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Abstract. There are many approaches that propose the use of measures for 

assessing the quality of conceptual schemas. Many of these measures focus 

purely on the syntactic aspects of the conceptual schema diagrams, e.g. their 

size, their shape, etc. Similarities among different measures may be found both 

at the intra-model level (i.e., several measures over the same type of diagram 

are defined following the same layout) and at the inter-model level (i.e., 

measures over different types of diagrams are similar considering an 

appropriate metaschema correspondence). In this paper we analyse these 

similarities for a particular family of diagrams used in conceptual modelling, 

those that can be ultimately seen as a combination of nodes and edges of 

different types. We propose a unifying measuring framework for this family 

and illustrate its application on a particular type, namely business process 

diagrams. 

Keywords: conceptual schema measure, conceptual schema diagram, metamodelling, 

MOF. 

1 Introduction 

Measuring is a fundamental activity for assessing the quality of deployed information 

systems (“you can’t control what you can’t measure” [1]). Although most of the 

existing proposals on software measurement formulate measures for the final software 

product (e.g., measurement of system performance, reliability, etc.), there is also an 

important amount of work done on measuring conceptual schemas of the system. 

These conceptual schema measures act as estimators in the earliest phases of software 

development and may help to detect defects in a cost-effective manner.  

Jorgensen and Shepperd reported [2] that in despite of the fact that formal 

estimation models have existed for many years, the dominant estimation method is 

still based on expert judgment, which makes measure evaluation subjective and time-

consuming and hampers measure reuse. A usual way to minimize expert judgement is 

to formulate measures based on the structure of conceptual schemas.  

There are many approaches that follow this idea to propose syntactic measures 

over different types of conceptual schema diagrams, such as Entity-Relationship 
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Diagrams [3], Business Processes [4], Class Diagrams [5], Activity Diagrams [6], Use 

Cases [7], Workflow Diagrams [8], and Goal-Oriented Diagrams [9]. These measures 

present some similarities both at the intra-model level (i.e., several measures over the 

same type of diagram are defined following the same layout) and at the inter-model 

level (i.e., measures over different types of diagrams are similar considering an 

appropriate metaschema correspondence). 

An analysis of these existing proposals shows that there is a lack of a reference 

framework for formulating the measures, a lack of guidelines for defining them, and a 

lack of support for porting them from one kind of diagram to another in spite of these 

similarities. Our work addresses these issues. To do so, we formulate an approach at 

the metamodel level such that general-purpose measures can be defined by means of 

OCL expressions and then we show how they can be specialized and adapted into 

particular measures for the different types of diagrams mentioned above.  

The remainder of the paper is organized as follows. In Section 2 we present an 

overview of some existing suites of conceptual schema measures. In Section 3 we 

present our metamodelling framework. In Section 4 we provide an overview of the 

intended structure of a catalogue of general-purpose measures. In Section 5 we 

illustrate with an example the use of this catalogue for defining a particular suite of 

measures for business process diagrams. Finally, in Section 6 we present the 

validation of our work and in Section 7 we present the conclusions and future work. 

2 Background 

Measures are applied over different types of conceptual schema diagrams for 

evaluating different quality attributes. For instance, measures over class diagrams are 

likely to focus on aspects like maintainability, understandability, etc., whilst measures 

over business process diagrams may address concepts like liveliness and throughput. 

The definition, reuse, comparison and validation of these measures has been 

recognized as a challenge by others (e.g., [10]) triggering then some research that we 

try to summarize below.  

We explore here proposals of measures for: entity-relationship diagrams; class 

diagrams; business process management diagrams; statechart diagrams; and i* 

diagrams. The purpose of this section is not to provide a comprehensive state of the 

art, that would require a paper by itself, but to show the typical structure-based 

measures that are defined in these formalisms. Table 1 summarizes some 

representative measures from the existing proposals. 

• Measures over E-R diagrams. They triggered the definition of conceptual schema 

measures. Some of them are present in virtually all proposals of measure suites, 

like counting number of entities, computing some ratios, etc. Works by Moody 

[11] and Si-Said Cherif et al. [3] provided a quite comprehensive set of measures 

that were designed to assess qualities like complexity, analysability and simplicity 

(i.e., the measures act as indicators of these high-level schema properties).  

• Measures over class diagrams. Class diagram measures are an evolution of 

measures on E-R diagrams, as proposed for instance in [3]. Chidamber and 

Kemerer [5] offered a quite comprehensive measure suite, and Genero et al. 
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proposed also others related to maintainability and more interestingly, a 

comprehensive survey including information about their validation [12]. 

Table 1. Overview of some conceptual schema measures. 

Diagram Measure Property Measured Ref. 

Number of Entities (E) Simplicity [11] E-R 

Diagrams Number of Entities and Relationships (E+R) Simplicity [11] 

Depth of Inheritance Tree (DIT) Complexity (behaviour)  [5] 

Number of Children (NOC) Reusability [5] 
Class 

Diagrams 
Number of Associations (NAss) Maintainability [12] 

Activity Automation Factor (AAF) Performance [4] 

Branching Automation Factor (BAT) Performance [4] 
Business 

Processes 
Coupling (Coup) Maintainability [8] 

Number of Activities (NA) Maintainability [13] Statechart 

Diagrams Number of Transitions (NT) Maintainability [13] 

Number of SD elements Complexity [14] 
i* Diagrams 

Predictability Accuracy [15] 

 

• Measures over business process diagrams. Business process diagrams are a 

totally different type of diagram than the two previous ones structure-wise. Among 

the existing proposals, we mention: a set of 8 structural measures for goal based 

business process design and evaluation [4]; and coupling and cohesion over 

workflow models [8].  

• Statechart diagrams. Genero et al. [13] propose and validate five measures to 

assess maintainability of UML statechart diagrams that count numbers of states, 

transitions and their relationships.  

• Measures on i* diagrams. There are a few proposals of measures over i* models. 

Among them we remark the ones defined in the REACT method [14] which count 

the different elements of Strategic Dependency (SD) models for obtaining different 

values. The work in [15] evaluates Strategic Rationale (SR) models by analysing 

the structure of their means-end and task-decompositions. 

A minor point is worth to be remarked. We are using the term “measure” instead of 

“metric” that for instance is used in a great deal of the papers cited in this section. We 

have followed the advice by N. Habra et al. [16] among others, that recommend to 

avoid the use of the term “metrics”: “Though they are widely used in software 

engineering, we believe that their use causes ambiguity and possibly confusion by 

suggesting erroneous analogies, e.g. with the mathematical metric in topology, with 

the metric system of units, etc.”. 

In the graph theory area [17], many measures over graphs have been defined. In 

this work, we will focus on graph measures which evaluate properties that are 

relevant to assess the quality of conceptual schema diagrams. 

3 A Metamodelling Approach for Measure Definition 

From the analysis of related work, we observe that conceptual schema measures are 

all based on the application of a numerical function (e.g., counting or weighting) on 

the elements that form the language used to create the diagrams under measurement. 
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For instance, measures over UML class diagrams are based on the number of 

associations, the number of attributes, etc., and combinations of them. Therefore, we 

aim at defining a metamodelling approach able to cope with this similarity by 

unifying the different language metaschemas into one for measurement purposes. 

We may observe that the different kind of diagrams targeted in this paper may be 

reduced to a similar syntactic structure: they are all like graphs such that they differ in 

their types of nodes and links. Therefore, we make the decision of defining a 

semantically agnostic metaschema that just reflects this syntactic structure. We adopt 

as starting point the metaschema for gap typology definition as proposed by Rolland 

et al. [18] that we modify for adapting it to our needs. 

Fig. 1 shows the metaschema. An Element is classified according to two different 

criteria. First, a distinction between Simple Element and Compound Element is made. 

Second, an element is classified as a Node or an Edge. A Compound Element is 

decomposed into finer-grained elements, which can be Simple or again Compound. 

Elements have one (or eventually more) category and optionally a name. Edge 

elements are connectors between pairs of elements. One of the connected elements 

plays the role of the source and the other is the target. Edges may have an order to 

indicate the possible ordering among edges from the same source. It is important to 

remark that an edge may involve some other edge as source or target, which is quite 

convenient for being applicable in some contexts. There is a designated compound 

element that represents a whole Diagram. Finally, an element may have associated 

one or more Property and assign a value to it. Since the final metaschema has 

significant differences with Rolland’s original one, we name it differently, concretely 

we called it Graph-like Metaschema, or GLMS for short. The measures defined over 

this metaschema will be named GLMS-measures. 
 

 
Fig. 1. Graph-like metaschema, adapted from [18]. 

Table 2 shows the mapping of some concepts from some of the conceptual 

modelling languages mentioned in the previous section, to GLMS’ concepts, with 

focus on nodes and edges.  
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Table 2. Correspondence of the GLMS into the concepts of several modelling languages 

Diagram Node Edge Property 

E-R diagram Entity, Attribute Relationship  Multiplicity? 

Class diagram Class, Attribute Inheritance, Association Which attribute is key? 

Business process diagram Task, Document Precedence, Owner Task executed by human? 

i* diagram Actor, Dependum Means-end, Dependency Committed dependency? 

Fig. 2 shows the metamodelling framework that we are proposing. At the M2 level of 

the four-level metamodel hierarchy [19] we have the several metaschemas for the 

different conceptual modelling languages: UML diagrams, E-R diagrams, business 

process modelling formalisms like BPMN, etc. But also the GLMS itself needs to be 

placed at M2, according to the metamodelling hierarchy classification criteria. Thus, 

the correspondences established in Table 2 are in fact sub-typing relationships (e.g., 

E-R diagram is subtype of Diagram). Then, GLMS-measures may be defined (through 

OCL). They are inherited in the modelling languages metaschemas, and then can be 

combined as needed to define the measures that apply to this particular language. 

 
Fig. 2. Defining model measures in a metamodeling-based framework. 

 
To give an overview let’s consider the process of definition of one of the simplest 

measures, the Number of Entities and Relationships (E+R) measure on ER diagrams: 

• At the GLMS we can define a GLMS-measure that counts the number of 

occurrences of a particular category of element cat in a diagram: 

context Diagram::byCategoryCountDiagram(cat: String): Integer 

• The E-R metaschema is coupled with the GLMS. In particular, the metaclass Entity 

is defined as subclass of Node whilst Relationship is defined as subclass of Edge. 

Also, the metaclass E-RDiagram is defined as subclass of Diagram. 

• As a consequence of this subtyping , a measure is induced by inheritance: 

context E-RDiagram::byCategoryCountDiagram(cat: String): Integer 

• The E+R measure may be defined on top of this inherited measure as: 

   context E-RDiagram::E+R(): Integer 

   post result = self.byCategoryCountDiagram(“Entity”) +  

                 self.byCategoryCountDiagram(“Relationship”) 
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More details are rendered in the next sections. In particular: 

• Which measures need to be defined over the GLMS?  

• How these measures can be inherited over modelling languages metaschemas? 

4 Defining Measures over the Graph-like Metaschema 

To make our approach usable, we need to define a comprehensive catalogue of 

GLMS-measures. It is not a goal of this paper to produce such a catalogue. However 

we outline here a preliminary classification of GLMS-measures in the basis of the 

papers surveyed in our state of the art analysis. What is really interesting at this point 

is that the measures can be classified according to several dimensions: 

• Condition. We can measure elements that fulfil some condition regarding their 

attributes (attribute conditional measures, e.g. number of elements of a category), 

regarding some structural condition (structural conditional measures, e.g. number 

of nodes that have not edges stemming out) or regarding a property (property 

conditional measures, e.g. number of nodes that have a given value for a property). 

More than one condition may be checked in a given measure. 

• Result. For a particular concept, we can compute the value as such (absolute 

measures), with several variations: counting, obtaining the maximum, distance, etc. 

We can divide this absolute value by a superconcept (normalized measures, e.g. 

number of elements of a category divided by the total number of elements) or we 

can compute a ratio compared to some other concept (crossed measures, e.g. 

number of nodes divided by number of edges). Also, sometimes we are more 

interested in getting the elements that apply for the computed concept that the 

result itself, allowing to use this measure as a filter for another (filtering measures, 

e.g. obtaining the set of elements that fulfil some structural condition). 

• Input. The measures may be applied to a full diagram (diagram measures) or just 

to a part of it (subdiagram measures). This second case is often used after a 

filtering measure has restricted the diagram to some elements (probably of 

different categories). A particular case of the second type is when the measures 

apply to just one element (individual measures). 

Table 3 presents a sample of the catalogue exploring different variations of a measure 

for counting elements that belong to a category. GLMS-measures are defined as 

operations specified in OCL [20]. M1 gets the set of elements of a particular category 

from a subdiagram. M2 is an M1’s particularization in which the subdiagram is the 

full diagram. M3 is the one used in the previous section. M4 defines a property-

conditional normalized measure over the diagram: since it depends on a property, the 

name of the property and the required value are added as parameters; since it is 

normalized, the special case of having no elements of the category has to be treated 

separately. M5 is an example of structural conditional measure that counts the number 

of nodes of a certain category cat1 connected through an outgoing edge to nodes of 

another category cat2. M6 shows the combination of several condition types by 

counting the same than M5 but also checking property values in the involved 

elements. We may see how some measures can be defined on top of others, e.g. M3 

on top of M2 and M2 on top of M1, making easier the definition process. In 
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particular, M4, M5 and M6 show the combination of existing measures into one using 

filtering versions. We remark also the use of the following lexical pattern for naming 

measures according to their classification: condition-result-input, e.g. in M1, 

condition = byCategory, result = Filtering, input = Subdiagram. 

Table 3. Some GLMS-measures. Unless otherwise stated, parameters are of type String. “SSN” 
stands for “Set(Sequence(Node))”. The commented version of this OCL expressions can be 
found in Appendix 1. 
M1. Attribute conditional, filtering, subdiagram 
context Diagram::byCategoryFilteringSubdiagram(se:Set(Element),cat):Set(Element) 

post: result = se->select(e | e.category->includes(cat)) 
M2. Attribute conditional, filtering, diagram 
context Diagram::byCategoryFilteringDiagram(cat): Set(Element) 

post: result = byCategoryFilteringSubdiagram(Element.allInstances(), cat) 
M3. Attribute conditional, counting, diagram 
context Diagram::byCategoryCountDiagram(cat): Integer 

post: result = self.byCategoryFilteringDiagram(cat)->size() 
M4. Property conditional, normalized, diagram 
context Diagram::byCategoryByPropertyNormalizedDiagram(cat, np, val): Real 

post: byCategoryCountDiagram(cat) = 0 implies result = 0 

post: byCategoryCountDiagram(cat) > 0 implies 

        result = byCategoryFilteringDiagram(cat)-> 

                    select(e | e.assignment->exists(a | a.property.name = np and 

                                                        a.value = val))-> size() 

                 / byCategoryCountDiagram(cat) 

M5. Attribute and structural conditional, absolute, diagram 
contextDiagram::byCategoryByTargetElementCategoryCountDiagram(cat1,cat2):Integer 

post: result = byCategoryCountSubdiagram( 

                byCategoryFilteringDiagram(cat1).targetEdge.targetElement, cat2) 

M6. Attribute, structural and property conditional, absolute, individual 
context Diagram::                 

         byCategoryAndPropertyByTargetElementCategoryAndPropertyCountDiagram 

                           (cat1, prop1, val1, cat2, prop2, val2): Integer 

post: result = byCategoryByPropertyCountSubdiagram( 

                    byCategoryByPropertyFilteringDiagram(cat1, prop1, val1). 

                        targetEdge.targetElement, cat2, prop2, val2) 

M7. Attribute conditional, filtering, diagram 
context Diagram::allPathsFilteringDiagram(catN, catE): SSN 
post: result = Node.allInstances()-> 
           select(n | n.category->includes(catN) and 
                      n.sourceEdge->select(e | e.category->includes(catE)) 

                                  ->isEmpty()) 
          ->iterate(x; s: SSN=Set{Sequence{}} | s->union(x.allPaths(catN, catE))) 
context Node::allPaths(catN, catE): SSN 
post: targetEdge->select(e | e.category->includes(catE))->isEmpty() and 
        category->includes(catN) implies result = Set{Sequence{self}} 
post: targetEdge->select(e | e.category->includes(catE))->notEmpty() 

                  implies result = 
 if category->includes(catN) then 
  targetEdge->select(e | e.category->includes(catE)).targetElement-> 
  iterate(x; s: SSN=Set{Sequence{}} | s->union(inFront(x.allPaths(catN, catE),x)) 
 else targetEdge->select(e | e.category->includes(catE)).targetElement-> 
  iterate(x; s: SSN=Set{Sequence{}} | s->union(x.allPaths(catN, catE)) endif 

M8. Attribute conditional, maximum, diagram 
context Diagram::allPathsMaxDiagram(catN: String, catE: String): Integer 

post: result = allPathsFilteringDiagram(catN, catE)-> 

        select(p | allPathsFilteringDiagram(catN, catE)-> 

                          forAll(p2 | p->size() >= p2->size())->size() 

The last two measures illustrate a very different but also common type of measure 

for conceptual schemas. In M7 we define a filtering measure for generating all paths 

composed by nodes of a given category catN following edges of another category 
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catE. It relies on an operation (allPaths) applied to the roots of the path. This opera-

tion is also shown, with two postconditions showing the case of final node (i.e., with 

no outgoing catE edges) and the recursion case, in which the current node is put in 

front to each (recursively-generated) path only if it is a catN node (inFront operation 

is not included for lack of space, it basically uses the prepend OCL operator to put the 

element in front of each sequence generated with an iterate). On top of M7, M8 com-

putes the longest path comparing pair-wise all paths and keeping the longest as result. 

5 Defining Measures over a Modeling Language Metaschema 

In this section we illustrate how to define a measure suite for a particular conceptual 

modeling language which is based on the GLMS. We consider a concrete proposal of 

Business Process Modeling (BPM) notation, used by Balasubramanian and Gupta [4] 

in their formulation of a BPM measure suite. We already used this case study in a 

previous work [21] in the context of definition of measures in i*, and from that 

experience we think it is a nice candidate to illustrate the framework presented here. 

As happened in that paper, for the sake of space, we focus on a representative subset 

of measures. Since the notation does not have name and we need one, we denote it by 

BPM-BG (after the authors’ initials).  

The method we propose is structured into two steps that are presented in the next 

two subsections: 

• The conceptual modelling language metaschema has to be connected to the GLMS 

to allow proper inheritance of the GLMS-measures. 

• The measure suite is defined as outlined in Section 3.  

5.1 Refactoring the BPM-BG Metaschema 

In the general case, the modelling language has an already defined metaschema. To 

apply our framework, we need first to adapt it to our needs. The refactoring of the 

language metaschema has the purpose of expressing its relevant concepts in terms of 

the GLMS classes. The refactoring is designed to keep the elements of the language’s 

original metaschema and then adding new elements needed to adapt it to the GLMS. 

Moreover, the new elements will only include information that can be derived from 

those of the original metaschema. 

BPM-BG proposes a 3-view model for business processes [4] but for the purposes 

of the paper we focus on one of them. The workflow view diagram reveals its set of 

constituent activities, their precedence relationships and the business participants 

(either human or system) that execute them. A workflow allows forks and merges. 

Activities have automation degrees depending on the degree of interaction system-

user. Activities with human intervention (manual or interactive) may be discretional 

(i.e., humans make decisions in a non-fully controllable manner). Fig. 3 shows the 

BPM-BG workflow view metaschema. Integrity constraints exist but we do not show 

them for the sake of conciseness. A correspondence must be established to relate the 

concepts of the BPM-BG metaschema with GLMS classes (see Table 4). 
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Those concepts that are captured by classes of the BPM-BG metaschema (e.g. 

WorkflowViewDiagram, Activity) are directly defined as subclasses of their 

corresponding GLMS classes (e.g. Activity is declared as a subclass of Node and 

Simple and its attributes redefine the attributes name and category of Element).  

On the other hand, there is a mismatch for those concepts captured by associations 

or attributes since they cannot be directly defined as subclasses. We need a more 

elaborated refactoring to allow the inducement of meta-measures into the BPM-BG 

metaschema. In the following, we describe the refactoring of the association Precedes 

and the attribute automationDegree. 
 

        
Fig. 3. Fragment of the BPM-BG workflow view metaschema and workflow view example 

 
Table 4. Correspondence of BPM-BG metaschema and the GLMS. 

BPM-BG metaschema concepts GLMS classes 

Concept Representation Concept 

WorkflowViewDiagram Class Node, Diagram 

Workflow Class Node, Compound 

WorkflowElement, Activity, Fork/Merge, 
Fork, Merge, BusinessParticipant 

Class Node, Simple 

beforeF, afterF, beforeM, afterM, Precedes Association Edge, Simple 

automationDegree, discretional, nature Attribute Property 

 

The refactoring of the association Precedes consists, basically, on specifying it as 

an association class (Precedence) which, at the same time, is defined as a subclass of 

Edge and Simple (its corresponding concepts in the GLMS). Fig. 4 depicts the 

refactoring of the Precedes association (where, for brevity, (C) beside the class name 

stands for its definition as subclass of C).  
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Fig. 4. Refactoring of the Precedes association 

 

Another aspect of the refactoring made in Fig. 4 that deserves attention is that two 

derived associations relating Activity and Precedence have been added such that they 

are calculated from the Precedes association. They also redefine the two associations 

between Node and Edge of the GLMS. As a consequence, the instances of Precedes 

are used to populate the redefined elements of the GLMS. In this way, the GLMS is 

populated with instances of the original elements of the BPM-BG metaschema. 

Now, consider the attribute automationDegree. Its refactoring, illustrated in Fig. 5, 

consists, basically, on specifying a new singleton class AutomationDegreeProp, 

defined as a subclass of Property and a new association class 

AutomationDegreeAssign, defined as a subclass of Assignment, such that it relates 

Activity and AutomationDegreeProp through a derived association. This derived 

association redefines its corresponding GLMS association. The attributes of the new 

classes are also derived and redefine their corresponding GLMS attributes. By 

contrast, the AutomationDegreeProp singleton class itself is not derived since UML 

does not admit the general definition of derived classes [22] and, for this reason, we 

assume an initialization operation that creates its single instance. 

 
Fig. 5. Refactoring of the automationDegree attribute 

 

The rest of non-class elements of the BPM-BG metaschema can be refactored in a 

similar way. As intended, the resulting BPM-BG refactored metaschema keeps all the 

elements from the original BPM-BG, although it is true that the Open-Closed 

Principle [23] is not fully applied due to the added subtyping relationships in the 

original classes. Thanks to the use of derived and redefined information, the whole 

metaschema (i.e., the combination of the GLMS and the BPM-BG metaschema) is 

populated from the instances of the original BPM-BG metaschema and thus the 

GLMS-measures are applicable over the refactored metaschema. To avoid the 

violation of the Open-Closed principle, for each class A of the language metaschema 

which inherits from two GLMS’s Element subclasses B and C (e.g., Activity that 

inherits from Node and Simple), we could create a class A2 that inherits from A, B 

and C. Therefore the initial language metaschema would be really preserved. The 
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main ideas behind our approach would not change in a significant way.  

5.2 Inheriting Measures over the BPM-BG Metaschema 

Once the two metaschemas have been aligned, we can define the measures over them. 

In general, we aim at simply invoking the operations inherited from the GLMS 

classes that define the GLMS-measures, but as it will be shown below, this is not 

always possible. 

For the sake of brevity, we focus on 3 representative measures over the BPM wor-

kflow view. The first is a case of immediate application, the second requires a slight 

adaptation, whilst the third needs more work but still makes use of the metameasures. 

• AAF. Proportion of total activities in a process that require system support. 

Indicator of throughput. The GLMS-measure M4 (see Table 3) to count the 

number of elements of a certain category (Activity) that fulfil a property 

(automationDegree) is applied twice and results added. This is an example of 

measure easy to obtain from the GLMS. 
 
context WorkflowViewDiagram::AAF(): Real 

post: result =  

    byCategoryByPropertyNormalizedDiagram(‘Activity’,‘automationDegree’,‘automated’)  

  + byCategoryByPropertyNormalizedDiagram(‘Activity’,‘automationDegree’,‘interactive’) 
 
• APF. Longest path of activities that must be executed sequentially divided by the 

total number of activities. Indicator of throughput. It is based on the computation 

of paths formed by Activities using the Precedence relationship introduced when 

refactoring (Fig. 4) using the GLMS-measure M8. Its definition is straighforward: 
 
context WorkflowViewDiagram::APF(): Real 

post: byCategoryCountDiagram(‘Activity’) = 0 implies result = 0 

post: byCategoryCountDiagram(‘Activity’) > 0 implies 

      result = allPathsMaxDiagram(‘Activity’, ‘Precedence’) / byCategoryCountDiagram(‘Activity’) 
 
• TDRF. Proportion of transitions of flow between business participants from system 

activities to human activities. Indicator of reliability. This is a complex measure 

that cannot be simply induced by GLMS-measures. We provide below a simplified 

version neither considering forks nor merges (which basically require repeating 

two additional times the given expression). The focus is on the different nature of 

activities using the GLMS-measure M6 in the filtering version, and the resulting 

elements need to be filtered again to discard those edges that do not represent 

transition of flows between business participants. We remark that for this second 

filtering, we work directly at the level of the BPM-BG metaschema, although we 

could have chosen to define a GLMS-measure if we had considered that the type of 

filter is interesting enough to be included at this level. Note that even in this case, 

the existence of GLMS-measures helps formalising the measure. 
 
context WorkflowViewDiagram::TDRF(): Real 

post: result = byCategoryAndPropertyByTargetElementCategoryAndPropertyFilteringDiagram 

                    (‘Activity’,‘nature’,‘system’, ‘Activity’,‘nature’,‘human’)-> 

               select(e | e.wkf.owner <> e.to.wfk.owner)->size() 

               / Activity.allInstances()->select(e | e.wkf.owner <> e.to.wfk.owner)->size() 
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5.3 Discussion: Relationship with MOF 

Once the full proposal has been presented, a final reflection can be made about the 

modelling architecture that we have followed. Our framework proposes to 

circumscribe both the GLMS and the modelling language metaschema at the M2 level 

(according to the framework of a meta-modelling architecture defined in [19]. 

Another option could have been to keep the GLMS at the M2 level and to define the 

language metaschemas at the M1 layer as its instantiation. Our reasons for not 

following this latter approach are that: 1) it leaves no room for runtime instances 

since, then, M0 would represent specific schemas (for example, a BPM diagram, but 

not particular process instances), and 2) to define the language metaschema at the M1 

layer may be counterintuitive and may damage the understandability of the approach. 

Other alternative could have been defining the GLMS at M3 level but then our 

approach would have not aligned with the four-level metamodel hierarchy that 

proposes MOF at the M3 level. 

6 Validation 

We have performed a two-fold validation of our approach. First, we have used a 

comprehensive catalogue of measures for a particular type of diagrams, UML class 

diagrams. We have used an extensive survey [12] that compiles 67 measures from 

several authors. The results are summarized in Table 5. The most interesting result is 

that 62% of the measures are direct applications of some GLMS-measure (most times 

just one, some times a bit more, similarly to AAF in Section 5.2), whilst other 26% 

require more complicated combinations but are still easy to do (e.g., CL1 that 

computes sets of responsibilities, that is a concept that has many refinements). 3% of 

the measures are derived, i.e. just a ratio of other more basic ones. The real hard ones 

represent the 6% of the population, which were so particular that it makes no sense to 

define a GLMS-measure abstracting their meaning. But even in this case, as happened 

with TDRF, all of them used some GLMS-measure as the basis for computation, for 

instance, NMO computes the total number of methods overridden by a subclass, 

which requires to generate paths of classes and for that purpose, M7 may be used. 

Finally, we remark that 6% of the measures are hard to define using the OCL since 

they involve square and square root computations. As additional information, 6% of 

all the measures required expert judgement (e.g., WMC requires an expert to weight 

the complexity of methods), which would be modelled as usual as properties in our 

framework. 
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Table 5. Adequacy of our framework for UML class diagrams measures. 

How 
How 

many 
Which ones 

Straightforward 41 

WMC, DIT, NOC, DAC, DAC’, NOM, PIM, NIM, NIV, NCM, NCV, NMI, 
NMA, APPM, PK3, OA1, OA2, OA3, OA5, DAM, DCC, MOA, DSC, 

NOH, ANA, NOP, NAssoc, NAgg, NDep, NGen, NGenH, NAggH, maxDIT, 

MaxHAgg, NAssocC, HAgg, NODP, NP, NW, MAgg, NDepIN, NDepOut 

Require several 
combinations 

17 
MIF, AIF, PF, ACAIC, OCAIC, DCAEC, OCAEC, ACMIC, OCMIC, 
DCMEC, OCMEC, CL1, CL2, PK1, PK2, OA7, MFA 

Derived 2 SIZE2, SIX 

Specific 4 MHF, AHF, NMO, CAMC 

Not-well suited 2 OA4, OA6 

 

On the other hand, we have analysed some other types of diagrams with a sample 

of measures found in concrete proposals. In particular, we have explored the 

diagrams: ER, use case, activity, statechart, social network, i*, in addition to the BPM 

case. To make the sample more representative, we have used different types of 

sources: scientific papers for the ER [24] and BPM [4] an existing tool for measure 

calculation, SDmetrics (http://www.sdmetrics.com/), for use cases, activity and 

statechart diagrams; and even the Wikipedia for social networks. The full description 

of these cases can be found in Appendix 2 and the results are summarised in Table 6. 

In total, we have analysed 45 measures that have required the application of 58 

patterns of 17 different types (in the last row we show the types of different patterns 

considering the totality of metrics). The two next columns try to provide an indicator 

of the applicability of our approach. We may observe that up to 69% of the measures 

have been defined by simply invoking one metameasure and in addition 7% more 

have been defined by reusing some measures defined below (e.g., in social networks, 

degree centrality as the sum of in-degree and out-degree). We have defined an 

indicator to measure somehow the overall customization effort, shown in the last 

column: x+y+z means “x navigations, y operators on collections, z operators not on 

collections”. Navigations include oclAsType (considered as “navigation” through a 

hierarchy). Operators on collections are forAll, exists, iterator, select, and by the like. 

Other operators include not only operators with name (size, asSet, etc.) but also 

arithmetic, boolean and relational operators. It is worth to remark the case of social 

networks since it illustrates the fact that, in the discipline of software engineering, 

new models and notations continuously emerge for whatever reason and in particular 

social networks are becoming increasingly popular for different purposes, e.g. 

requirements prioritisation [25]. Our approach facilitates the definition of measures 

for these new approaches.  

Table 6. Adequacy of our framework for different types of diagrams’ measures. 
Type of 

diagram 

Number of 

measures 

Patterns 

applied 

Types of pat-

terns applied 

Immediate 

measures 

Measures by 

reuse 

Customization 

effort 

ER 12 13 4 8 (67%) 1 (8%) 7+1+11 

Activity 10 10 1 10 (100%) 0 0+0+0 

Statechart 7 7 2 5 (71%) 1 (14%) 0+0+3 

Use case 6 6 4 5 (83%) 0 4+0+1 

Social network 5 9 6 2 (40%) 1 (20%) 0+2+8 

BPM 5 13 8 1 (20%) 0 10+4+15 

TOTAL 45 58 17 31 (69%) 3 (7%) 21+7+38 
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7 Conclusions and Future Work 

In this paper we have argued about the possibility of defining measures for conceptual 

schema diagrams not in an ad-hoc way, but by manipulation of some generic 

measures that are adapted to the particular type of diagram after a metaschema 

alignment. We have presented methodological aspects of the proposal, a precise 

definition in terms of metaschema transformations, and a first validation step. The 

benefits of the proposal are: 1) simplification of measures definition: although 

measures over the GLMS metaschema may be complex, they are defined only once as 

a predefined catalogue and definition of specific measures on top of them is, in 

general, simple; 2) improvement of measure understandability; 3) ontological 

alignment since related measures can be defined on top of the same GLMS-measure; 

4) possibility of defining the rationale of similar measures in a unified way at the 

GLMS-level; 5) facilitation of adapting measures over a modelling language to other 

languages. As drawbacks, we must point out the need of creating the initial catalogue 

and that, although not many (see Tables 5 and 6), some measures require still non-

negligible work or even are too specific to be defined as GLMS-measure particu-

larizations. 

The future work is organized along three directions that need to be jointly run. 

First, validate further the approach by considering more types of models and more 

measures on them. Second, complete the catalogue of GLMS-measures. Third, 

develop tool support to facilitate both the process of managing the GLMS-measures 

catalogue and the process of browsing it when defining a new set of measures. 
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Appendix 1 

Table 3 presents a sample of GLMS-measures. They are defined as operations 

specified in OCL over the Graph-like metaschema (GLMS) shown in Figure 1. 

In the following, we comment table 3 measures. Unless otherwise stated, 

parameters of the measures are of type String and “SSN” stands for 

“Set(Sequence(Node))”. 

 

Measure M1 gets the set of elements of a particular category from a subdiagram: 

context 

Diagram::byCategoryFilteringSubdiagram(se:Set(Element),cat):Set(Element) 

post: result = se->select(e | e.category->includes(cat)) 

 

Parameter se corresponds to the set of elements of the departing subdiagram and 

parameter cat gives the category of the elements to get. The OCL expression uses the 

operator select to obtain the elements of the subdiagram such that their attribute 

category includes the value cat.  
 

Measure M2 is an M1’s particularization in which the subdiagram is the full 

diagram.  

context Diagram::byCategoryFilteringDiagram(cat): Set(Element) 

post: result = byCategoryFilteringSubdiagram(Element.allInstances(), 

cat) 

 

Now, the only parameter is cat to give the category of the elements to get from the 

full diagram. The OCL expression uses M1 with the set of all the elements of the 

diagram as first parameter (the OCL operator allInstances is used to obtain all the 

instances of the class Element).  

 

M3 counts the number of occurrences of a particular category cat of element in a 

diagram: 

context Diagram::byCategoryCountDiagram(cat): Integer 

post: result = self.byCategoryFilteringDiagram(cat)->size() 

 

This OCL expression uses M2 to obtain all the elements of category cat of the 

diagram and, then, it uses the operator size to obtain their total number. 

 

M4 defines a property-conditional normalized measure over the diagram:  

context Diagram::byCategoryByPropertyNormalizedDiagram(cat, np, val): 

Real 

post: byCategoryCountDiagram(cat) = 0 implies result = 0 

post: byCategoryCountDiagram(cat) > 0 implies 

      result = byCategoryFilteringDiagram(cat)-> 

         select(e | e.assignment->exists(a | a.property.name = np and  

a.value = val))-> size() 

                 / byCategoryCountDiagram(cat) 
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Since it depends on a property, the name of the property (np) and the required 

value (val) are added as parameters. Since it is normalized, the special case of having 

no elements of the category has to be treated separately in the first postcondition 

(post) of the operation. The second postcondition deals with the non-empty case. It 

uses M2 to obtain all the elements of category cat of the diagram; and then, it uses the 

operator select to filter those elements with value val for property np and the operator 

size to count them. The obtained number of elements is divided by the total number of 

elements of the category cat in the diagram which is obtained using M3. 

 

M5 counts the number of nodes of a certain category cat1 connected through an 

outgoing edge to nodes of another category cat2.  

contextDiagram::byCategoryByTargetElementCategoryCountDiagram(cat1,ca

t2):Integer 

post: result =  

byCategoryCountSubdiagram(byCategoryFilteringDiagram(cat1).targetEdge

.targetElement, cat2) 

 

The OCL expression uses an auxiliary measure byCategoryCountSubdiagram 

which counts the number of elements of a category (cat2) of a subdiagram. The 

subdiagram must have the set of elements that receive an outgoing edge from 

elements with category cat1. This is obtained by using measure M2 that gives the 

elements of category cat1 of the full diagram followed by two navigations 

(targetEdge.targetElement) that obtain the target nodes connected to the outgoing 

edges of those elements.  

 

M6 counts the same as M5 but also checking property values in the involved 

elements.  

context Diagram:: 

byCategoryAndPropertyByTargetElementCategoryAndPropertyCountDiagram 

                           (cat1, prop1, val1, cat2, prop2, val2): Integer 

post: result = byCategoryByPropertyCountSubdiagram( 

             byCategoryByPropertyFilteringDiagram(cat1, prop1, val1). 

                        targetEdge.targetElement, cat2, prop2, val2) 

 

This postcondition uses two auxiliary measures. First, measure 

byCategoryByPropertyCountSubdiagram which counts the number of elements of a 

category (cat2) of a subdiagram that have a given value (val2) for a given property 

(prop2). Additionally, to obtain that subdiagram, another auxiliary measure 

byCategoryByPropertyFilteringDiagram is used. It gives the set of elements of a 

category (cat1) of a diagram that have a given value (val1) for a given property 

(prop1). 

M7 is filtering measure for generating all paths composed by nodes of a given 

category catN following edges of another category catE. 

context Diagram::allPathsFilteringDiagram(catN, catE): SSN 
post: result = Node.allInstances()-> 

           select(n | n.category->includes(catN) and 

                      n.sourceEdge->select(e | e.category->includes(catE)) 
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                                  ->isEmpty()) 
    ->iterate(x; s: SSN=Set{Sequence{}} | s->union(x.allPaths(catN, catE))) 

 

The operation generates first the nodes catN that are starting point of such paths, 

by checking that there are no edge catE pointing to such node catN. For all of the 

nodes that fulfill this condition, all the paths that start from that node are generated 

using an auxiliary operation allPaths. The generated paths are put together in the 

result. The allPaths operation is also shown below: 
 

context Node::allPaths(catN, catE): SSN 
post: targetEdge->select(e | e.category->includes(catE))->isEmpty()  

and 
        category->includes(catN) implies result = Set{Sequence{self}} 

post: targetEdge->select(e | e.category->includes(catE))->notEmpty() 

                  implies result = 
  if category->includes(catN) then 
     targetEdge->select(e | e.category->includes(catE)).targetElement-> 
     iterate(x; s: SSN=Set{Sequence{}} | s->union(inFront(x.allPaths(catN,  

catE),x)) 
  else targetEdge->select(e | e.category->includes(catE)).targetElement-> 

iterate(x; s:SSN=Set{Sequence{}} | s->union(x.allPaths(catN, catE)) 

endif 

 

It has two postconditions showing first the case of final node (i.e., with no 

outgoing catE edges) and the recursion case, in which the current node is put in front 

to each (recursively-generated) path only if it is a catN node (inFront operation is not 

included for lack of space, it basically uses the prepend OCL operator to put the 

element in front of each sequence generated with an iterate).  

 

M8 computes the longest path comparing pair-wise all paths and keeping the 

longest as result. It is quite simple using the measure M7 above: it generates all the 

paths with the catN and catE as above, and selects the one that has the greatest size 

(i.e., the longest path), keeping then the size as result. 

context Diagram::allPathsMaxDiagram(catN: String, catE: String): Integer 

post: result = allPathsFilteringDiagram(catN, catE)-> 

        select(p | allPathsFilteringDiagram(catN, catE)-> 

                   forAll(p2 | p->size() >= p2->size())->size() 
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Appendix 2: Validation 

ER measures 
 

SOURCE: Marcela Genero Geert Poels, Mario Piattini: “Defining and validating 

metrics for assessing the understandability of entity–relationship diagrams”. Data & 

Knowledge Engineering, 64(3), March 2008, pages 534-557. 

FRAGMENT OF THE ER METASCHEMA 

 
context Relationship::numberOfEnds:Integer 

derive: self.relationshipEnd->size() 

METAMODEL CORRESPONDENCE: 

ERDiagram Diagram 

Entity Node, Simple 

Attribute Node, Simple 

Relationship Edge, Simple 

RelationshipEnd Edge, Simple (from relationship to entity) 

DerivedAttribute Property (of attribute) 

CompositeAttribute Property (of attribute) 

MultivaluedAttribute Property (of attribute) 
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Cardinality Property (of relationship end) 

NumberOfEnds Property (of relationship) 

IS_A Edge, Simple 

CATALOGUE OF MEASURES 

Measure: NE 

 

Definition: The Number of Entities metric is defined as the number of entities 

within an ER diagram, considering both weak and strong entities  

Formalization: 

context ERDiagram::NE(): Integer 

post: byCategoryCountDiagram(‘Entity’) 

 

Measure: NA 

 

Definition: The Number of Attributes metric is defined as the total number of 

attributes defined within an ER diagram, taking into account not only entity attributes 

but also relationship attributes. In this number all attributes are included (but not the 

composing parts of composite attributes). 

Formalization: 

context ERDiagram::NA(): Integer 

post: byCategoryCountDiagram(‘Attribute’) 

 

Measure: NDA 

 

Definition: The Number of Derived Attributes metric is defined as the number of 

derived attributes within an ER diagram. The value of NDA is always strictly less 

than the value of NA. 

Formalization: 

context ERDiagram::NDA(): Integer 

post: 

byCategoryByPropertyCountDiagram(‘Attribute’,‘derivedAttr

ibute’,‘derived’) 

 

Measure: NCA 

 

Definition: The Number of Composite Attributes metric is defined as the number 

of composite attributes within an ER diagram. This value is less than or equal to the 

NA value. 
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Formalization: 

context ERDiagram::NCA(): Integer 

post: 

byCategoryByPropertyCountDiagram(‘Attribute’,‘compositeAt

tribute’,‘composite’) 

 

Measure: NMVA 

 

Definition: The Number of Multivalued Attributes metric is defined as the number 

of multivalued attributes within an ER diagram. Again, this value is less than or equal 

to the NA value. 

Formalization: 

context ERDiagram::NMVA(): Integer 

post: 

byCategoryByPropertyCountDiagram(‘Attribute’,‘multivalued

Attribute’,‘multivalued’) 

Measure: NR 

 

Definition: The Number of Relationships metric is defined as the total number of 

relationships within an ER diagram, excluding ISA relationships. 

Formalization: 

context ERDiagram::NR(): Integer 

post: byCategoryCountDiagram(‘Relationship’) 

 

Measure: NM:NR 

 

Definition: The Number of M:N Relationships metric is defined as the number of 

M:N relationships within an ER diagram. The value of NM:NR is less than or equal to 

the NR value. 

Formalization: 

context ERDiagram::NMNR(): Integer 

post: byCategoryCountDiagram(‘Relationship’) -     

byCategoryByPropertyFilteringDiagram(‘RelationshipEnd’, 

‘cardinality’,‘1’).sourceElement->asSet()->size() 

 

Explanation: The OCL expression obtains the number of M:N Relationships by 

subtracting to the total number of relationships, the number of relationships that have 

at least one relationship end with a cardinality of 1. When calculating this last 

number, the operation asSet is used to avoid counting more than once the 

relationships that have several ends with cardinality 1.   
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Measure: N1:NR 

 

Definition: The Number of 1:N Relationships metric is defined as the total number 

of 1:N and 1:1 relationships within an ER diagram. Also this value is less than or 

equal to the NR value. The number of 1:1 relationships is not used as a separate 

metric because these relationships are considered a subset of the 1:N relationships 

Formalization: 

context ERDiagram::N1NR(): Integer 

post: 

byCategoryByPropertyFilteringDiagram(‘RelationshipEnd’, 

‘cardinality’,‘1’).sourceElement->asSet()->size() 

 

Explanation: The OCL expression obtains the number of relationships that have at 

least one relationship end with a cardinality of 1. The operation asSet is used to avoid 

counting more than once the relationships that have several ends with cardinality 1. 

Measure: NBinaryR 

 

Definition: The Number of Binary Relationships metric is defined as the number 

of binary relationships within an ER diagram. Again, the value is less than or equal to 

the NR value.  

Formalization: 

context ERDiagram::NBinaryR(): Integer 

post: byCategoryByPropertyCountDiagram(‘Relationship’, 

‘numberOfEnds’,‘2’) 

 

Explanation: The derived attribute numberOfEnds has been to the ER metaschema 

to facilitate the definition of this measure. 

Measure: NN_AryR 

 

Definition: The Number of N-Ary Relationships metric is defined as the number of 

N-Ary relationships within an ER diagram. Its value is less than or equal to the NR 

value. 

Formalization: 

context ERDiagram::NN_AryR(): Integer 

post: byCategoryCountDiagram(‘Relationship’)-  

      NBinaryR() 

 

Measure: NRefR 

 

Definition: The Number of Reflexive Relationships metric is defined as the 

number of reflexive relationships within an ER diagram. Its value is less than or equal 

to the value of the NR metric.  
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Formalization: 

context ERDiagram::NRefR(): Integer 

post: byCategoryFilteringDiagram(‘Relationship’)-> 

 select(r|r.oclAsType(Relationship).relationshipEnd.

entity->asSet()->size() <  

r.oclAsType(Relationship).relationshipEnd->size())-> 

size() 

 

Explanation: The OCL expression calculates the number of reflexive relationships 

by selecting those relationships that have a number of ends with different entities 

(asSet eliminates the duplicates) less than its total number of ends. 
 

Measure: NIS_AR 

 

Definition: NIS_AR The Number of IS_A Relationships metric is defined as the 

number of IS_A relationships within an ER diagram. In this case, we consider one 

relationship for each super-type/sub-type pair. 

Formalization: 

context ERDiagram::NIS_AR(): Integer 

post: byCategoryCountDiagram(‘IS_A’) 

SUMMARY:  

Patterns applied, individual:  

byCategoryCountDiagram  6 

byCategoryByPropertyCountDiagram 4 

byCategoryByPropertyFilteringDiagram 2 

byCategoryFilteringDiagram 1 

 

Patterns applied, by category:  

Condition 

Attribute conditional 7 

Structural conditional  

Property conditional 6 

Result 

Absolute 10 

Normalized  

Crossed  



24 Dolors Costal, Xavier Franch 

Filtering 3 

Input 

Full diagram 13 

Subdiagram  

Individual  

 

Measures complexity:  

Measure 
Patterns 

applied 

Different 

patterns 

applied 

Expressions not 

covered by 

patterns (*) 

Measures 

reused 

NE 1 1 0 0 

NA 1 1 0 0 

NDA 1 1 0 0 

NCA 1 1 0 0 

NMVA 1 1 0 0 

NR 1 1 0 0 

NM:NR 2 2 1+0+3 0 

N1:NR 1 1 1+0+2 0 

NBinaryR 1 1 0 0 

NN_AryR  1 1 0+0+1 1 

NRefR 1 1 5+1+5 0 

NIS_AR 1 1 0 0 
 

(*) x+y+z means “x navigations, y operators on collections, z operators not on 

collections”. Navigations include oclAsType (considered as “navigation” in a 

hierarchy). Operators on collections are forAll, exists, iterator, select, and by the like. 

Other operators include not only operators with name (size, asSet, etc.) but also 

arithmetic, boolean and relational operators. 
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Activity measures 
 

SOURCE: http://www.sdmetrics.com/ 

FRAGMENT OF THE UML METASCHEMA  

This fragment of the UML metaschema has been obtained from:  

Object Management Group, OMG Unified Modeling Language (OMG UML), 

Superstructure, V2.3, (formal/2010-05-05), http://www.omg.org/spec/UML/2.3/ 

Superstructure/PDF/2010 

 

METAMODEL CORRESPONDENCE: 

Activity Diagram 

ActivityNode Node, Simple 

Action Node, Simple 

ObjecteNode Node, Simple 

ControlNode Node, Simple  

Pin Node, Simple  

ActivityPartition Node, Simple  

Partition Edge, Simple (from Activity to ActivityPartition) 

ActivityGroup Node, Simple 
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Group Edge, Simple (from Activity to ActivityGroup) 

ActivityEdge Edge, Simple  

(from ActivityNode to ActivityNode) 

ControlFlow Edge, Simple  

ObjectFlow Edge, Simple  

Edge Edge, Simple (from Activity to ActivityEdge) 

ValueSpecification Node, Simple  

Guard Edge, Simple  

(from ActivityEdge to ValueSpecification) 

ExecutableNode Node, Simple  

ExceptionHandler Node, Simple 

Handler Edge, Simple  

(from ExecutableNode to ExceptionHandler) 

 

CATALOGUE OF MEASURES 

Measure: Actions 

Definition: The number of actions of the activity.  

Formalization: 

context Activity::Actions(): Integer 

post: byCategoryCountDiagram(‘Action’) 

 

Measure: ObjectNodes 

Definition: The number of object nodes of the activity.   

Formalization: 

context Activity::ObjectNodes(): Integer 

post: byCategoryCountDiagram(‘ObjectNode’) 

 

Measure: Pins 

Definition: The number of pins on nodes of the activity.   

Formalization: 

context Activity::Pins(): Integer 

post: byCategoryCountDiagram(‘Pin’) 

 

Measure: ControlNodes 

Definition: The number of control nodes of the activity.  
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Formalization: 

context Activity::ControlNodes(): Integer 

post: byCategoryCountDiagram(‘ControlNodes’) 

 

Measure: Partitions 

Definition: The number of activity partitions of the activity.  

Formalization: 

context Activity::Partitions(): Integer 

post: byCategoryCountDiagram(‘Partition’) 

 

Measure: Groups 

Definition: The number of activity groups or regions of the activity.  

Formalization: 

context Activity::Groups(): Integer 

post: byCategoryCountDiagram(‘Group’) 

 

Measure: ControlFlows 

Definition: The number of control flows of the activity.  

Formalization: 

context Activity::ControlFlows(): Integer 

post: byCategoryCountDiagram(‘ControlFlow’) 

 

Measure: ObjectFlows 

Definition: The number of object flows of the activity.  

Formalization: 

context Activity::ObjectFlows(): Integer 

post: byCategoryCountDiagram(‘ObjectFlow’) 

 

Measure: Guards 

Definition: The number guards defined on object and control flows of the activity.  

Formalization: 

context Activity::Guards(): Integer 

post: byCategoryCountDiagram(‘Guard’) 

 

Measure: ExcHandlers 

Definition: The number of exception handlers of the activity.  
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Formalization: 

context Activity::ExcHandlers(): Integer 

post: byCategoryCountDiagram(‘Handler’) 

SUMMARY:  

Patterns applied, invididual:  

byCategoryCountDiagram   10 

 

Patterns applied, by category:  

Condition 

Attribute conditional 10 

Structural conditional  

Property conditional  

Result 

Absolute 10 

Normalized  

Crossed  

Filtering  

Input 

Full diagram 10 

Subdiagram  

Individual  

 

Measures complexity:  

Measure 
Patterns 

applied 

Different 

patterns 

applied 

Expressions 

not covered by 

patterns (*) 

Measures 

reused 

Actions 1 1 0 0 

ObjectNodes 1 1 0 0 

Pins 1 1 0 0 

ControlNodes 1 1 0 0 

Partitions 1 1 0 0 

Groups 1 1 0 0 

ControlFlows 1 1 0 0 
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ObjectFlows 1 1 0 0 

Guards 1 1 0 0 

ExcHandlers 1 1 0 0 
 

(*) x+y+z means “x navigations, y operators on collections, z operators not on 

collections”. Navigations include oclAsType (considered as “navigation” in a 

hierarchy). Operators on collections are forAll, exists, iterator, select, and by the like. 

Other operators include not only operators with name (size, asSet, etc.) but also 

arithmetic, boolean and relational operators. 
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Statechart measures 
 

SOURCE: http://www.sdmetrics.com/ 

FRAGMENT OF THE UML METASCHEMA  

This fragment of the UML metaschema has been obtained from:  

Object Management Group, OMG Unified Modeling Language (OMG UML), 

Superstructure, V2.3, (formal/2010-05-05), http://www.omg.org/spec/UML/2.3/ 

Superstructure/PDF/2010 

 

 

METAMODEL CORRESPONDENCE: 

StateMachine Diagram 

Vertex Node, Simple 

State Node, Compound 

Pseudostate Node, Simple 

Transition Edge, Simple (from vertex to vertex) 

Behavior Node, Simple  

Effect Edge, Simple (from transition to behaviour)  

Constraint Node, Simple 

Guard Edge, Simple (from transition to constraint) 

Trigger Node, Simple 

Entry Edge, Simple (from state to behaviour) 

Exit Edge, Simple (from state to behaviour) 

DoActivity Edge, Simple (from state to behaviour) 

Note: The metamodel correspondence does not include elements of the metaschema 

which are not relevant for the catalogue of measures. 
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CATALOGUE OF MEASURES 

Measure: Trans 

Definition: The number of transitions in the state machine.  

Formalization: 

context SMDiagram::Trans(): Integer 

post: byCategoryCountDiagram(‘Transition’) 

 

Measure: TEffects 

Definition: The number of transitions with an effect in the state machine.   

Formalization: 

context SMDiagram::TEffects(): Integer 

post:

 byCategoryByTargetElementCategoryCountDiagram(‘Tran

sition’,‘Behavior’) 

 

Measure: TGuard 

Definition: The number of transitions with a guard in the state machine. 

Formalization: 

context SMDiagram::TGuard(): Integer 

post: 

byCategoryByTargetElementCategoryCountDiagram(‘Transition

’,‘Constraint’) 

 

Measure: TTrigger 

Definition: The number of triggers of the transitions of the state machine.  

Formalization: 

context SMDiagram::Ttrigger(): Integer 

post:  byCategoryCountDiagram(‘Trigger’) 

 

Measure: States 

Definition: The number of states in the state machine. This includes pseudo states, 

as well as composite and concurrent states of the statemachine, and recursively the 

states they contain, at all levels of nesting. 

Formalization: 

context SMDiagram::States(): Integer 

post: byCategoryCountDiagram(‘State’)+  

byCategoryCountDiagram(‘Pseudostate’) 
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Measure: SActivity 

Definition: The number of activities defined for the states of the state machine. 

This counts entry, exit, and do activities defined for the states. 

Formalization: 

context SMDiagram::SActivity(): Integer 

post: 

byCategoryByTargetElementCategoryCountDiagram(‘State’, 

‘Behavior’) 

 

Measure: CC 

Definition: The cyclomatic complexity of the state-machine graph. This is 

calculated as Trans-States+2. 

Formalization: 

context SMDiagram::CC(): Integer 

post: Trans() – States() + 2  

SUMMARY:  

Patterns applied, invididual:  

byCategoryCountDiagram   4 

byCategoryByTargetElementCategoryCountDiagram 3 

Patterns applied, by category:  

Condition 

Attribute conditional 4 

Structural conditional 3 

Property conditional  

Result 

Absolute 7 

Normalized  

Crossed  

Filtering  

Input 

Full diagram 7 

Subdiagram  

Individual  
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Measures complexity:  

Measure 
Patterns 

applied 

Different 

patterns applied 

Expressions not 

covered by 

patterns (*) 

Measures 

reused 

Trans 1 1 0 0 

TEffects 1 1 0 0 

TGuard 1 1 0 0 

TTrigger 1 1 0 0 

States 2 1 0+0+1 0 

SActivity 1 1 0 0 

CC 0 0 0+0+2 2 
 

(*) x+y+z means “x navigations, y operators on collections, z operators not on 

collections”. Navigations include oclAsType (considered as “navigation” in a 

hierarchy). Operators on collections are forAll, exists, iterator, select, and by the like. 

Other operators include not only operators with name (size, asSet, etc.) but also 

arithmetic, boolean and relational operators. 
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Use case measures 

SOURCE: http://www.sdmetrics.com/ 

FRAGMENT OF THE UML METASCHEMA  

This fragment of the UML metaschema has been obtained from:  

Object Management Group, OMG Unified Modeling Language (OMG UML), 

Superstructure, V2.3, (formal/2010-05-05), http://www.omg.org/spec/UML/2.3/ 

Superstructure/PDF/2010 

The class UCDiagram has been added to it for compatibility with the GLMS 

Constraint: Use cases can only be involved in binary Associations.  

METAMODEL CORRESPONDENCE: 

UCDiagram Diagram 

UseCase Node, Simple 

Actor Node, Simple 

Include Edge, Simple  

(from includingCase use case to addition use case) 

Extend Edge, Simple  

(from extension use case to extendedCase use case) 
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ExtensionPoint Node, Simple 

ExtensionPoint-

UseCase 

Edge, Simple  

(from use case to extension point) 

Association Edge, Simple  

(from property to property, recall use cases can only 

be involved in binary associations) 

BehavioredClassifier Node, Simple 

Behavior Node, Simple 

Class Node, Simple 

Property Node, Simple 

CATALOGUE OF MEASURES 

Measure: NumAss 

Definition: The number of associations the use case (with name uc) participates in.  

Formalization: 

context UCDiagram::NumAss(uc: String): Integer 

post: 

byCategoryByPropertyFilteringDiagram(‘UseCase’,‘name’,uc)

.oclAsType(UseCase).classifierBehavior.property. 

association->size() 

 

Measure: ExtPts 

Definition: The number of extension points of the use case.   

Formalization: 

context UCDiagram::ExtPts(uc: String): Integer 

post: 

byCategoryByTargetElementCategoryCountIndividual(‘UseCase

’,‘ExtensionPoint’,uc) 

 

Measure: Including 

Definition: The number of use cases which this one includes. 

Formalization: 

context UCDiagram::Including(uc:String): Integer 

post: 

byCategoryByOutgoingEdgeCategoryCountIndividual(‘UseCase’

,‘Include’,uc) 
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Measure: Included 

Definition: The number of use cases which include this one.  

Formalization: 

context UCDiagram::Included(uc:String): Integer 

post: 

byCategoryByIncomingEdgeCategoryCountIndividual(‘UseCase’

,‘Include’,uc) 

 

Measure: Extended 

Definition: The number of use cases which extend this one.   

Formalization: 

context UCDiagram::Extended(uc:String): Integer 

post: 

byCategoryByIncomingEdgeCategoryCountIndividual(‘UseCase’

,‘Extend’,uc) 

 

Measure: Extending 

Definition: The number of use cases which this one extends. 

Formalization: 

context UCDiagram::Extending(uc:String): Integer 

post: 

byCategoryByOutgoingEdgeCategoryCountIndividual(‘UseCase’

,‘Extend’,uc) 

 

Measure: Diags 

Definition: The number of times the use case appears on a diagram.  

Formalization: This measure cannot be represented in the UML metamodel. 

SUMMARY:  

Patterns applied, individual:  

byCategoryByPropertyFilteringDiagram 1 

byCategoryByTargetElementCategoryCountIndividual  1 

byCategoryByOutgoingEdgeCategoryCountIndividual 2 

byCategoryByIncomingEdgeCategoryCountIndividual 2 
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Patterns applied, by category:  

Condition 

Attribute conditional 1 

Structural conditional 5 

Property conditional  

Result 

Absolute 5 

Normalized  

Crossed  

Filtering 1 

Input 

Full diagram 1 

Subdiagram  

Individual 5 

 

Measures complexity:  

Measure 
Patterns 

applied 

Different 

patterns 

applied 

Expressions 

not covered by 

patterns (*) 

Measures 

reused 

NumAss 1 1 4+0+1 0 

ExtPts 1 1 0 0 

Including 1 1 0 0 

Included 1 1 0 0 

Extended 1 1 0 0 

Extending 1 1 0 0 

Diags --- ------ ----- ---- 
 

(*) x+y+z means “x navigations, y operators on collections, z operators not on 

collections”. Navigations include oclAsType (considered as “navigation” in a 

hierarchy). Operators on collections are forAll, exists, iterator, select, and by the like. 

Other operators include not only operators with name (size, asSet, etc.) but also 

arithmetic, boolean and relational operators. 
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Social network measures 

 

SOURCE: Wikipedia, http://en.wikipedia.org/wiki/Social_network. 

SOCIAL NETWORK METASCHEMA 

 

METAMODEL CORRESPONDENCE: 

SocialNetwork Diagram, Compound 

Person Node, Simple 

Interdependency Edge, Simple 
 

CATALOGUE OF MEASURES 

Measure: Betweenness Centrality 

Definition: The extent to which an individual lies between other individuals in the 

network. This measure takes into account the connectivity of the individual's 

neighbors, giving a higher value for individuals which bridge clusters. The measure 

reflects the number of individuals who an individual is connecting indirectly through 

their direct interdependencies. 

(Note: we change “individual” to “person” to avoid confusion with the term 

“individual” used in our framework.) 

Formalization: 

context SocialNetwork::betweennessCentrality(stk: 

String): Integer 

post: byCategoryFilteringIndividual(“Person”)-> 

      iterate(p1; ratio = 0 | 

              byCategoryFilteringInvidual(“Person”)-> 

              forAll(p2 | 

                     r = r + 
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                         if allPathsFilteringPairs(“Person”, 

“Interdependency”, p1, p2) > 0 

      then  

allPathsFilteringPairs(“Person”, “Interdependency”, p1, p2)                            

->filter(stk)->size() / 

  allPathsCountPairs(“Person”, “Interdependency”, p1, p2))) 

                          else 0 endif 

                                    

Explanation: The definition is a bit complicated due to the inability of the 

“iterate” operator to deal with pair of elements. Thus, it becomes necessary to add an 

aditional “forAll” inside each iteration to define the second element of reference to 

compute shortest paths. For each pair of elements, it is necessary to check the case 

that there are not paths among them (division by zero avoided). The “filter” operation 

is part of the vocabulary on paths of our pattern catalogue. 

 

Measure: InDegree Centrality 

Definition: Counts the number of incoming direct connections that a Person with 

name stk has 

Formalization: 

context SocialNetwork::indegreeCentrality(stk: String): 

Integer 

post: 

byCategoryByIncomingEdgeCategoryCountIndividual(“Person”, 

“Interdependency”, stk) 

 

Measure: OutDegree Centrality 

Definition: Counts the number of outgoing direct connections that a Person with 

name stk has 

Formalization: 

Context SocialNetwork::outdegreeCentrality (stk: 

String): Integer 

post: 

byCategoryByOutgoingEdgeCategoryCountIndividual(“Person”, 

“Interdependency”, stk) 

 

Measure: Degree Centrality 

Definition: Counts the number of direct connections that a Person with name stk 

has (both incoming and outgoing) 
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Formalization: 

context SocialNetwork::degreeCentrality(stk: String): 

Integer 

post: indegreeCentrality(stk) + outdegreeCentrality(stk) 

 

Measure: Closeness Centrality 

Definition: Computes the inverse of the average of the distance from one Person 

with name stk to all other reachable Individuals in the network 

Formalization: 

context SocialNetwork::closenessCentrality(stk: 

String): Integer 

post:  byCategoryCountModel(“Person”)-1 / 

       allPathsMaxIndividual(“Person”, 

“Interdependency”, stk) 

SUMMARY:  

Patterns applied, invididual:  

byCategoryFilteringIndividual 2 

allPairsFilteringPairs 2 

allPairsCountPairs 1 

byCategoryByIncomingEdgeCategoryCountIndividual 2 

byCategoryCountModel 1 

allPathsMaxIndividual 1 

Patterns applied, by category:  

Condition 

Attribute conditional 7 

Structural conditional 2 

Property conditional  

Result 

Absolute 5 

Normalized  

Crossed  

Filtering 4 

Input 

Full diagram 1 

Subdiagram 3 

Individual 5 
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Measures complexity:  

Measure 
Patterns 

applied 

Different 

patterns 

applied 

Expressions 

not covered 

by patterns 

(*) 

Measures 

reused 

betweenessCentrality 5 3 0+2+5 0 

indegreeCentrality 2 1 0 0 

outdegreeCentrality 2 1 0 0 

degreeCentrality 2 1 0+0+1 2 

closenessCentrality 2 2 0+0+2 0 
 

(*) x+y+z means “x navigations, y operators on collections, z operators not on 

collections”. Navigations include oclAsType (considered as “navigation” in a 

hierarchy). Operators on collections are forAll, exists, iterator, select, and by the like. 

Other operators include not only operators with name (size, asSet, etc.) but also 

arithmetic, boolean and relational operators. 
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BPM measures 
 

SOURCE: Balasubramanian, S., Gupta, M.: “Structural Metrics for Goal Based 

Business Process Design and Evaluation”. Business Process Management Journal, 

11(6), 2005. 

FRAGMENT OF THE BPM METASCHEMA 

 

METAMODEL CORRESPONDENCE: 

BPM diagram Diagram 

WorkflowViewDiagram Node, Diagram 

Workflow Node, Compound 

WorkflowElement, Activity, Fork/Merge, 

Fork, Merge, BusinessParticipant 

Node, Simple 

beforeF, afterF, beforeM, afterM, Precedes Edge, Simple 

automationDegree, discretional, nature Property 
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CATALOGUE OF MEASURES 

Measure: AAF 

 

Definition: Proportion of total activities in a process that require system support.  

Formalization: 

context WorkflowViewDiagram::AAF(): Real 

post: result =  

byCategoryByPropertyNormalizedDiagram(‘Activity’,‘autom

ationDegree’,‘automated’)  

  +  

byCategoryByPropertyNormalizedDiagram(‘Activity’,‘autom

ationDegree’,‘interactive’) 

 

Measure: APF 

 

Definition: Longest path of activities that must be executed sequentially divided 

by the total number of activities.  

Formalization: 

context WorkflowViewDiagram::APF(): Real 

post: byCategoryCountDiagram(‘Activity’) = 0 implies 

result = 0 

post: byCategoryCountDiagram(‘Activity’) > 0 implies 

      result = allPathsMaxDiagram(‘Activity’,  

‘Precedence’) / byCategoryCountDiagram(‘Activity’) 

 

Measure: TDRF 

 

Definition: Proportion of transitions of flow between business participants from 

system activities to human activities.   

Formalization: 

context WorkflowViewDiagram::TDRF(): Real 

post:  

result= byCategoryAndPropertyByTargetElementCategoryAnd 

PropertyFilteringDiagram(‘Activity’,‘nature’,‘system’, 

 ‘Activity’,‘nature’,‘human’)-> 

 select(e | e.wkf.owner <> e.to.wfk.owner)->size() 

               / Activity.allInstances()->select(e |  

e.wkf.owner <> e.to.wfk.owner)->size() 
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Measure: PDF 

Definition: Proportion of activities performed by human participants that are 

executed using human discretion or judgement.  

Formalization: 

context WorkflowViewDiagram::PDF(): Real 

post:  

result =  

byCategoryByPropertyNormalizedDiagram(‘Activity’, 

‘discretional’,‘true’)  

 

Measure: BAF 

 

Definition: Proportion of decision activities in a process that do not require human 

intervention.  

Formalization: 

context WorkflowViewDiagram::BAF(): Real 

post: 

byCategoryByTargetElementCategoryCountDiagram(‘Activity’, 

‘Fork’) = 0 implies       

result = 0 

post: 

byCategoryByTargetElementCategoryCountDiagram(‘Activity’, 

‘Fork’) > 0 implies 

result= 

byCategoryByTargetElementCategoryFilteringDiagram(‘Activi

ty’, ‘Fork’)->intersection( 

byCategoryByPropertyFilteringDiagram(‘Activity’,‘automati

onDegree’,‘automated’))->size() 

         / 

byCategoryByTargetElementCategoryCountDiagram(‘Activity’, 

‘Fork’) 

 

SUMMARY:  

Patterns applied, individual:  

byCategoryByPropertyNormalizedDiagram 3 

byCategoryCountDiagram 3 

allPathsDiagram 1 

byCategoryAndPropertyByTargetElementCategoryAndPropertyFilteringDiagram 1 

byCategoryByTargetElementCategoryCountDiagram 3 

byCategoryByTargetElementCategoryFilteringDiagram 1 

byCategoryByPropertyFilteringDiagram 1 
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Patterns applied, by category:  

Condition 

Attribute conditional 6 

Structural conditional 5 

Property conditional 2 

Result 

Absolute 8 

Normalized 2 

Crossed  

Filtering 3 

Input 

Full diagram 13 

Subdiagram  

Individual  

 

Measures complexity:  

Measure 
Patterns 

applied 

Different 

patterns 

applied 

Expressions 

not covered by 

patterns (*) 

Measures 

reused 

AAF 2 1 0+0+1 0 

APF 4 2 0+0+5 0 

TDRF 1 1 10+3+5 0 

PDF 1 1 0 0 

BAF 5 3 0+1+4 0 
 

(*) x+y+z means “x navigations, y operators on collections, z operators not on 

collections”. Navigations include oclAsType (considered as “navigation” in a 

hierarchy). Operators on collections are forAll, exists, iterator, select, and by the like. 

Other operators include not only operators with name (size, asSet, etc.) but also 

arithmetic, boolean and relational operators. 
 

 


