoryCountSubdiagram(

 byCategoryFilteringDiagram(cat1).targetEdge.targetElement, cat2)

M6. Attribute, structural and property conditional, absolute, individual
context Diagram::

 byCategoryAndPropertyByTargetElementCategoryAndPropertyCountDiagram

 (cat1, prop1, val1, cat2, prop2, val2): Integer

post: result = byCategoryByPropertyCountSubdiagram(

 byCategoryByPropertyFilteringDiagram(cat1, prop1, val1).

 targetEdge.targetElement, cat2, prop2, val2)

M7. Attribute conditional, filtering, diagram
context Diagram::allPathsFilteringDiagram(catN, catE): SSN
post: result = Node.allInstances()->
 select(n | n.category->includes(catN) and
 n.sourceEdge->select(e | e.category->includes(catE))

 ->isEmpty())
 ->iterate(x; s: SSN=Set{Sequence{}} | s->union(x.allPaths(catN, catE)))
context Node::allPaths(catN, catE): SSN
post: targetEdge->select(e | e.category->includes(catE))->isEmpty() and
 category->includes(catN) implies result = Set{Sequence{self}}
post: targetEdge->select(e | e.category->includes(catE))->notEmpty()

 implies result =
 if category->includes(catN) then
 targetEdge->select(e | e.category->includes(catE)).targetElement->
 iterate(x; s: SSN=Set{Sequence{}} | s->union(inFront(x.allPaths(catN, catE),x))
 else targetEdge->select(e | e.category->includes(catE)).targetElement->
 iterate(x; s: SSN=Set{Sequence{}} | s->union(x.allPaths(catN, catE)) endif

M8. Attribute conditional, maximum, diagram
context Diagram::allPathsMaxDiagram(catN: String, catE: String): Integer

post: result = allPathsFilteringDiagram(catN, catE)->

 select(p | allPathsFilteringDiagram(catN, catE)->

 forAll(p2 | p->size() >= p2->size())->size()

The last two measures illustrate a very different but also common type of measure

for conceptual schemas. In M7 we define a filtering measure for generating all paths

composed by nodes of a given category catN following edges of another category

8 Dolors Costal, Xavier Franch

catE. It relies on an operation (allPaths) applied to the roots of the path. This opera-

tion is also shown, with two postconditions showing the case of final node (i.e., with

no outgoing catE edges) and the recursion case, in which the current node is put in

front to each (recursively-generated) path only if it is a catN node (inFront operation

is not included for lack of space, it basically uses the prepend OCL operator to put the

element in front of each sequence generated with an iterate). On top of M7, M8 com-

putes the longest path comparing pair-wise all paths and keeping the longest as result.

5 Defining Measures over a Modeling Language Metaschema

In this section we illustrate how to define a measure suite for a particular conceptual

modeling language which is based on the GLMS. We consider a concrete proposal of

Business Process Modeling (BPM) notation, used by Balasubramanian and Gupta [4]

in their formulation of a BPM measure suite. We already used this case study in a

previous work [21] in the context of definition of measures in i*, and from that

experience we think it is a nice candidate to illustrate the framework presented here.

As happened in that paper, for the sake of space, we focus on a representative subset

of measures. Since the notation does not have name and we need one, we denote it by

BPM-BG (after the authors’ initials).

The method we propose is structured into two steps that are presented in the next

two subsections:

• The conceptual modelling language metaschema has to be connected to the GLMS

to allow proper inheritance of the GLMS-measures.

• The measure suite is defined as outlined in Section 3.

5.1 Refactoring the BPM-BG Metaschema

In the general case, the modelling language has an already defined metaschema. To

apply our framework, we need first to adapt it to our needs. The refactoring of the

language metaschema has the purpose of expressing its relevant concepts in terms of

the GLMS classes. The refactoring is designed to keep the elements of the language’s

original metaschema and then adding new elements needed to adapt it to the GLMS.

Moreover, the new elements will only include information that can be derived from

those of the original metaschema.

BPM-BG proposes a 3-view model for business processes [4] but for the purposes

of the paper we focus on one of them. The workflow view diagram reveals its set of

constituent activities, their precedence relationships and the business participants

(either human or system) that execute them. A workflow allows forks and merges.

Activities have automation degrees depending on the degree of interaction system-

user. Activities with human intervention (manual or interactive) may be discretional

(i.e., humans make decisions in a non-fully controllable manner). Fig. 3 shows the

BPM-BG workflow view metaschema. Integrity constraints exist but we do not show

them for the sake of conciseness. A correspondence must be established to relate the

concepts of the BPM-BG metaschema with GLMS classes (see Table 4).

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 9

Those concepts that are captured by classes of the BPM-BG metaschema (e.g.

WorkflowViewDiagram, Activity) are directly defined as subclasses of their

corresponding GLMS classes (e.g. Activity is declared as a subclass of Node and

Simple and its attributes redefine the attributes name and category of Element).

On the other hand, there is a mismatch for those concepts captured by associations

or attributes since they cannot be directly defined as subclasses. We need a more

elaborated refactoring to allow the inducement of meta-measures into the BPM-BG

metaschema. In the following, we describe the refactoring of the association Precedes

and the attribute automationDegree.

Fig. 3. Fragment of the BPM-BG workflow view metaschema and workflow view example

Table 4. Correspondence of BPM-BG metaschema and the GLMS.

BPM-BG metaschema concepts GLMS classes

Concept Representation Concept

WorkflowViewDiagram Class Node, Diagram

Workflow Class Node, Compound

WorkflowElement, Activity, Fork/Merge,
Fork, Merge, BusinessParticipant

Class Node, Simple

beforeF, afterF, beforeM, afterM, Precedes Association Edge, Simple

automationDegree, discretional, nature Attribute Property

The refactoring of the association Precedes consists, basically, on specifying it as

an association class (Precedence) which, at the same time, is defined as a subclass of

Edge and Simple (its corresponding concepts in the GLMS). Fig. 4 depicts the

refactoring of the Precedes association (where, for brevity, (C) beside the class name

stands for its definition as subclass of C).

10 Dolors Costal, Xavier Franch

Fig. 4. Refactoring of the Precedes association

Another aspect of the refactoring made in Fig. 4 that deserves attention is that two

derived associations relating Activity and Precedence have been added such that they

are calculated from the Precedes association. They also redefine the two associations

between Node and Edge of the GLMS. As a consequence, the instances of Precedes

are used to populate the redefined elements of the GLMS. In this way, the GLMS is

populated with instances of the original elements of the BPM-BG metaschema.

Now, consider the attribute automationDegree. Its refactoring, illustrated in Fig. 5,

consists, basically, on specifying a new singleton class AutomationDegreeProp,

defined as a subclass of Property and a new association class

AutomationDegreeAssign, defined as a subclass of Assignment, such that it relates

Activity and AutomationDegreeProp through a derived association. This derived

association redefines its corresponding GLMS association. The attributes of the new

classes are also derived and redefine their corresponding GLMS attributes. By

contrast, the AutomationDegreeProp singleton class itself is not derived since UML

does not admit the general definition of derived classes [22] and, for this reason, we

assume an initialization operation that creates its single instance.

Fig. 5. Refactoring of the automationDegree attribute

The rest of non-class elements of the BPM-BG metaschema can be refactored in a

similar way. As intended, the resulting BPM-BG refactored metaschema keeps all the

elements from the original BPM-BG, although it is true that the Open-Closed

Principle [23] is not fully applied due to the added subtyping relationships in the

original classes. Thanks to the use of derived and redefined information, the whole

metaschema (i.e., the combination of the GLMS and the BPM-BG metaschema) is

populated from the instances of the original BPM-BG metaschema and thus the

GLMS-measures are applicable over the refactored metaschema. To avoid the

violation of the Open-Closed principle, for each class A of the language metaschema

which inherits from two GLMS’s Element subclasses B and C (e.g., Activity that

inherits from Node and Simple), we could create a class A2 that inherits from A, B

and C. Therefore the initial language metaschema would be really preserved. The

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 11

main ideas behind our approach would not change in a significant way.

5.2 Inheriting Measures over the BPM-BG Metaschema

Once the two metaschemas have been aligned, we can define the measures over them.

In general, we aim at simply invoking the operations inherited from the GLMS

classes that define the GLMS-measures, but as it will be shown below, this is not

always possible.

For the sake of brevity, we focus on 3 representative measures over the BPM wor-

kflow view. The first is a case of immediate application, the second requires a slight

adaptation, whilst the third needs more work but still makes use of the metameasures.

• AAF. Proportion of total activities in a process that require system support.

Indicator of throughput. The GLMS-measure M4 (see Table 3) to count the

number of elements of a certain category (Activity) that fulfil a property

(automationDegree) is applied twice and results added. This is an example of

measure easy to obtain from the GLMS.

context WorkflowViewDiagram::AAF(): Real

post: result =

 byCategoryByPropertyNormalizedDiagram(‘Activity’,‘automationDegree’,‘automated’)

 + byCategoryByPropertyNormalizedDiagram(‘Activity’,‘automationDegree’,‘interactive’)

• APF. Longest path of activities that must be executed sequentially divided by the

total number of activities. Indicator of throughput. It is based on the computation

of paths formed by Activities using the Precedence relationship introduced when

refactoring (Fig. 4) using the GLMS-measure M8. Its definition is straighforward:

context WorkflowViewDiagram::APF(): Real

post: byCategoryCountDiagram(‘Activity’) = 0 implies result = 0

post: byCategoryCountDiagram(‘Activity’) > 0 implies

 result = allPathsMaxDiagram(‘Activity’, ‘Precedence’) / byCategoryCountDiagram(‘Activity’)

• TDRF. Proportion of transitions of flow between business participants from system

activities to human activities. Indicator of reliability. This is a complex measure

that cannot be simply induced by GLMS-measures. We provide below a simplified

version neither considering forks nor merges (which basically require repeating

two additional times the given expression). The focus is on the different nature of

activities using the GLMS-measure M6 in the filtering version, and the resulting

elements need to be filtered again to discard those edges that do not represent

transition of flows between business participants. We remark that for this second

filtering, we work directly at the level of the BPM-BG metaschema, although we

could have chosen to define a GLMS-measure if we had considered that the type of

filter is interesting enough to be included at this level. Note that even in this case,

the existence of GLMS-measures helps formalising the measure.

context WorkflowViewDiagram::TDRF(): Real

post: result = byCategoryAndPropertyByTargetElementCategoryAndPropertyFilteringDiagram

 (‘Activity’,‘nature’,‘system’, ‘Activity’,‘nature’,‘human’)->

 select(e | e.wkf.owner <> e.to.wfk.owner)->size()

 / Activity.allInstances()->select(e | e.wkf.owner <> e.to.wfk.owner)->size()

12 Dolors Costal, Xavier Franch

5.3 Discussion: Relationship with MOF

Once the full proposal has been presented, a final reflection can be made about the

modelling architecture that we have followed. Our framework proposes to

circumscribe both the GLMS and the modelling language metaschema at the M2 level

(according to the framework of a meta-modelling architecture defined in [19].

Another option could have been to keep the GLMS at the M2 level and to define the

language metaschemas at the M1 layer as its instantiation. Our reasons for not

following this latter approach are that: 1) it leaves no room for runtime instances

since, then, M0 would represent specific schemas (for example, a BPM diagram, but

not particular process instances), and 2) to define the language metaschema at the M1

layer may be counterintuitive and may damage the understandability of the approach.

Other alternative could have been defining the GLMS at M3 level but then our

approach would have not aligned with the four-level metamodel hierarchy that

proposes MOF at the M3 level.

6 Validation

We have performed a two-fold validation of our approach. First, we have used a

comprehensive catalogue of measures for a particular type of diagrams, UML class

diagrams. We have used an extensive survey [12] that compiles 67 measures from

several authors. The results are summarized in Table 5. The most interesting result is

that 62% of the measures are direct applications of some GLMS-measure (most times

just one, some times a bit more, similarly to AAF in Section 5.2), whilst other 26%

require more complicated combinations but are still easy to do (e.g., CL1 that

computes sets of responsibilities, that is a concept that has many refinements). 3% of

the measures are derived, i.e. just a ratio of other more basic ones. The real hard ones

represent the 6% of the population, which were so particular that it makes no sense to

define a GLMS-measure abstracting their meaning. But even in this case, as happened

with TDRF, all of them used some GLMS-measure as the basis for computation, for

instance, NMO computes the total number of methods overridden by a subclass,

which requires to generate paths of classes and for that purpose, M7 may be used.

Finally, we remark that 6% of the measures are hard to define using the OCL since

they involve square and square root computations. As additional information, 6% of

all the measures required expert judgement (e.g., WMC requires an expert to weight

the complexity of methods), which would be modelled as usual as properties in our

framework.

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 13

Table 5. Adequacy of our framework for UML class diagrams measures.

How
How

many
Which ones

Straightforward 41

WMC, DIT, NOC, DAC, DAC’, NOM, PIM, NIM, NIV, NCM, NCV, NMI,
NMA, APPM, PK3, OA1, OA2, OA3, OA5, DAM, DCC, MOA, DSC,

NOH, ANA, NOP, NAssoc, NAgg, NDep, NGen, NGenH, NAggH, maxDIT,

MaxHAgg, NAssocC, HAgg, NODP, NP, NW, MAgg, NDepIN, NDepOut

Require several
combinations

17
MIF, AIF, PF, ACAIC, OCAIC, DCAEC, OCAEC, ACMIC, OCMIC,
DCMEC, OCMEC, CL1, CL2, PK1, PK2, OA7, MFA

Derived 2 SIZE2, SIX

Specific 4 MHF, AHF, NMO, CAMC

Not-well suited 2 OA4, OA6

On the other hand, we have analysed some other types of diagrams with a sample

of measures found in concrete proposals. In particular, we have explored the

diagrams: ER, use case, activity, statechart, social network, i*, in addition to the BPM

case. To make the sample more representative, we have used different types of

sources: scientific papers for the ER [24] and BPM [4] an existing tool for measure

calculation, SDmetrics (http://www.sdmetrics.com/), for use cases, activity and

statechart diagrams; and even the Wikipedia for social networks. The full description

of these cases can be found in Appendix 2 and the results are summarised in Table 6.

In total, we have analysed 45 measures that have required the application of 58

patterns of 17 different types (in the last row we show the types of different patterns

considering the totality of metrics). The two next columns try to provide an indicator

of the applicability of our approach. We may observe that up to 69% of the measures

have been defined by simply invoking one metameasure and in addition 7% more

have been defined by reusing some measures defined below (e.g., in social networks,

degree centrality as the sum of in-degree and out-degree). We have defined an

indicator to measure somehow the overall customization effort, shown in the last

column: x+y+z means “x navigations, y operators on collections, z operators not on

collections”. Navigations include oclAsType (considered as “navigation” through a

hierarchy). Operators on collections are forAll, exists, iterator, select, and by the like.

Other operators include not only operators with name (size, asSet, etc.) but also

arithmetic, boolean and relational operators. It is worth to remark the case of social

networks since it illustrates the fact that, in the discipline of software engineering,

new models and notations continuously emerge for whatever reason and in particular

social networks are becoming increasingly popular for different purposes, e.g.

requirements prioritisation [25]. Our approach facilitates the definition of measures

for these new approaches.

Table 6. Adequacy of our framework for different types of diagrams’ measures.
Type of

diagram

Number of

measures

Patterns

applied

Types of pat-

terns applied

Immediate

measures

Measures by

reuse

Customization

effort

ER 12 13 4 8 (67%) 1 (8%) 7+1+11

Activity 10 10 1 10 (100%) 0 0+0+0

Statechart 7 7 2 5 (71%) 1 (14%) 0+0+3

Use case 6 6 4 5 (83%) 0 4+0+1

Social network 5 9 6 2 (40%) 1 (20%) 0+2+8

BPM 5 13 8 1 (20%) 0 10+4+15

TOTAL 45 58 17 31 (69%) 3 (7%) 21+7+38

14 Dolors Costal, Xavier Franch

7 Conclusions and Future Work

In this paper we have argued about the possibility of defining measures for conceptual

schema diagrams not in an ad-hoc way, but by manipulation of some generic

measures that are adapted to the particular type of diagram after a metaschema

alignment. We have presented methodological aspects of the proposal, a precise

definition in terms of metaschema transformations, and a first validation step. The

benefits of the proposal are: 1) simplification of measures definition: although

measures over the GLMS metaschema may be complex, they are defined only once as

a predefined catalogue and definition of specific measures on top of them is, in

general, simple; 2) improvement of measure understandability; 3) ontological

alignment since related measures can be defined on top of the same GLMS-measure;

4) possibility of defining the rationale of similar measures in a unified way at the

GLMS-level; 5) facilitation of adapting measures over a modelling language to other

languages. As drawbacks, we must point out the need of creating the initial catalogue

and that, although not many (see Tables 5 and 6), some measures require still non-

negligible work or even are too specific to be defined as GLMS-measure particu-

larizations.

The future work is organized along three directions that need to be jointly run.

First, validate further the approach by considering more types of models and more

measures on them. Second, complete the catalogue of GLMS-measures. Third,

develop tool support to facilitate both the process of managing the GLMS-measures

catalogue and the process of browsing it when defining a new set of measures.

References

1. DeMarco T.: Controlling Software Projects: Management, Measurement and Estimation.

Yourdon Press, 1986.

2. Jorgensen, M., Shepperd, M.: “A Systematic Review of Software Development Cost

Estimation Studies”. IEEE Transactions on Software Engineering, 33(1), January 2007.

3. Si-Said Cherfi, S., Akoka, J., Comyn-Wattiau, I.: “Conceptual Modelling Quality - From

EER to UML Schemas Evaluation”. ER 2002.

4. Balasubramanian, S., Gupta, M.: “Structural Metrics for Goal Based Business Process

Design and Evaluation”. Business Process Management Journal, 11(6), 2005.

5. Chidamber, S.R., Kemerer, C.F.: “A Metrics Suite for Object Oriented Design”. IEEE

Transactions on Software Engineering. 20(6), June 1994.

6. Múñoz, L., Mazón, J., Trujillo, J.: “A family of Experiments to validate Measures for UML

Activity Diagrams of ETL Processes”. Information and Software Technology, 52(11), 2010.

7. Kim, H. et al. “Developing Software Metrics Applicable to UML Models”. QAOOSE 2002.

8. Vanderfeesten, I., Cardoso, J., Mendling, J., Reijers, H.A., van der Aalst, W.: “Quality

Metrics for Business Process Models”. BPM and Workflow Handbook, 2007.

9. Sutcliffe, A., Minocha, S.: “Linking Business Modelling to Socio-technical System

Design”. CAiSE 1999.

10. McQuillan, J.A., Jacqueline, Power, J.F.: “On the Application of Software Metrics to UML

Models”. MoDELS 2006 Workshops.

11. Moody, D.: “Metrics for Evaluating the Quality of Entity Relationship Models”. ER 1998.

12. Genero, M., Piattini, M., Calero, C.: “A Survey of Metrics for UML Class Diagrams”.

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 15

Journal of Object Technology 4(9), 2005.

13. Genero, M., Miranda, D., Piattini, M.: “Defining and Validating Metrics for UML

Statechart Diagrams”. QAOOSE 2002.

14. Grau, G., Franch, X., Maiden, N. "PRiM: an i*-based Process Reengineering Method for

Information Systems Specification". Information and Software Technology 50, (1-2), 2008.

15. Franch, X.: “On the Quantitative Analysis of Agent-Oriented Models”. CAiSE 2006.

16. Habra, N., Abran, A., Lopez, M., Sellami, A.: “A Framework for the Design and Verifi-

cation of Software Measurement Methods”. Journal of Systems and Software, 81(5), 2008.

17. Bondy A., Murty U. S. R.: Graph Theory. Springer, 2008.

18. Rolland, C., Salinesi, C., Etien, A.: “Eliciting Gaps in Requirements Change”.

Requirements Engineering Journal 9(1), 2004.

19. OMG Unified Modeling LanguageTM (OMG UML), Infrastructure Version 2.3. OMG

Document Number: formal/2010-05-03, 2005.

20. Object Management Group. Object Constraint Language (OCL), Version 2.2. Available

Specification (formal/2010-02-01), 2010.

21. Franch, X.: “A Method for the Definition of Metrics over i* Models”. CAiSE 2009.

22. Object Management Group. OMG Unified Modeling Language (OMG UML),

Superstructure, V2.3, (formal/2010-05-05), 2010.

23. Martin, R.C. Agile Software Development. Prentice-Hall, 2003.

24. Genero, M., Poels, G., Piattini, M.: “Defining and validating Metrics for assessing the

Understandability of ER Diagrams”. Data & Knowledge Engineering, 64(3), 2008.

25. Lim, S.L., Quercia, D., Finkelstein, A. “StakeNet: using Social Networks to analyse the

Stakeholders of Large-scale Software Projects”. ICSE 2010.

16 Dolors Costal, Xavier Franch

Appendix 1

Table 3 presents a sample of GLMS-measures. They are defined as operations

specified in OCL over the Graph-like metaschema (GLMS) shown in Figure 1.

In the following, we comment table 3 measures. Unless otherwise stated,

parameters of the measures are of type String and “SSN” stands for

“Set(Sequence(Node))”.

Measure M1 gets the set of elements of a particular category from a subdiagram:

context

Diagram::byCategoryFilteringSubdiagram(se:Set(Element),cat):Set(Element)

post: result = se->select(e | e.category->includes(cat))

Parameter se corresponds to the set of elements of the departing subdiagram and

parameter cat gives the category of the elements to get. The OCL expression uses the

operator select to obtain the elements of the subdiagram such that their attribute

category includes the value cat.

Measure M2 is an M1’s particularization in which the subdiagram is the full

diagram.

context Diagram::byCategoryFilteringDiagram(cat): Set(Element)

post: result = byCategoryFilteringSubdiagram(Element.allInstances(),

cat)

Now, the only parameter is cat to give the category of the elements to get from the

full diagram. The OCL expression uses M1 with the set of all the elements of the

diagram as first parameter (the OCL operator allInstances is used to obtain all the

instances of the class Element).

M3 counts the number of occurrences of a particular category cat of element in a

diagram:

context Diagram::byCategoryCountDiagram(cat): Integer

post: result = self.byCategoryFilteringDiagram(cat)->size()

This OCL expression uses M2 to obtain all the elements of category cat of the

diagram and, then, it uses the operator size to obtain their total number.

M4 defines a property-conditional normalized measure over the diagram:

context Diagram::byCategoryByPropertyNormalizedDiagram(cat, np, val):

Real

post: byCategoryCountDiagram(cat) = 0 implies result = 0

post: byCategoryCountDiagram(cat) > 0 implies

 result = byCategoryFilteringDiagram(cat)->

 select(e | e.assignment->exists(a | a.property.name = np and

a.value = val))-> size()

 / byCategoryCountDiagram(cat)

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 17

Since it depends on a property, the name of the property (np) and the required

value (val) are added as parameters. Since it is normalized, the special case of having

no elements of the category has to be treated separately in the first postcondition

(post) of the operation. The second postcondition deals with the non-empty case. It

uses M2 to obtain all the elements of category cat of the diagram; and then, it uses the

operator select to filter those elements with value val for property np and the operator

size to count them. The obtained number of elements is divided by the total number of

elements of the category cat in the diagram which is obtained using M3.

M5 counts the number of nodes of a certain category cat1 connected through an

outgoing edge to nodes of another category cat2.

contextDiagram::byCategoryByTargetElementCategoryCountDiagram(cat1,ca

t2):Integer

post: result =

byCategoryCountSubdiagram(byCategoryFilteringDiagram(cat1).targetEdge

.targetElement, cat2)

The OCL expression uses an auxiliary measure byCategoryCountSubdiagram

which counts the number of elements of a category (cat2) of a subdiagram. The

subdiagram must have the set of elements that receive an outgoing edge from

elements with category cat1. This is obtained by using measure M2 that gives the

elements of category cat1 of the full diagram followed by two navigations

(targetEdge.targetElement) that obtain the target nodes connected to the outgoing

edges of those elements.

M6 counts the same as M5 but also checking property values in the involved

elements.

context Diagram::

byCategoryAndPropertyByTargetElementCategoryAndPropertyCountDiagram

 (cat1, prop1, val1, cat2, prop2, val2): Integer

post: result = byCategoryByPropertyCountSubdiagram(

 byCategoryByPropertyFilteringDiagram(cat1, prop1, val1).

 targetEdge.targetElement, cat2, prop2, val2)

This postcondition uses two auxiliary measures. First, measure

byCategoryByPropertyCountSubdiagram which counts the number of elements of a

category (cat2) of a subdiagram that have a given value (val2) for a given property

(prop2). Additionally, to obtain that subdiagram, another auxiliary measure

byCategoryByPropertyFilteringDiagram is used. It gives the set of elements of a

category (cat1) of a diagram that have a given value (val1) for a given property

(prop1).

M7 is filtering measure for generating all paths composed by nodes of a given

category catN following edges of another category catE.

context Diagram::allPathsFilteringDiagram(catN, catE): SSN
post: result = Node.allInstances()->

 select(n | n.category->includes(catN) and

 n.sourceEdge->select(e | e.category->includes(catE))

18 Dolors Costal, Xavier Franch

 ->isEmpty())
 ->iterate(x; s: SSN=Set{Sequence{}} | s->union(x.allPaths(catN, catE)))

The operation generates first the nodes catN that are starting point of such paths,

by checking that there are no edge catE pointing to such node catN. For all of the

nodes that fulfill this condition, all the paths that start from that node are generated

using an auxiliary operation allPaths. The generated paths are put together in the

result. The allPaths operation is also shown below:

context Node::allPaths(catN, catE): SSN
post: targetEdge->select(e | e.category->includes(catE))->isEmpty()

and
 category->includes(catN) implies result = Set{Sequence{self}}

post: targetEdge->select(e | e.category->includes(catE))->notEmpty()

 implies result =
 if category->includes(catN) then
 targetEdge->select(e | e.category->includes(catE)).targetElement->
 iterate(x; s: SSN=Set{Sequence{}} | s->union(inFront(x.allPaths(catN,

catE),x))
 else targetEdge->select(e | e.category->includes(catE)).targetElement->

iterate(x; s:SSN=Set{Sequence{}} | s->union(x.allPaths(catN, catE))

endif

It has two postconditions showing first the case of final node (i.e., with no

outgoing catE edges) and the recursion case, in which the current node is put in front

to each (recursively-generated) path only if it is a catN node (inFront operation is not

included for lack of space, it basically uses the prepend OCL operator to put the

element in front of each sequence generated with an iterate).

M8 computes the longest path comparing pair-wise all paths and keeping the

longest as result. It is quite simple using the measure M7 above: it generates all the

paths with the catN and catE as above, and selects the one that has the greatest size

(i.e., the longest path), keeping then the size as result.

context Diagram::allPathsMaxDiagram(catN: String, catE: String): Integer

post: result = allPathsFilteringDiagram(catN, catE)->

 select(p | allPathsFilteringDiagram(catN, catE)->

 forAll(p2 | p->size() >= p2->size())->size()

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 19

Appendix 2: Validation

ER measures

SOURCE: Marcela Genero Geert Poels, Mario Piattini: “Defining and validating

metrics for assessing the understandability of entity–relationship diagrams”. Data &

Knowledge Engineering, 64(3), March 2008, pages 534-557.

FRAGMENT OF THE ER METASCHEMA

context Relationship::numberOfEnds:Integer

derive: self.relationshipEnd->size()

METAMODEL CORRESPONDENCE:

ERDiagram Diagram

Entity Node, Simple

Attribute Node, Simple

Relationship Edge, Simple

RelationshipEnd Edge, Simple (from relationship to entity)

DerivedAttribute Property (of attribute)

CompositeAttribute Property (of attribute)

MultivaluedAttribute Property (of attribute)

20 Dolors Costal, Xavier Franch

Cardinality Property (of relationship end)

NumberOfEnds Property (of relationship)

IS_A Edge, Simple

CATALOGUE OF MEASURES

Measure: NE

Definition: The Number of Entities metric is defined as the number of entities

within an ER diagram, considering both weak and strong entities

Formalization:

context ERDiagram::NE(): Integer

post: byCategoryCountDiagram(‘Entity’)

Measure: NA

Definition: The Number of Attributes metric is defined as the total number of

attributes defined within an ER diagram, taking into account not only entity attributes

but also relationship attributes. In this number all attributes are included (but not the

composing parts of composite attributes).

Formalization:

context ERDiagram::NA(): Integer

post: byCategoryCountDiagram(‘Attribute’)

Measure: NDA

Definition: The Number of Derived Attributes metric is defined as the number of

derived attributes within an ER diagram. The value of NDA is always strictly less

than the value of NA.

Formalization:

context ERDiagram::NDA(): Integer

post:

byCategoryByPropertyCountDiagram(‘Attribute’,‘derivedAttr

ibute’,‘derived’)

Measure: NCA

Definition: The Number of Composite Attributes metric is defined as the number

of composite attributes within an ER diagram. This value is less than or equal to the

NA value.

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 21

Formalization:

context ERDiagram::NCA(): Integer

post:

byCategoryByPropertyCountDiagram(‘Attribute’,‘compositeAt

tribute’,‘composite’)

Measure: NMVA

Definition: The Number of Multivalued Attributes metric is defined as the number

of multivalued attributes within an ER diagram. Again, this value is less than or equal

to the NA value.

Formalization:

context ERDiagram::NMVA(): Integer

post:

byCategoryByPropertyCountDiagram(‘Attribute’,‘multivalued

Attribute’,‘multivalued’)

Measure: NR

Definition: The Number of Relationships metric is defined as the total number of

relationships within an ER diagram, excluding ISA relationships.

Formalization:

context ERDiagram::NR(): Integer

post: byCategoryCountDiagram(‘Relationship’)

Measure: NM:NR

Definition: The Number of M:N Relationships metric is defined as the number of

M:N relationships within an ER diagram. The value of NM:NR is less than or equal to

the NR value.

Formalization:

context ERDiagram::NMNR(): Integer

post: byCategoryCountDiagram(‘Relationship’) -

byCategoryByPropertyFilteringDiagram(‘RelationshipEnd’,

‘cardinality’,‘1’).sourceElement->asSet()->size()

Explanation: The OCL expression obtains the number of M:N Relationships by

subtracting to the total number of relationships, the number of relationships that have

at least one relationship end with a cardinality of 1. When calculating this last

number, the operation asSet is used to avoid counting more than once the

relationships that have several ends with cardinality 1.

22 Dolors Costal, Xavier Franch

Measure: N1:NR

Definition: The Number of 1:N Relationships metric is defined as the total number

of 1:N and 1:1 relationships within an ER diagram. Also this value is less than or

equal to the NR value. The number of 1:1 relationships is not used as a separate

metric because these relationships are considered a subset of the 1:N relationships

Formalization:

context ERDiagram::N1NR(): Integer

post:

byCategoryByPropertyFilteringDiagram(‘RelationshipEnd’,

‘cardinality’,‘1’).sourceElement->asSet()->size()

Explanation: The OCL expression obtains the number of relationships that have at

least one relationship end with a cardinality of 1. The operation asSet is used to avoid

counting more than once the relationships that have several ends with cardinality 1.

Measure: NBinaryR

Definition: The Number of Binary Relationships metric is defined as the number

of binary relationships within an ER diagram. Again, the value is less than or equal to

the NR value.

Formalization:

context ERDiagram::NBinaryR(): Integer

post: byCategoryByPropertyCountDiagram(‘Relationship’,

‘numberOfEnds’,‘2’)

Explanation: The derived attribute numberOfEnds has been to the ER metaschema

to facilitate the definition of this measure.

Measure: NN_AryR

Definition: The Number of N-Ary Relationships metric is defined as the number of

N-Ary relationships within an ER diagram. Its value is less than or equal to the NR

value.

Formalization:

context ERDiagram::NN_AryR(): Integer

post: byCategoryCountDiagram(‘Relationship’)-

 NBinaryR()

Measure: NRefR

Definition: The Number of Reflexive Relationships metric is defined as the

number of reflexive relationships within an ER diagram. Its value is less than or equal

to the value of the NR metric.

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 23

Formalization:

context ERDiagram::NRefR(): Integer

post: byCategoryFilteringDiagram(‘Relationship’)->

 select(r|r.oclAsType(Relationship).relationshipEnd.

entity->asSet()->size() <

r.oclAsType(Relationship).relationshipEnd->size())->

size()

Explanation: The OCL expression calculates the number of reflexive relationships

by selecting those relationships that have a number of ends with different entities

(asSet eliminates the duplicates) less than its total number of ends.

Measure: NIS_AR

Definition: NIS_AR The Number of IS_A Relationships metric is defined as the

number of IS_A relationships within an ER diagram. In this case, we consider one

relationship for each super-type/sub-type pair.

Formalization:

context ERDiagram::NIS_AR(): Integer

post: byCategoryCountDiagram(‘IS_A’)

SUMMARY:

Patterns applied, individual:

byCategoryCountDiagram 6

byCategoryByPropertyCountDiagram 4

byCategoryByPropertyFilteringDiagram 2

byCategoryFilteringDiagram 1

Patterns applied, by category:

Condition

Attribute conditional 7

Structural conditional

Property conditional 6

Result

Absolute 10

Normalized

Crossed

24 Dolors Costal, Xavier Franch

Filtering 3

Input

Full diagram 13

Subdiagram

Individual

Measures complexity:

Measure
Patterns

applied

Different

patterns

applied

Expressions not

covered by

patterns (*)

Measures

reused

NE 1 1 0 0

NA 1 1 0 0

NDA 1 1 0 0

NCA 1 1 0 0

NMVA 1 1 0 0

NR 1 1 0 0

NM:NR 2 2 1+0+3 0

N1:NR 1 1 1+0+2 0

NBinaryR 1 1 0 0

NN_AryR 1 1 0+0+1 1

NRefR 1 1 5+1+5 0

NIS_AR 1 1 0 0

(*) x+y+z means “x navigations, y operators on collections, z operators not on

collections”. Navigations include oclAsType (considered as “navigation” in a

hierarchy). Operators on collections are forAll, exists, iterator, select, and by the like.

Other operators include not only operators with name (size, asSet, etc.) but also

arithmetic, boolean and relational operators.

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 25

Activity measures

SOURCE: http://www.sdmetrics.com/

FRAGMENT OF THE UML METASCHEMA

This fragment of the UML metaschema has been obtained from:

Object Management Group, OMG Unified Modeling Language (OMG UML),

Superstructure, V2.3, (formal/2010-05-05), http://www.omg.org/spec/UML/2.3/

Superstructure/PDF/2010

METAMODEL CORRESPONDENCE:

Activity Diagram

ActivityNode Node, Simple

Action Node, Simple

ObjecteNode Node, Simple

ControlNode Node, Simple

Pin Node, Simple

ActivityPartition Node, Simple

Partition Edge, Simple (from Activity to ActivityPartition)

ActivityGroup Node, Simple

26 Dolors Costal, Xavier Franch

Group Edge, Simple (from Activity to ActivityGroup)

ActivityEdge Edge, Simple

(from ActivityNode to ActivityNode)

ControlFlow Edge, Simple

ObjectFlow Edge, Simple

Edge Edge, Simple (from Activity to ActivityEdge)

ValueSpecification Node, Simple

Guard Edge, Simple

(from ActivityEdge to ValueSpecification)

ExecutableNode Node, Simple

ExceptionHandler Node, Simple

Handler Edge, Simple

(from ExecutableNode to ExceptionHandler)

CATALOGUE OF MEASURES

Measure: Actions

Definition: The number of actions of the activity.

Formalization:

context Activity::Actions(): Integer

post: byCategoryCountDiagram(‘Action’)

Measure: ObjectNodes

Definition: The number of object nodes of the activity.

Formalization:

context Activity::ObjectNodes(): Integer

post: byCategoryCountDiagram(‘ObjectNode’)

Measure: Pins

Definition: The number of pins on nodes of the activity.

Formalization:

context Activity::Pins(): Integer

post: byCategoryCountDiagram(‘Pin’)

Measure: ControlNodes

Definition: The number of control nodes of the activity.

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 27

Formalization:

context Activity::ControlNodes(): Integer

post: byCategoryCountDiagram(‘ControlNodes’)

Measure: Partitions

Definition: The number of activity partitions of the activity.

Formalization:

context Activity::Partitions(): Integer

post: byCategoryCountDiagram(‘Partition’)

Measure: Groups

Definition: The number of activity groups or regions of the activity.

Formalization:

context Activity::Groups(): Integer

post: byCategoryCountDiagram(‘Group’)

Measure: ControlFlows

Definition: The number of control flows of the activity.

Formalization:

context Activity::ControlFlows(): Integer

post: byCategoryCountDiagram(‘ControlFlow’)

Measure: ObjectFlows

Definition: The number of object flows of the activity.

Formalization:

context Activity::ObjectFlows(): Integer

post: byCategoryCountDiagram(‘ObjectFlow’)

Measure: Guards

Definition: The number guards defined on object and control flows of the activity.

Formalization:

context Activity::Guards(): Integer

post: byCategoryCountDiagram(‘Guard’)

Measure: ExcHandlers

Definition: The number of exception handlers of the activity.

28 Dolors Costal, Xavier Franch

Formalization:

context Activity::ExcHandlers(): Integer

post: byCategoryCountDiagram(‘Handler’)

SUMMARY:

Patterns applied, invididual:

byCategoryCountDiagram 10

Patterns applied, by category:

Condition

Attribute conditional 10

Structural conditional

Property conditional

Result

Absolute 10

Normalized

Crossed

Filtering

Input

Full diagram 10

Subdiagram

Individual

Measures complexity:

Measure
Patterns

applied

Different

patterns

applied

Expressions

not covered by

patterns (*)

Measures

reused

Actions 1 1 0 0

ObjectNodes 1 1 0 0

Pins 1 1 0 0

ControlNodes 1 1 0 0

Partitions 1 1 0 0

Groups 1 1 0 0

ControlFlows 1 1 0 0

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 29

ObjectFlows 1 1 0 0

Guards 1 1 0 0

ExcHandlers 1 1 0 0

(*) x+y+z means “x navigations, y operators on collections, z operators not on

collections”. Navigations include oclAsType (considered as “navigation” in a

hierarchy). Operators on collections are forAll, exists, iterator, select, and by the like.

Other operators include not only operators with name (size, asSet, etc.) but also

arithmetic, boolean and relational operators.

30 Dolors Costal, Xavier Franch

Statechart measures

SOURCE: http://www.sdmetrics.com/

FRAGMENT OF THE UML METASCHEMA

This fragment of the UML metaschema has been obtained from:

Object Management Group, OMG Unified Modeling Language (OMG UML),

Superstructure, V2.3, (formal/2010-05-05), http://www.omg.org/spec/UML/2.3/

Superstructure/PDF/2010

METAMODEL CORRESPONDENCE:

StateMachine Diagram

Vertex Node, Simple

State Node, Compound

Pseudostate Node, Simple

Transition Edge, Simple (from vertex to vertex)

Behavior Node, Simple

Effect Edge, Simple (from transition to behaviour)

Constraint Node, Simple

Guard Edge, Simple (from transition to constraint)

Trigger Node, Simple

Entry Edge, Simple (from state to behaviour)

Exit Edge, Simple (from state to behaviour)

DoActivity Edge, Simple (from state to behaviour)

Note: The metamodel correspondence does not include elements of the metaschema

which are not relevant for the catalogue of measures.

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 31

CATALOGUE OF MEASURES

Measure: Trans

Definition: The number of transitions in the state machine.

Formalization:

context SMDiagram::Trans(): Integer

post: byCategoryCountDiagram(‘Transition’)

Measure: TEffects

Definition: The number of transitions with an effect in the state machine.

Formalization:

context SMDiagram::TEffects(): Integer

post:

 byCategoryByTargetElementCategoryCountDiagram(‘Tran

sition’,‘Behavior’)

Measure: TGuard

Definition: The number of transitions with a guard in the state machine.

Formalization:

context SMDiagram::TGuard(): Integer

post:

byCategoryByTargetElementCategoryCountDiagram(‘Transition

’,‘Constraint’)

Measure: TTrigger

Definition: The number of triggers of the transitions of the state machine.

Formalization:

context SMDiagram::Ttrigger(): Integer

post: byCategoryCountDiagram(‘Trigger’)

Measure: States

Definition: The number of states in the state machine. This includes pseudo states,

as well as composite and concurrent states of the statemachine, and recursively the

states they contain, at all levels of nesting.

Formalization:

context SMDiagram::States(): Integer

post: byCategoryCountDiagram(‘State’)+

byCategoryCountDiagram(‘Pseudostate’)

32 Dolors Costal, Xavier Franch

Measure: SActivity

Definition: The number of activities defined for the states of the state machine.

This counts entry, exit, and do activities defined for the states.

Formalization:

context SMDiagram::SActivity(): Integer

post:

byCategoryByTargetElementCategoryCountDiagram(‘State’,

‘Behavior’)

Measure: CC

Definition: The cyclomatic complexity of the state-machine graph. This is

calculated as Trans-States+2.

Formalization:

context SMDiagram::CC(): Integer

post: Trans() – States() + 2

SUMMARY:

Patterns applied, invididual:

byCategoryCountDiagram 4

byCategoryByTargetElementCategoryCountDiagram 3

Patterns applied, by category:

Condition

Attribute conditional 4

Structural conditional 3

Property conditional

Result

Absolute 7

Normalized

Crossed

Filtering

Input

Full diagram 7

Subdiagram

Individual

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 33

Measures complexity:

Measure
Patterns

applied

Different

patterns applied

Expressions not

covered by

patterns (*)

Measures

reused

Trans 1 1 0 0

TEffects 1 1 0 0

TGuard 1 1 0 0

TTrigger 1 1 0 0

States 2 1 0+0+1 0

SActivity 1 1 0 0

CC 0 0 0+0+2 2

(*) x+y+z means “x navigations, y operators on collections, z operators not on

collections”. Navigations include oclAsType (considered as “navigation” in a

hierarchy). Operators on collections are forAll, exists, iterator, select, and by the like.

Other operators include not only operators with name (size, asSet, etc.) but also

arithmetic, boolean and relational operators.

34 Dolors Costal, Xavier Franch

Use case measures

SOURCE: http://www.sdmetrics.com/

FRAGMENT OF THE UML METASCHEMA

This fragment of the UML metaschema has been obtained from:

Object Management Group, OMG Unified Modeling Language (OMG UML),

Superstructure, V2.3, (formal/2010-05-05), http://www.omg.org/spec/UML/2.3/

Superstructure/PDF/2010

The class UCDiagram has been added to it for compatibility with the GLMS

Constraint: Use cases can only be involved in binary Associations.

METAMODEL CORRESPONDENCE:

UCDiagram Diagram

UseCase Node, Simple

Actor Node, Simple

Include Edge, Simple

(from includingCase use case to addition use case)

Extend Edge, Simple

(from extension use case to extendedCase use case)

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 35

ExtensionPoint Node, Simple

ExtensionPoint-

UseCase

Edge, Simple

(from use case to extension point)

Association Edge, Simple

(from property to property, recall use cases can only

be involved in binary associations)

BehavioredClassifier Node, Simple

Behavior Node, Simple

Class Node, Simple

Property Node, Simple

CATALOGUE OF MEASURES

Measure: NumAss

Definition: The number of associations the use case (with name uc) participates in.

Formalization:

context UCDiagram::NumAss(uc: String): Integer

post:

byCategoryByPropertyFilteringDiagram(‘UseCase’,‘name’,uc)

.oclAsType(UseCase).classifierBehavior.property.

association->size()

Measure: ExtPts

Definition: The number of extension points of the use case.

Formalization:

context UCDiagram::ExtPts(uc: String): Integer

post:

byCategoryByTargetElementCategoryCountIndividual(‘UseCase

’,‘ExtensionPoint’,uc)

Measure: Including

Definition: The number of use cases which this one includes.

Formalization:

context UCDiagram::Including(uc:String): Integer

post:

byCategoryByOutgoingEdgeCategoryCountIndividual(‘UseCase’

,‘Include’,uc)

36 Dolors Costal, Xavier Franch

Measure: Included

Definition: The number of use cases which include this one.

Formalization:

context UCDiagram::Included(uc:String): Integer

post:

byCategoryByIncomingEdgeCategoryCountIndividual(‘UseCase’

,‘Include’,uc)

Measure: Extended

Definition: The number of use cases which extend this one.

Formalization:

context UCDiagram::Extended(uc:String): Integer

post:

byCategoryByIncomingEdgeCategoryCountIndividual(‘UseCase’

,‘Extend’,uc)

Measure: Extending

Definition: The number of use cases which this one extends.

Formalization:

context UCDiagram::Extending(uc:String): Integer

post:

byCategoryByOutgoingEdgeCategoryCountIndividual(‘UseCase’

,‘Extend’,uc)

Measure: Diags

Definition: The number of times the use case appears on a diagram.

Formalization: This measure cannot be represented in the UML metamodel.

SUMMARY:

Patterns applied, individual:

byCategoryByPropertyFilteringDiagram 1

byCategoryByTargetElementCategoryCountIndividual 1

byCategoryByOutgoingEdgeCategoryCountIndividual 2

byCategoryByIncomingEdgeCategoryCountIndividual 2

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 37

Patterns applied, by category:

Condition

Attribute conditional 1

Structural conditional 5

Property conditional

Result

Absolute 5

Normalized

Crossed

Filtering 1

Input

Full diagram 1

Subdiagram

Individual 5

Measures complexity:

Measure
Patterns

applied

Different

patterns

applied

Expressions

not covered by

patterns (*)

Measures

reused

NumAss 1 1 4+0+1 0

ExtPts 1 1 0 0

Including 1 1 0 0

Included 1 1 0 0

Extended 1 1 0 0

Extending 1 1 0 0

Diags --- ------ ----- ----

(*) x+y+z means “x navigations, y operators on collections, z operators not on

collections”. Navigations include oclAsType (considered as “navigation” in a

hierarchy). Operators on collections are forAll, exists, iterator, select, and by the like.

Other operators include not only operators with name (size, asSet, etc.) but also

arithmetic, boolean and relational operators.

38 Dolors Costal, Xavier Franch

Social network measures

SOURCE: Wikipedia, http://en.wikipedia.org/wiki/Social_network.

SOCIAL NETWORK METASCHEMA

METAMODEL CORRESPONDENCE:

SocialNetwork Diagram, Compound

Person Node, Simple

Interdependency Edge, Simple

CATALOGUE OF MEASURES

Measure: Betweenness Centrality

Definition: The extent to which an individual lies between other individuals in the

network. This measure takes into account the connectivity of the individual's

neighbors, giving a higher value for individuals which bridge clusters. The measure

reflects the number of individuals who an individual is connecting indirectly through

their direct interdependencies.

(Note: we change “individual” to “person” to avoid confusion with the term

“individual” used in our framework.)

Formalization:

context SocialNetwork::betweennessCentrality(stk:

String): Integer

post: byCategoryFilteringIndividual(“Person”)->

 iterate(p1; ratio = 0 |

 byCategoryFilteringInvidual(“Person”)->

 forAll(p2 |

 r = r +

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 39

 if allPathsFilteringPairs(“Person”,

“Interdependency”, p1, p2) > 0

 then

allPathsFilteringPairs(“Person”, “Interdependency”, p1, p2)

->filter(stk)->size() /

 allPathsCountPairs(“Person”, “Interdependency”, p1, p2)))

 else 0 endif

Explanation: The definition is a bit complicated due to the inability of the

“iterate” operator to deal with pair of elements. Thus, it becomes necessary to add an

aditional “forAll” inside each iteration to define the second element of reference to

compute shortest paths. For each pair of elements, it is necessary to check the case

that there are not paths among them (division by zero avoided). The “filter” operation

is part of the vocabulary on paths of our pattern catalogue.

Measure: InDegree Centrality

Definition: Counts the number of incoming direct connections that a Person with

name stk has

Formalization:

context SocialNetwork::indegreeCentrality(stk: String):

Integer

post:

byCategoryByIncomingEdgeCategoryCountIndividual(“Person”,

“Interdependency”, stk)

Measure: OutDegree Centrality

Definition: Counts the number of outgoing direct connections that a Person with

name stk has

Formalization:

Context SocialNetwork::outdegreeCentrality (stk:

String): Integer

post:

byCategoryByOutgoingEdgeCategoryCountIndividual(“Person”,

“Interdependency”, stk)

Measure: Degree Centrality

Definition: Counts the number of direct connections that a Person with name stk

has (both incoming and outgoing)

40 Dolors Costal, Xavier Franch

Formalization:

context SocialNetwork::degreeCentrality(stk: String):

Integer

post: indegreeCentrality(stk) + outdegreeCentrality(stk)

Measure: Closeness Centrality

Definition: Computes the inverse of the average of the distance from one Person

with name stk to all other reachable Individuals in the network

Formalization:

context SocialNetwork::closenessCentrality(stk:

String): Integer

post: byCategoryCountModel(“Person”)-1 /

 allPathsMaxIndividual(“Person”,

“Interdependency”, stk)

SUMMARY:

Patterns applied, invididual:

byCategoryFilteringIndividual 2

allPairsFilteringPairs 2

allPairsCountPairs 1

byCategoryByIncomingEdgeCategoryCountIndividual 2

byCategoryCountModel 1

allPathsMaxIndividual 1

Patterns applied, by category:

Condition

Attribute conditional 7

Structural conditional 2

Property conditional

Result

Absolute 5

Normalized

Crossed

Filtering 4

Input

Full diagram 1

Subdiagram 3

Individual 5

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 41

Measures complexity:

Measure
Patterns

applied

Different

patterns

applied

Expressions

not covered

by patterns

(*)

Measures

reused

betweenessCentrality 5 3 0+2+5 0

indegreeCentrality 2 1 0 0

outdegreeCentrality 2 1 0 0

degreeCentrality 2 1 0+0+1 2

closenessCentrality 2 2 0+0+2 0

(*) x+y+z means “x navigations, y operators on collections, z operators not on

collections”. Navigations include oclAsType (considered as “navigation” in a

hierarchy). Operators on collections are forAll, exists, iterator, select, and by the like.

Other operators include not only operators with name (size, asSet, etc.) but also

arithmetic, boolean and relational operators.

42 Dolors Costal, Xavier Franch

BPM measures

SOURCE: Balasubramanian, S., Gupta, M.: “Structural Metrics for Goal Based

Business Process Design and Evaluation”. Business Process Management Journal,

11(6), 2005.

FRAGMENT OF THE BPM METASCHEMA

METAMODEL CORRESPONDENCE:

BPM diagram Diagram

WorkflowViewDiagram Node, Diagram

Workflow Node, Compound

WorkflowElement, Activity, Fork/Merge,

Fork, Merge, BusinessParticipant

Node, Simple

beforeF, afterF, beforeM, afterM, Precedes Edge, Simple

automationDegree, discretional, nature Property

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 43

CATALOGUE OF MEASURES

Measure: AAF

Definition: Proportion of total activities in a process that require system support.

Formalization:

context WorkflowViewDiagram::AAF(): Real

post: result =

byCategoryByPropertyNormalizedDiagram(‘Activity’,‘autom

ationDegree’,‘automated’)

 +

byCategoryByPropertyNormalizedDiagram(‘Activity’,‘autom

ationDegree’,‘interactive’)

Measure: APF

Definition: Longest path of activities that must be executed sequentially divided

by the total number of activities.

Formalization:

context WorkflowViewDiagram::APF(): Real

post: byCategoryCountDiagram(‘Activity’) = 0 implies

result = 0

post: byCategoryCountDiagram(‘Activity’) > 0 implies

 result = allPathsMaxDiagram(‘Activity’,

‘Precedence’) / byCategoryCountDiagram(‘Activity’)

Measure: TDRF

Definition: Proportion of transitions of flow between business participants from

system activities to human activities.

Formalization:

context WorkflowViewDiagram::TDRF(): Real

post:

result= byCategoryAndPropertyByTargetElementCategoryAnd

PropertyFilteringDiagram(‘Activity’,‘nature’,‘system’,

 ‘Activity’,‘nature’,‘human’)->

 select(e | e.wkf.owner <> e.to.wfk.owner)->size()

 / Activity.allInstances()->select(e |

e.wkf.owner <> e.to.wfk.owner)->size()

44 Dolors Costal, Xavier Franch

Measure: PDF

Definition: Proportion of activities performed by human participants that are

executed using human discretion or judgement.

Formalization:

context WorkflowViewDiagram::PDF(): Real

post:

result =

byCategoryByPropertyNormalizedDiagram(‘Activity’,

‘discretional’,‘true’)

Measure: BAF

Definition: Proportion of decision activities in a process that do not require human

intervention.

Formalization:

context WorkflowViewDiagram::BAF(): Real

post:

byCategoryByTargetElementCategoryCountDiagram(‘Activity’,

‘Fork’) = 0 implies

result = 0

post:

byCategoryByTargetElementCategoryCountDiagram(‘Activity’,

‘Fork’) > 0 implies

result=

byCategoryByTargetElementCategoryFilteringDiagram(‘Activi

ty’, ‘Fork’)->intersection(

byCategoryByPropertyFilteringDiagram(‘Activity’,‘automati

onDegree’,‘automated’))->size()

 /

byCategoryByTargetElementCategoryCountDiagram(‘Activity’,

‘Fork’)

SUMMARY:

Patterns applied, individual:

byCategoryByPropertyNormalizedDiagram 3

byCategoryCountDiagram 3

allPathsDiagram 1

byCategoryAndPropertyByTargetElementCategoryAndPropertyFilteringDiagram 1

byCategoryByTargetElementCategoryCountDiagram 3

byCategoryByTargetElementCategoryFilteringDiagram 1

byCategoryByPropertyFilteringDiagram 1

A Unifying Framework for the Definition of Syntactic Measures over Conceptual Schema

Diagrams (extended version) 45

Patterns applied, by category:

Condition

Attribute conditional 6

Structural conditional 5

Property conditional 2

Result

Absolute 8

Normalized 2

Crossed

Filtering 3

Input

Full diagram 13

Subdiagram

Individual

Measures complexity:

Measure
Patterns

applied

Different

patterns

applied

Expressions

not covered by

patterns (*)

Measures

reused

AAF 2 1 0+0+1 0

APF 4 2 0+0+5 0

TDRF 1 1 10+3+5 0

PDF 1 1 0 0

BAF 5 3 0+1+4 0

(*) x+y+z means “x navigations, y operators on collections, z operators not on

collections”. Navigations include oclAsType (considered as “navigation” in a

hierarchy). Operators on collections are forAll, exists, iterator, select, and by the like.

Other operators include not only operators with name (size, asSet, etc.) but also

arithmetic, boolean and relational operators.

