
JOURNAL OF COMPUTING, VOLUME 3, ISSUE 4, APRIL 2011, ISSN 2151-9617

HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

WWW.JOURNALOFCOMPUTING.ORG 130

Strategies of Domain Decomposition to
Partition Mesh-Based Applications onto

Computational Grids
Beatriz Otero and Marisa Gil

Abstract— In this paper, we evaluate strategies of domain decomposition in Grid environment to solve mesh-based
applications. We compare the balanced distribution strategy with unbalanced distribution strategies. While the former is a
common strategy in homogenous computing environment (e.g. parallel computers), it presents some problems due to
communication latency in Grid environments. Unbalanced decomposition strategies consist of assigning less workload to
processors responsible for sending updates outside the host. The results obtained in Grid environments show that unbalanced
distributions strategies improve the expected execution time of mesh-based applications by up to 53%. However, this is not true
when the number of processors devoted to communication exceeds the number of processors devoted to calculation in the
host. To solve this problem we propose a new unbalanced distribution strategy that improves the expected execution time up to
43%. We analyze the influence of the communication patterns on execution times using the Dimemas simulator.

Index Terms— Domain decomposition methods, load balancing algorithms, parallelism and concurrency, simulation.

——————————  ——————————

1 INTRODUCTION

OMAIN decomposition strategy is used for efficient
parallel execution of mesh-based applications. These
applications are widely used in various disciplines such

as engineering, structural mechanics and fluid dynamics and
require high computational capabilities [1]. Computational
Grids are emerging as a new infrastructure for high perfor-
mance computing. Clusters of workstations of multiple insti-
tutions can be used to efficiently solve PDEs in parallel
where the problem size and number of processors are chosen
to maintain sufficient coarse-grained parallelism. A worksta-
tion can be a computer or a group of computers and hereaf-
ter we will refer to both as host.

Our focus is simulations that make finite element analysis
to solve the problems that arise from the discretization of
PDEs on meshes. The general algorithmic structure of the
explicit simulations is composed of two nested loops. The
first, the outer loop, performs the discretization of PDE with
reference to the simulation time. The second, the inner loop,
applies this discretization onto all finite elements of the
mesh. This inner loop performs a matrix-vector product.
This numerical operation represents between 80% and 90%
of the total iteration time, so an efficient parallelization of
this calculation might significantly improve the total simula-
tion time. To this end, we use domain decomposition tech-
niques, where matrix and vector are decomposed properly in
sub-domains of data that are mapped in one processor. Each
sub-domain has interrelations with each of the others in the
boundary elements.

In order to obtain optimal performance of mesh-based
applications in Grid environments a suitable partitioning
method should take into consideration several features, such
as the characteristics of the processors, the quantity of traffic
in the network, the latency and the bandwidth between pro-
cessors both inside the host and between hosts. Most parti-
tioners do not have this capacity; therefore they do not pro-
duce good results when the network and processors in the
Grid have a heterogeneous nature.

In this paper, we evaluate mesh-based applications in
Grid environments using a domain decomposition technique.
The main objective of this study is to improve the execution
time of mesh-based applications in Grid environments by
overlapping remote communications and useful computa-
tion. To achieve this, we propose new strategies of domain
decomposition for partitioning mesh-based applications in
computational Grids where the workload can vary depend-
ing on the characteristics of the processor and of the net-
work. The successful deployment of parallel mesh-based
applications in a grid environment must involve efficient
mesh partitioning. We use the Dimemas tool to simulate the
behavior of the distributed applications in Grid environ-
ments [2].

This work is organized as follows. Section 2 briefly dis-
cusses the work related with this study. Section 3 de-
scribes the applications and the algorithmic structure of
explicit simulations. Section 4 defines the Grid topologies
considered and describes the tool used to simulate the
Grid environment. Section 5 deals with the mesh-based
applications studied and the workload assignment pat-
terns. Section 6 shows the results obtained in the envi-
ronments specified for the three different data distribu-
tion patterns. Section 7 presents the new unbalanced dis-
tribution that solves the problems of the unbalanced dis-
tribution proposed before. Finally, the conclusions of the

————————————————
 B. Otero is with the Department d’Arquitectura de Computadors, Univer-

sitat Politècnica de Catalunya, 08034, Spain.
 M. Gil is with the Department d’Arquitectura de Computadors, Universi-

tat Politècnica de Catalunya, 08034, Spain.

D

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 4, APRIL 2011, ISSN 2151-9617

HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

WWW.JOURNALOFCOMPUTING.ORG 131

work are presented in Section 8.

2 RELATED WORK
We can distinguish between two distinct types of related
work, one based on the partitioner method and other
based on the load balancing. As mentioned above, the
success of parallel mesh-based applications in Grid envi-
ronments depends on efficient mesh partitioning. Several
works have already proposed partitioners for computa-
tional Grids. PART, JOSTLE, SCOTCH, MinEX, PaGrid
and METIS are some examples of these.

PART [3] uses intensive algorithms and simulation an-
nealing, so requires a parallel implementation to obtain good
performance. JOSTLE [4] produces data partitions without
taking into account the communication cost for each proces-
sor. SCOTCH [5] has the same limitation of JOSTLE be-
cause it generates partitions for homogeneous interprocessor
communication cost. MinEX [6] makes partitions without
taking into account the application granularity. PaGrid [7]
uses some techniques already applied by other partitioners
but adds a stage for load balancing the execution time. PaGr-
id produces comparable partitions to JOSTLE and attempts
some improvement by minimizing the estimated execution
time. Finally, METIS [8] is based on a multilevel recursive
bisection algorithm.

All of these approaches consider estimated execution
time rather than communication cost to measure the perfor-
mance of a mesh partitioner. However, minimizing the
communication between hosts is fundamental in computa-
tional Grids to reduce the execution time.

As regards workload, there are some works dealing
with the relationship between architecture and domain
decomposition algorithms [9]. There are several studies
on latency, bandwidth and optimum workload to take
full advantage of the available resources [10, 11]. There
are also analyses of the behavior of MPI applications in
Grid environments [12, 13]. In all of these cases, the same
workload for all the processors is considered.

Li et al. [14] provide a survey of the existing solutions
in load balancing as well as new efforts to deal with it in
the face of the new challenges in Grid computing. In this
work they describe and classify different schemes of load
balancing for grid computing, but there is no solution
which would be fully adaptive to the characteristics of the
Grid.

In previous works we suggested two unbalanced dis-
tribution strategies, called singleB-domain and multipleB-
domain, to execute mesh-based applications in Grid envi-
ronments [15, 16, 17, 18]. All of these use unbalanced data
distribution and they take into account the execution plat-
form and the processor characteristics. Both strategies
minimize the communication between the processors and
reduce the expected execution time by up to 53% when
compared with a balanced distribution strategy. In this
paper we present the details of the two unbalanced dis-
tributions proposed above. We describe the characteris-
tics of the applications executed and the schemes to expli-
cit simulations, and we propose a new unbalanced distri-
bution, called multipleCB-domain distribution, which com-

bines the two previous unbalanced distributions and al-
lows a more efficient processor utilization.

3 APPLICATIONS AND SIMULATIONS
In this section we describe the mesh-based applications
features and the general algorithmic structure of the
simulation schemes.

3.1 Mesh-based Applications
Finite element methods have been fundamental techniques
in the solution of problems in engineering modeled by
PDEs. These methods include three basic steps:

1. Step 1: The physical problem is written in varia-
tional form (also called weighted residual form).

2. Step 2: The problem’s domain is discretized by
complex shapes called elements. This is called
meshing.

3. Step 3: The variational form is discretized using
quadrature rules leading to a system of equations.
The solution of this system represents a discrete
approximation of the solution of the original con-
tinuum problem.

Applications that involve a meshing procedure are re-
ferred to as mesh-based applications (step 2). Mesh-based
applications are naturally suited for parallel or distri-
buted systems because these applications require large
amounts of processing time. Furthermore, mesh-based
applications can be partitioned to execute concurrently on
heterogeneous computers in a Grid. Implementing the
finite element method in parallel involves partitioning the
nodes global domain into nprocs processors. Our example
applications use explicit finite element analysis for prob-
lems involving sheet stamping and car crashes [19]. We
describe each of these below.
Sheet stamping problems. Performance prediction of
sheet stamping dies during the die-design process. As
well as market pressure for faster delivery of dies and
cost reduction, large car manufacturers increasingly tend
to offload design responsibility onto their suppliers. Typi-
cally, dies are designed by highly experienced people
who know what sort of die is needed to produce a part of
a given shape. On the basis of the design, fine-tuning is
performed by actually using dies to produce parts, ob-
serving the result and manually milling the die until the
sheet comes out as specified by the contractor. In complex
cases, it is very difficult to produce a good die design by
intuition. In addition to the associated costs, failure to
meet a delivery date damages a company’s image and has
a negative impact on future business.

Numerical simulations could provide the quantitative
information needed to minimize modifications during the
manufacturing process [19]. Simulations with serial codes
take as long as 40 to 60 processor hours and usually re-
quire high end workstations. Parallel stamping simula-
tions enable die manufacturing companies to alter their
die design procedures: instead of an iterative approach,
they can run more analyses before the first die prototypes
are made. This reduces overall die design and manufac-
turing time, which is vital for the industry.

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 4, APRIL 2011, ISSN 2151-9617

HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

WWW.JOURNALOFCOMPUTING.ORG 132

This problem has high computational requirements.
The size of the problem is very large because of the high
complexity of the design model. In this case, Grid compu-
ting is necessary because a complex model is required to
solve the problem and currently supplier companies do
not have enough computational power available to per-
form such simulations. They are forced to use the services
of remote computers that belong to other companies.
Car crash problems. The car body design and the passen-
ger’s safety must be considered. Before performing a real
crash test, hundreds of crash worthiness simulations are
computed and analyzed [20]. Car crash simulations are
required to predict the effects on new advanced materials
of various collisions, such as two cars colliding. As in the
above case the car crash problem has high computational
requirements and the platform Grid is a good option to
realize the simulations at less cost.

3.2 Simulations of Mesh-based Applications
When doing structural analysis of mesh-based applica-
tions such as car crash and sheet stamping we use the
displacement equation [21]. This equation determines the
numerical solution for our applications. The discretiza-
tion of the displacement equation using the finite element
method has the following mathematical equation:

[M]{ů}+[K]{u} = {Fa} (1)

where:

[M] is the mass matrix
[K] is the tensor matrix
{ů} is the acceleration vector
{u} is the displacement vector and
{Fa} is the force vector.

To obtain the numerical solution of (1), we use the

central difference method and numerical integration in
time, and so obtain the follow equation:

{un+1} = [A]{un} (2)

Equation (2) defines the explicit method to determine
the numerical solution of our applications. Details of the
characteristics of matrix [A] and the {un} vector can be
seen in [21].

3.3 Explicit Simulations
In the previous subsection, we described the general algo-
rithmic structure to determine the numerical solution for
our simulations. The simulations have two different
schemes, called with or without matrix assembling, de-
pending on whether or not the matrix inside the inner
loops is gathering.

The scheme without matrix assembling uses a calcula-
tion algorithm element by element, thus it is not neces-
sary to gather a global equation system. The algorithm
structure of this scheme is the following:

As we can see in the above algorithm, the scheme
without matrix assembling makes one matrix-vector
product operation per element, using a part of the global

vector associate to that element ({un
e}). The result obtained

({un+1
e}) is scattering to global vector ({un+1}). After this, the

residual vector is calculated and the boundary conditions
are updated if necessary. This scheme has the advantage
that the global matrix [A] does not need to be formed in
the inner loop. This leads to considerable savings in
memory and allows to solve large problems in relatively
small memory PC’s.

In contrast, the second scheme needs an initial gather-
ing of the global matrix. After this, a matrix-vector prod-
uct operation is needed as in the first scheme. The algo-
rithm for this scheme is the following:

Our work follows the without matrix assembling
scheme to produce the explicit simulations as this saves
both memory and time.

4 DIMEMAS AND GRID ENVIRONMENT
We use a performance simulator called Dimemas. Dime-
mas is a tool developed by CEPBA1 for simulating paral-
lel environments [2, 12, 13]. This tool is fed with a trace
file and a configuration file. In order to obtain the trace
file, the parallel application is executed using an instru-
mented version of MPI [22]. It is important to note that
this execution can be done on any kind of computer. The
configuration file contains details of the simulated archi-
tecture, such as number of the nodes, latency and band-
width between nodes. Dimemas generates an output file
that contains the execution times of the simulated applica-
tion for the parameters specified in the configuration file.
Furthermore, it is possible to obtain a graphical represen-
tation of the parallel execution. Figure 1 shows the se-
quence of steps to obtain the output file.

The Dimemas simulator considers a simple model for
point to point communications. This model breaks down the
communication time into five components:

1. Latency time is a fixed time to start the communi-
cation.

1 European Center for Parallelism of Barcelona

for (all step time of simulation)

 for (all finite elements)

 Gather [Ae]: [A] = [A] + [Ae]

 Solve system: {un+1} = [A] {un}

 Calculate residual vector

 Update boundary conditions

 Calculate next step of time

for (all step time of simulation)

 for (all finite elements)

 Obtain global vector associate to finite element ({un
e})

 Solve system: {un+1
e} = [Ae] {un

e}

 Scatter {un+1
e} to global vector ({un+1})

Calculate residual vector

Update boundary conditions

Calculate next step of time

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 4, APRIL 2011, ISSN 2151-9617

HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

WWW.JOURNALOFCOMPUTING.ORG 133

2. Resource contention time is dependent on the glob-
al load in the local host [23].

3. The transfer time is dependent on the message size.
We model this time with a bandwidth parameter.

4. The WAN contention time is dependent on the
global traffic in the WAN [24].

5. The flight time is the time spent in the transmission
of the message, during which no CPU time is used
[23]. It depends on the distance between hosts. We
consider hosts distributed at equal distances, since
our environment is homogeneous.

We consider an ideal environment one where resource

contention time is negligible: there are an infinite number
of buses for the interconnection network and as many
links as the number of different remote communications
the host has with others hosts. For the WAN contention
time, we use a linear model to estimate the traffic in the
external network. We have considered the traffic function
with 1% influence from internal traffic and 99% influence
from external traffic. Thus, we model the communications
with just three parameters: latency, bandwidth and flight
time. These parameters are set according to what is com-
monly found in present networks. We have studied dif-
ferent works to determine these parameters [24, 25]. Table
1 shows the values of these parameters for the internal
and external host communications. The internal column
defines the latency and bandwidth between processors
inside a host. The external column defines the latency and
bandwidth values between hosts. The communications
inside a host are fast (latency 25 µs, bandwidth 100
Mbps), and the communications between hosts are slow

(latency of 10 ms and 100 ms, bandwidth of 64 Kbps, 300
Kbps and 2 Mbps, flight time of 1ms and 100 ms).

We model a Grid environment using a set of hosts.
Each host is a network of Symmetric Multiprocessors
(SMP). The Grid environment is formed by a set of con-
nected hosts. Each host has a direct full-duplex connec-
tion with any other host. We do this because we think
that some of the most interesting Grids for the scientist
involve nodes that are themselves high-performance pa-
rallel machines or clusters. We consider different topolo-
gies in this study: two, four and eight hosts.

5 DATA DISTRIBUTION
This work is based on the use of distributed applications that
solve sparse linear systems using iterative methods. These
systems arise from the discretization of partial differential
equations, especially when explicit methods are used. These
algorithms are parallelized using domain decomposition for
the data distribution. Each particular domain has a parallel
process associated to it.

A matrix-vector product operation is carried out in each
iteration of the iterative method. The matrix-vector product
is performed using a domain decomposition algorithm, as a
set of independent computations and a final set of communi-
cations. The communications in this context are associated
to the domain boundaries. Each process exchanges the
boundary values with all its neighbors so that, each process
has as many communication exchanges as neighbor domains
[26, 27]. For each communication exchange, the size of the
message is the length of the boundary between the two do-
mains involved. We use METIS to perform the domain de-
composition for the initial mesh [28, 29, 30].
Balanced distribution pattern. This is the usual strategy
for domain decomposition algorithms. It generates as
many domains as processors in the Grid. The computa-
tional load is perfectly balanced between domains. This
balanced strategy is suitable in homogeneous parallel
computing, where all communications have the same
cost. Figure 2 shows an example of a finite element mesh
with 256 degrees of freedom (dofs) with the boundary
nodes for each balanced partition. We consider a Grid
with 4 hosts and 8 processors per host. We solve an initial
decomposition in four balanced domains. Figure 3 shows
the balanced domain decomposition.

Application

Code
ApplicationApplication

CodeCode

machine

MPIMPI

VisualizationVisualization
TraceTrace
FileFile

DimemasDimemas
TraceTrace
FileFile

DimemasDimemas
simulationsimulation

Application

Code
Application

Code

Sequential machine

MPI
Library

VisualizationVisualization
TraceTrace
FileFile

Visualization
Trace File

DimemasDimemas
TraceTrace
FileFile

Dimemas
Trace File

Dimemas simulation

Visualization tool:
PARAVER

Grid Environments:
Configuration files

Application

Code
ApplicationApplication

CodeCode

machine

MPIMPI

VisualizationVisualization
TraceTrace
FileFile

VisualizationVisualization
TraceTrace
FileFile

DimemasDimemas
TraceTrace
FileFile

DimemasDimemas
TraceTrace
FileFile

DimemasDimemas
simulationsimulation

Application

Code
Application

Code

Sequential machine

MPI
Library

VisualizationVisualization
TraceTrace
FileFile

Visualization
Trace File

DimemasDimemas
TraceTrace
FileFile

Dimemas
Trace File

Dimemas simulation

Visualization tool:
PARAVER

Grid Environments:
Configuration files

Fig. 1. The Dimemas tool.

0

16

1

17

2

18

4

20

5

21

6

22

7

23

3

19

8

24

9

25

10

26

12

28

13

29

14

30

15

31

11

27

32 33

49

34

50

36

52

37

53

38

54

39

55

35

51

40

56

41

57

42

58

44

60

45

61

46

62

47

63

43

5948

64

80

65

81

66

82

68

84

69

85

70

86

71

87

67

83

72

88

73

89

74

90

76

92

77

93

78

94

79

95

75

91

96 97

113

98

114

100

116

101

117

102

118

103

119

99

115

104

120

105

121

106

122

108

124

109

125

110

126

111

127

107

123112

129 130 132 133 134 135131 136 137 138 140 141 142 143139128

145 146 148 149 150 151147 152 153 154 156 157 158 159155144

161 162 164 165 166 167163 168 169 170 172 173 174 175171160

177 178 180 181 182 183179 184 185 186 188 189 190 191187176

193 194 196 197 198 199195 200 201 202 204 205 206 207203192

209 210 212 213 214 215211 216 217 218 220 221 222 223219208

225 226 228 229 230 231227 232 233 234 236 237 238 239235224

241 242 244 245 246 247243 248 249 250 252 253 254 255251240

0

16

1

17

2

18

4

20

5

21

6

22

7

23

3

19

8

24

9

25

10

26

12

28

13

29

14

30

15

31

11

27

32 33

49

34

50

36

52

37

53

38

54

39

55

35

51

40

56

41

57

42

58

44

60

45

61

46

62

47

63

43

5948

64

80

65

81

66

82

68

84

69

85

70

86

71

87

67

83

72

88

73

89

74

90

76

92

77

93

78

94

79

95

75

91

96 97

113

98

114

100

116

101

117

102

118

103

119

99

115

104

120

105

121

106

122

108

124

109

125

110

126

111

127

107

123112

129 130 132 133 134 135131 136 137 138 140 141 142 143139128

145 146 148 149 150 151147 152 153 154 156 157 158 159155144

161 162 164 165 166 167163 168 169 170 172 173 174 175171160

177 178 180 181 182 183179 184 185 186 188 189 190 191187176

193 194 196 197 198 199195 200 201 202 204 205 206 207203192

209 210 212 213 214 215211 216 217 218 220 221 222 223219208

225 226 228 229 230 231227 232 233 234 236 237 238 239235224

241 242 244 245 246 247243 248 249 250 252 253 254 255251240

 Fig. 2. Boundary nodes per host

TABLE 1
LATENCY, BANDWIDTH AND FLIGHT TIME VALUES

Parameters Internal External

Latency 25 µs 10 ms and 100 ms

Bandwidth 100 Mbps 64 Kbps, 300 Kbps and 2Mbps

Flight time - 1 ms and 100 ms

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 4, APRIL 2011, ISSN 2151-9617

HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

WWW.JOURNALOFCOMPUTING.ORG 134

Unbalanced distribution pattern. Our proposal is to
build some domains with a negligible computational
load. Those domains are devoted only to manage the
slow communications. In order to do this, we divide the
domain decomposition in two phases. First, balanced
domain decomposition is done between the number of
hosts. This guarantees that the computational load is ba-
lanced between hosts. Second, unbalanced domain de-
composition is done inside a host. This second decompo-
sition involves splitting the boundary nodes of the host
sub-graph. We create as many special domains as remote
communications. Note that these domains contain only
boundary nodes, so they have negligible computational
load. We call these special domains B-domains (Boundary
domains). The remainder host sub-graph is decomposed
in nproc-b domains, where nproc is the number of proces-
sors in the host and b stands for the number of B-domains.
We call these domains C-domains (Computational do-
mains). As a first approximation we assign one CPU to
each domain. The CPUs assigned to B-domains remain
inactive most of the time. We use this policy to obtain the
worst case for our decomposition algorithm. This ineffi-
ciency could be solved assigning all the B-domains in a
host to the same CPU. We consider two unbalanced de-
composition of the mesh shows in figure 2. First, we
create a sub-domain with the layer of boundary nodes for
each initial domain (singleB-domain), which contains seven
computational domains (Fig. 4). Second, we create some
domains (multipleB-domain) for each initial partition using
the layer of boundary nodes. Then, the remainder mesh is
decomposed in five computational domains (Fig. 5).

We must remark that the communication pattern of the

balanced and the unbalanced domain decomposition may
be different, since the number of neighbors of each do-
main may also be different. Figure 6 illustrates the com-
munication pattern of the balanced/unbalanced distribu-
tions for this example. The arrows in the diagram
represent processors interchanging data. The beginning of
the arrow identifies the sender. The end of the arrow
identifies the receiver. Short arrows represent local com-
munications inside a host, whereas long arrows represent
remote communications between hosts. In Fig. 6.a, all the
processors are busy and the remote communications are
done at the end of each iteration. The bars in the diagram
represent the computational time to each processor. In
Figs. 6.b and 6.c, the remote communication takes place
overlapped with the computation. In figure 6.b, the re-
mote communication is overlapped only with the first
remote computation. In figure 6.c, all remote communica-
tions in the same host are overlapped.

0

16

1

17

2

18

4

20

5

21

6

22

7

23

3 8

24

9

25

10

26

12

28

13

29

14

30

15

31

11

27

32 33

49

34

50

36

52

37 38

54

39

55

35

51

40

56

41

57

42

58

44

60

45

61

46

62

47

63

43

5948

64

80

65

81

66

82

68

84

69

85

70

86

67

83

72

88

73

89

74

90

76

92

77

93

78

94

79

9591

96 97

113

98

114

100

116

101

117

102

118

10399

115

104

120

105 106

122

108

124

109

125

110

126

111

127

107

123112

129 130 132 133 134 135131 137 138 140 141 142 143139128

145 146 148 149 150 151 152 153 154 156 157 158 159155144

161 162 164 165 166 167 168 169 172 173 174 175171160

177 178 180 181 182 183179 184 185 188 189 190 191187176

193 194 196 197 198 199195 200 201 202 204 205 206 207203192

209 210 212 213 214 215211 216 217 218 220 222 223219208

225 226 228 229 230 231227 232 233 234 236 237 238 239235224

241 242 244 245 246 247243 249 250 252 253 254 255251240

D5

D16 D17

187

187

187

D28

D26D24 D25

D27

D4D2 D3

D0 D1

D6D7

D8 D9

D10

D11

D12

D13

D14
D15

D18 D19 D20

D21 D22

D23

D29D30

D31

0

16

1

17

2

18

4

20

5

21

6

22

7

23

3 8

24

9

25

10

26

12

28

13

29

14

30

15

31

11

27

32 33

49

34

50

36

52

37 38

54

39

55

35

51

40

56

41

57

42

58

44

60

45

61

46

62

47

63

43

5948

64

80

65

81

66

82

68

84

69

85

70

86

67

83

72

88

73

89

74

90

76

92

77

93

78

94

79

9591

96 97

113

98

114

100

116

101

117

102

118

10399

115

104

120

105 106

122

108

124

109

125

110

126

111

127

107

123112

129 130 132 133 134 135131 137 138 140 141 142 143139128

145 146 148 149 150 151 152 153 154 156 157 158 159155144

161 162 164 165 166 167 168 169 172 173 174 175171160

177 178 180 181 182 183179 184 185 188 189 190 191187176

193 194 196 197 198 199195 200 201 202 204 205 206 207203192

209 210 212 213 214 215211 216 217 218 220 222 223219208

225 226 228 229 230 231227 232 233 234 236 237 238 239235224

241 242 244 245 246 247243 249 250 252 253 254 255251240

D5

D16 D17

187

187

187

D28

D26D24 D25

D27

D4D2 D3

D0 D1

D6D7

D8 D9

D10

D11

D12

D13

D14
D15

D18 D19 D20

D21 D22

D23

D29D30

D31

Fig. 5.MultipleB-domain distribution.

D0 D1 D2 D3

D4 D5 D6 D7

D8 D9 D10 D11

D12 D13 D14 D15

D16 D17 D18 D19

D21 D23

D24 D25 D26 D27

D28 D29 D30 D31D20 D22

D0 D1 D2 D3

D4 D5 D6 D7

D8 D9 D10 D11

D12 D13 D14 D15

D16 D17 D18 D19

D21 D23

D24 D25 D26 D27

D28 D29 D30 D31D20 D22

 Fig. 3. Balanced distribution.

CPU 0

CPU 1

CPU 2

CPU 4

CPU 3

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

CPU 10

CPU 12

CPU 11

CPU 13

CPU 14

CPU 15

CPU 17

CPU 18

CPU 20

CPU 19

CPU 21

CPU 22

CPU 23

CPU 16

CPU 25

CPU 26

CPU 28

CPU 27

CPU 29

CPU 30

CPU 31

CPU 24

CPU 0

CPU 1

CPU 2

CPU 4

CPU 3

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

CPU 10

CPU 12

CPU 11

CPU 13

CPU 14

CPU 15

CPU 17

CPU 18

CPU 20

CPU 19

CPU 21

CPU 22

CPU 23

CPU 16

CPU 25

CPU 26

CPU 28

CPU 27

CPU 29

CPU 30

CPU 31

CPU 24

Fig. 6.a. Communication diagram for a computational iterations
of the balanced distribution.

CPU 0

CPU 1

CPU 2

CPU 4

CPU 3

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

CPU 10

CPU 12

CPU 11

CPU 13

CPU 14

CPU 15

CPU 17

CPU 18

CPU 20

CPU 19

CPU 21

CPU 22

CPU 23

CPU 16

CPU 25

CPU 26

CPU 28

CPU 27

CPU 29

CPU 30

CPU 31

CPU 24

CPU 0

CPU 1

CPU 2

CPU 4

CPU 3

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

CPU 10

CPU 12

CPU 11

CPU 13

CPU 14

CPU 15

CPU 17

CPU 18

CPU 20

CPU 19

CPU 21

CPU 22

CPU 23

CPU 16

CPU 25

CPU 26

CPU 28

CPU 27

CPU 29

CPU 30

CPU 31

CPU 24

Fig. 6.b.Communication diagram for a computational iteration
of the SingleB-domain distribution.

0

16

1

17

2

18

4

20

5

21

6

22

7

23

3 8

24

9

25

10

26

12

28

13

29

14

30

15

31

11

27

32 33

49

34

50

36

52

37 38

54

39

55

35

51

40

56

41

57

42

58

44

60

45

61

46

62

47

63

43

5948

64

80

65

81

66

82

68

84

69

85

70

86

67

83

72

88

73

89

74

90

76 77 78 79

96 97

113

98

114

100

116

101

117

102

118

10399

115

104 105 106

122 124 126123112

129 130 132 133 134131 137 138 140 141 142 143139128

145 146 148 151 152 153 154 156 157 158 159155144

161 162 164 167 168 169 172 173 174 175171160

177 178 180 183179 184 185 188 189 190 191187176

193 199 200 201 202 204 205 206 207203192

209 215 216 217 218 220 222 223219208

225 229 230 231227 232 233 234 236 237 238 239235224

241 242 244 245 246 247243 249 250 252 253 254 255251240

D7

D16 D17

187

187

187

D30

D26

D24 D25

D28

D6D3

D5

D0 D2

D7

D9 D10

D11

D14

D13

D15

D15

D19

D21
D22

D23 D31

D4

D1

D12

D8

D18

D20

D23

D29

D27

D31

0

16

1

17

2

18

4

20

5

21

6

22

7

23

3 8

24

9

25

10

26

12

28

13

29

14

30

15

31

11

27

32 33

49

34

50

36

52

37 38

54

39

55

35

51

40

56

41

57

42

58

44

60

45

61

46

62

47

63

43

5948

64

80

65

81

66

82

68

84

69

85

70

86

67

83

72

88

73

89

74

90

76 77 78 79

96 97

113

98

114

100

116

101

117

102

118

10399

115

104 105 106

122 124 126123112

129 130 132 133 134131 137 138 140 141 142 143139128

145 146 148 151 152 153 154 156 157 158 159155144

161 162 164 167 168 169 172 173 174 175171160

177 178 180 183179 184 185 188 189 190 191187176

193 199 200 201 202 204 205 206 207203192

209 215 216 217 218 220 222 223219208

225 229 230 231227 232 233 234 236 237 238 239235224

241 242 244 245 246 247243 249 250 252 253 254 255251240

D7

D16 D17

187

187

187

D30

D26

D24 D25

D28

D6D3

D5

D0 D2

D7

D9 D10

D11

D14

D13

D15

D15

D19

D21
D22

D23 D31

D4

D1

D12

D8

D18

D20

D23

D29

D27

D31

Fig. 4.SingleB-domain distribution.

CPU 0

CPU 1

CPU 2

CPU 4

CPU 3

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

CPU 10

CPU 12

CPU 11

CPU 13

CPU 14

CPU 15

CPU 17

CPU 18

CPU 20

CPU 19

CPU 21

CPU 22

CPU 23

CPU 16

CPU 25

CPU 26

CPU 28

CPU 27

CPU 29

CPU 30

CPU 31

CPU 24

CPU 0

CPU 1

CPU 2

CPU 4

CPU 3

CPU 5

CPU 6

CPU 7

CPU 8

CPU 9

CPU 10

CPU 12

CPU 11

CPU 13

CPU 14

CPU 15

CPU 17

CPU 18

CPU 20

CPU 19

CPU 21

CPU 22

CPU 23

CPU 16

CPU 25

CPU 26

CPU 28

CPU 27

CPU 29

CPU 30

CPU 31

CPU 24

Fig. 6.c.Communication diagram for a computational iteration
of the MultipleB-domain distribution.

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 4, APRIL 2011, ISSN 2151-9617

HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

WWW.JOURNALOFCOMPUTING.ORG 135

6 RESULTS
In this section we show the results obtained using Dimemas.
We simulate a 128 processors machine using the following
Grid environment. The number of hosts is 2, 4 or 8; the
number of CPUs/host is 4, 8, 16, 32 or 64; thus, we have
from 8 to 128 total CPUs. The simulations were done consi-
dering lineal network traffic models. We consider three sig-
nificant parameters to analyze the execution time behavior:
the communication latency between hosts, the bandwidth in
the external network and the flight time.

As data set, we consider a finite element mesh with
1,000,000 dofs. This size is usual for car crash or sheet
stamping models. We consider two kinds of meshes,
which define most of the typical cases. The first one,
called stick mesh, can be completely decomposed in
strips, so there are, at most, two neighbors per domain.
The second one, called box mesh, cannot be decomposed
in strips, so the number of neighbors per domain could be
greater than two. The size of the stick mesh is 104x10x10
nodes. The size of the box mesh is 102x102x102 nodes.

Figures 7.a, 7.b, 8.a and 8.b show the time reduction
percentages compared with the balanced distribution for
each Grid configuration in stick mesh as a function of the
bandwidth. The unbalanced decomposition reduces the
execution time expected for the balanced distribution in
most cases.

For a Grid with 2 hosts and 4 processors per host, the

predicted execution time of the balanced distribution is
better than other distributions because the number of re-
mote communications is two. In this case, the multipleB-
domain unbalanced distribution has only one or two pro-
cessors per host computation.

The results are similar when we consider that the ex-
ternal latency is equal to 100 ms (figs. 9.a, 9.b, 10.a and
10.b). Therefore, the value of this parameter has not sig-
nificant impact on the results for this topology. In the
other cases, the benefit of the unbalanced distributions
ranges from 1% to 53% of time reduction. The execution
time reduction increases until 82% for other topologies
and configurations. For 4 and 8 hosts, the singleB-domain
unbalanced distribution has similar behavior than the
balanced distribution, since the remote communications

cannot be overlapped and they have to be done sequen-
tially. In this case, the topologies having few processors
per computation are not appropriate. The unbalanced
distribution reduces the execution time up to 32%.

STICK MESH
External latency of 10 ms and flight time of 1 ms

-100,00
-90,00
-80,00
-70,00
-60,00
-50,00
-40,00
-30,00
-20,00
-10,00

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

64 Kbps 300 Kbps 2 Mbps

Bandw idth

E
x

e
c

u
ti

o
n

 t
im

e
 r

e
d

u
c

ti
o

n
 (

%
)

singleB-domain (4x4)

multipleB-domain (4x4)

s ingleB-domain (4x8)

multipleB-domain (4x8)

s ingleB-domain (4x16)

multipleB-domain (4x16)

s ingleB-domain (4x32)

multipleB-domain (4x32)

s ingleB-domain (8x8)

multipleB-domain (8x8)

s ingleB-domain (8x16)

multipleB-domain (8x16)

Fig. 7.b. Execution time reduction for the stick mesh with external
latency of 10 ms and flight time of 1 ms (4 and 8 hosts).

STICK MESH
External latency of 10 ms and flight time of 100 ms

-35,00
-30,00
-25,00
-20,00
-15,00
-10,00

-5,00
0,00
5,00

10,00
15,00
20,00
25,00
30,00
35,00
40,00
45,00
50,00
55,00
60,00

64 Kbps 300 Kbps 2 Mbps

Bandw idth

E
xe

cu
ti

o
n

 t
im

e
re

d
u

ct
io

n
 (

%
)

singleB-domain (2x4)

multipleB-domain (2x4)

singleB-domain (2x8)

multipleB-domain (2x8)

singleB-domain (2x16)

multipleB-domain (2x16)

singleB-domain (2x32)

multipleB-domain (2x32)

singleB-domain (2x64)

multipleB-domain (2x64)

Fig. 8.a. Execution time reduction for the stick mesh with external
latency of 10 ms and flight time of 100 ms (2 hosts).

STICK MESH
External latency of 10 ms and flight time of 100 ms

-100,00
-90,00
-80,00
-70,00
-60,00
-50,00
-40,00
-30,00
-20,00
-10,00

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

100,00

64 Kbps 300 Kbps 2 Mbps

Bandwidth

E
x

e
c

u
ti

o
n

 t
im

e
 r

e
d

u
c

ti
o

n
 (

%
)

s ingleB-domain (4x4)

multipleB-domain (4x4)

s ingleB-domain (4x8)

multipleB-domain (4x8)

s ingleB-domain (4x16)

multipleB-domain (4x16)

s ingleB-domain (4x32)

multipleB-domain (4x32)

s ingleB-domain (8x8)

multipleB-domain (8x8)

s ingleB-domain (8x16)

multipleB-domain (8x16)

Fig. 8.b. Execution time reduction for the stick mesh with external
latency of 10 ms and flight time of 100 ms (4 and 8 hosts).

STICK MESH
Exte rnal latency of 10 ms and flight time of 1 ms

-35,00
-30,00
-25,00
-20,00
-15,00
-10,00

-5,00
0,00
5,00

10,00
15,00
20,00
25,00
30,00
35,00
40,00
45,00
50,00
55,00
60,00

64 Kbps 300 Kbps 2 Mbps

Ba ndw idth

E
xe

cu
ti

o
n

 t
im

e
re

d
u

ct
io

n
 (

%
)

s ingleB-domain (2x4)

multipleB-domain (2x4)

s ingleB-domain (2x8)

multipleB-domain (2x8)

s ingleB-domain (2x16)

multipleB-domain (2x16)

s ingleB-domain (2x32)

multipleB-domain (2x32)

s ingleB-domain (2x64)

multipleB-domain (2x64)

Fig. 7.a. Execution time reduction for the stick mesh with external
latency of 10 ms and flight time of 1 ms (2 hosts).

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 4, APRIL 2011, ISSN 2151-9617

HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

WWW.JOURNALOFCOMPUTING.ORG 136

Figures 11.a, 11.b, 12.a and 12.b show the reduction of
the expected execution time obtained for each Grid confi-
guration varying the flight time, the external latency and
the bandwidth in a box mesh. For the 2 hosts configura-
tion in a box mesh, the behavior for singleB-domain and
multipleB-domain unbalanced distribution is similar, since
the number of remote communications is the same. Varia-
tions of the flight time and the external latency improve
the results up to 85%.

Figures 11.b and 12.b shows the reduction on the ex-
pected execution time obtained for 4 and 8 hosts. The in-

fluence of the external latency on the application perfor-
mance in a box mesh increases the percentage of reduc-
tion of the execution time up to 4%. We suppose that the
distance between hosts is the same. However, if we con-
sider hosts distributed at different distances, we obtain
similar benefits for the different distributions. Moreover,
if the calculation capacity of each processor in a host is
different, the initial data partition will be done consider it.
Then the data in each processor will not be the same but

STICK MESH
External latency of 100 ms and flight time of 1 ms

-35,00
-30,00
-25,00
-20,00
-15,00
-10,00

-5,00
0,00
5,00

10,00
15,00
20,00
25,00
30,00
35,00
40,00
45,00
50,00
55,00
60,00

64 Kbps 300 Kbps 2 Mbps

Bandw idth

E
xe

cu
ti

o
n

 t
im

e
re

d
u

ct
io

n
 (

%
)

singleB-domain (2x4)

multipleB-domain (2x4)

singleB-domain (2x8)

multipleB-domain (2x8)

singleB-domain (2x16)

multipleB-domain (2x16)

singleB-domain (2x32)

multipleB-domain (2x32)

singleB-domain (2x64)

multipleB-domain (2x64)

Fig. 9.a. Execution time reduction for the stick mesh with external
latency of 100 ms and flight time of 1 ms (2 hosts).

STICK M ESH
External latency of 100 ms and flight time of 100 ms

-100,00
-90,00
-80,00
-70,00
-60,00
-50,00
-40,00
-30,00
-20,00
-10,00

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

64 Kbps 300 Kbps 2 Mbps

Bandw idth

E
x

e
c

u
ti

o
n

 t
im

e
 r

e
d

u
c

ti
o

n
 (

%
)

s ingleB-domain (4x 4)

multipleB-domain (4x4)

s ingleB-domain (4x 8)

multipleB-domain (4x8)

s ingleB-domain (4x 16)

multipleB-domain (4x16)

s ingleB-domain (4x 32)

multipleB-domain (4x32)

s ingleB-domain (8x 8)

multipleB-domain (8x8)

s ingleB-domain (8x 16)

multipleB-domain (8x16)

Fig. 10.b. Execution time reduction for the stick mesh with external
latency and flight time of 100 ms (4 and 8 hosts).

ST ICK M ESH
Exte rnal late ncy of 100 ms and flight time of 100 ms

-35,00
-30,00

-25,00
-20,00

-15,00
-10,00

-5,00

0,00
5,00

10,00

15,00
20,00

25,00
30,00
35,00

40,00
45,00

50,00
55,00

64 Kbps 300 Kbps 2 Mbps

Bandw idth

E
xe

cu
ti

o
n

 t
im

e
re

d
u

ct
io

n
 (

%
)

s ingleB-domain (2x 4)

multipleB-domain (2x4)

s ingleB-domain (2x 8)

multipleB-domain (2x8)

s ingleB-domain (2x 16)

multipleB-domain (2x16)

s ingleB-domain (2x 32)

multipleB-domain (2x32)

s ingleB-domain (2x 64)

multipleB-domain (2x64)

Fig. 10.a. Execution time reduction for the stick mesh with external
latency and flight time of 100 ms (2 hosts).

STICK MESH
External latency of 100 ms and flight time of 1 ms

-100,00
-90,00
-80,00
-70,00
-60,00
-50,00
-40,00
-30,00
-20,00
-10,00

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

64 Kbps 300 Kbps 2 Mbps

Bandw idth

E
x

e
c

u
ti

o
n

 t
im

e
 r

e
d

u
c

ti
o

n
 (

%
)

singleB-domain (4x4)

multipleB-domain (4x4)

s ingleB-domain (4x8)

multipleB-domain (4x8)

s ingleB-domain (4x16)

multipleB-domain (4x16)

s ingleB-domain (4x32)

multipleB-domain (4x32)

s ingleB-domain (8x8)

multipleB-domain (8x8)

s ingleB-domain (8x16)

multipleB-domain (8x16)

Fig. 9.b. Execution time reduction for the stick mesh with external
latency of 100 ms and flight time of 1 ms (4 and 8 hosts).

BO X M ESH
Exte rnal latency of 10 ms and flight time of 1 ms

-30,00

-20,00

-10,00

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

64 Kbps 300 Kbps 2 Mbps

Ba ndw idth

E
xe

cu
ti

o
n

 t
im

e
re

d
u

ct
io

n
 (

%
)

singleB -do main (4x8)

multipleB -do main (4x8)

singleB -do main (4x16)

multipleB -do main (4x16)

singleB -do main (4x32)

multipleB -do main (4x32)

singleB -do main (8x8)

multipleB -do main (8x8)

singleB -do main (8x16)

multipleB -do main (8x16)

Fig. 11.b. Execution time reduction for the box mesh with external
latency of 10 ms and flight time of 1 ms (4 and 8 hosts).

BOX MESH
External latency of 10 ms and flight time of 1 ms

40,00

45,00

50,00

55,00

60,00

65,00

70,00

75,00

80,00

85,00

90,00

64 Kbps 300 Kbps 2 Mbps

Ba ndw idth

E
xe

cu
ti

o
n

 t
im

e
re

d
u

ct
io

n
 (

%
)

singleB-domain (2x8)

multipleB-domain (2x8)

s ingleB-domain (2x16)

multipleB-domain (2x16)

s ingleB-domain (2x32)

multipleB-domain (2x32)

s ingleB-domain (2x64)

multipleB-domain (2x64)

Fig. 11.a. Execution time reduction for the box mesh with external
latency of 10 ms and flight time of 1 ms (2 hosts).

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 4, APRIL 2011, ISSN 2151-9617

HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

WWW.JOURNALOFCOMPUTING.ORG 137

the computational load will be balanced between proces-
sors.

The number of remote and local communications va-
ries depending on the partition and the dimensions of the
data meshes. Table 2 shows the maximum number of
communications for a computational iteration. The num-
ber of remote communications is higher for a box mesh
than for a stick mesh. Thus, the box mesh suffers from
higher overhead.

We propose the use of unbalanced distribution pat-
terns to reduce the number of remote communications
required. Our approach shows to be very effective, espe-
cially for box meshes. We observe that the multipleB-
domain with unbalanced distribution is not sensitive to the
latency increase until the latency is larger than the com-
putational time. However, the execution time for the ba-
lanced distribution increases with the latency.

7 MULTIPLECB-DOMAIN DISTRIBUTION
The multipleB-domain unbalanced distribution creates as
many special domains per host as external communica-
tions. Then, the scalability of the unbalanced distribution
will be moderated, because a processor is devoted just to
manage communications for every special domain. The
optimum domain decomposition is problem dependent,
but a simple model can be built to approximate the opti-
mum.

In addition, to reduce the number of processors per-
forming remote communications in the multipleB-domain
we propose to assign all B-domains in a host to a single
CPU, which concurrently will manage all the communica-
tions. We will call this unbalanced distribution multip-
leCB-domain. Figures 13 and 14 illustrate the domain de-
composition and communication pattern of the multip-
leCB-domain distribution for the example described in
section 5.

The main difference between the multipleB-domain and
multipleCB-domain is the amount of domains per host be-
cause in the second case all communications are assigned
to the same CPU inside a host. In Figure 5, the multipleB-
domain distribution has 8 data domains per host, now
multipleCB-domain distribution has 10 data domains per

BOX MESH
Exte rnal latency of 10 ms and flight time of 100 ms

-30,00

-20,00

-10,00

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

64 Kbps 300 Kbps 2 Mbps

Ba ndw idth

E
xe

cu
ti

o
n

 t
im

e
re

d
u

ct
io

n
 (

%
)

singleB-do main (4x8)

multipleB-do main (4x8)

singleB-do main (4x16)

multipleB-do main (4x16)

singleB-do main (4x32)

multipleB-do main (4x32)

singleB-do main (8x8)

multipleB-do main (8x8)

singleB-do main (8x16)

multipleB-do main (8x16)

Fig. 12.b. Execution time reduction for the box mesh with external
latency of 10 ms and flight time of 100 ms (4 and 8 hosts).

14

30

15

31

57 58

46 47

73 74

D7

D20 D22

D36

D32
D30

D6D4 D5

D0

D8D9

D10

D16

D12

D13

D18

D24 D26

D27 D28

D29

D38

D1

D3

D33

D35

D31

D34

D21

D23

D25

D2

D17

D19

D15

D39

D37

D11

D14

Fig. 13. MultipleCB-domain distribution.

TABLE 2
MAXIMUM NUMBER OF COMMUNICATIONS FOR A COM-

PUTATIONAL ITERATION

 STICK MESH

Balanced

singleB-domain multipleB-

domain

Host x

CPUs

Remote / Local

Communication

Remote / Local

Communication

Remote / Local

Communication

2x4 1 1 1 1 1 1

2x8 1 1 1 1 1 1

2x16 1 1 1 1 1 1

2x32 1 1 1 1 1 1

2x64 1 1 1 1 1 1

4x4 1 1 2 2 1 3

4x8 1 1 2 2 1 3

4x16 1 1 2 2 1 3

4x32 1 1 2 2 1 3

8x8 1 1 2 2 1 3

8x16 1 1 2 2 1 3

 BOX MESH

2x4 2 3 1 3 1 3

2x8 4 5 1 6 1 6

2x16 5 8 1 7 1 8

2x32 6 7 1 15 1 14

2x64 7 8 1 25 1 24

4x8 7 5 3 6 4 6

4x16 10 9 3 11 4 9

4x32 9 8 3 22 4 14

8x8 13 5 6 7 13 7

8x16 13 4 6 13 13 11

BOX MESH

External latency of 10 ms and flight time of 100 ms

40,00

45,00

50,00

55,00

60,00

65,00

70,00

75,00

80,00

85,00

90,00

64 Kbps 300 Kbps 2 Mbps

Bandw idth

E
xe

cu
ti

o
n

 t
im

e
re

d
u

ct
io

n
 (

%
)

s ingleB-domain (2x8)

multipleB-domain (2x8)

s ingleB-domain (2x16)

multipleB-domain (2x16)

s ingleB-domain (2x32)

multipleB-domain (2x32)

s ingleB-domain (2x64)

multipleB-domain (2x64)

Fig. 12.a. Execution time reduction for the box mesh with external
latency of 10 ms and flight time of 100 ms (2 hosts).

P0

P1

P2

P4

P3

P5

P6

P7

P8
P9

P10

P11

P12

P14

P15

P16

P17
P18
P19

P13

P20

P21

P22

P24

P25

P26

P27

P28
P29

P30

P31

P32

P34

P35

P36

P37

P38
P39

P33

P23

CPU 0
CPU 1
CPU 2

CPU 4
CPU 3

CPU 5
CPU 6

CPU 7

CPU 8
CPU 9

CPU 10

CPU 12
CPU 11

CPU 13
CPU 14

CPU 15

CPU 17
CPU 18

CPU 20
CPU 19

CPU 21
CPU 22

CPU 23

CPU 16

CPU 25
CPU 26

CPU 28
CPU 27

CPU 29
CPU 30

CPU 31

CPU 24

H
o

st
0

H
o

st
1

H
o

st
2

H
os

t3

P0

P1

P2

P4

P3

P5

P6

P7

P8
P9

P10

P11

P12

P14

P15

P16

P17
P18
P19

P13

P20

P21

P22

P24

P25

P26

P27

P28
P29

P30

P31

P32

P34

P35

P36

P37

P38
P39

P33

P23

CPU 0
CPU 1
CPU 2

CPU 4
CPU 3

CPU 5
CPU 6

CPU 7

CPU 8
CPU 9

CPU 10

CPU 12
CPU 11

CPU 13
CPU 14

CPU 15

CPU 17
CPU 18

CPU 20
CPU 19

CPU 21
CPU 22

CPU 23

CPU 16

CPU 25
CPU 26

CPU 28
CPU 27

CPU 29
CPU 30

CPU 31

CPU 24

H
o

st
0

H
o

st
1

H
o

st
2

H
os

t3

Fig. 14. Communication diagram for a computational iteration the
MultipleCB-domain distribution.

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 4, APRIL 2011, ISSN 2151-9617

HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

WWW.JOURNALOFCOMPUTING.ORG 138

host, for three of them will be assigned to one CPU (spe-
cial domains) into the host and the remainder of data
domains will be assigned to the rest of the CPUs. Now we
have solely a CPU that manages remote communications
and a larger number of CPUs performing computation.
This kind of distribution allows us to minimize the num-
ber of idle CPUs in a host devoted only to remote com-
munications.

For a Grid with 2 hosts, the predicted execution time is
the same that to the multipleB-domain because the number
of remote communications is only one. However, when
considering 4 or 8 hosts, multipleCB-domain domain makes
a reduction in execution time percentage up to 43% com-
pared to balanced distribution, while multipleB-domain
distribution makes a reduction percentage up to 53%. In
general, multipleCB-domain distribution is 10% worse than
multipleB-domain distribution, mainly due to the problems
in managing concurrency remote communications in the
simulator.

It is also important to look at the MPI implementation
[31]. The ability to overlap communications and computa-
tion depends on this implementation. A multithread MPI
implementation could overlap communication and com-
putation, but problems with context switching between
threads and interferences between processes could ap-
pear.

In a single thread MPI implementation we can use
non-blocking send/receive with a wait_all routine.
However, we have observed some problems with this
approach. The problems are associated with the internal
order in no blocking MPI routines for sending and receiv-
ing actions. In our experiments, this could be solved pro-
gramming explicitly the proper order of the communica-
tions. But the problem remains for a general case. We
conclude that it is very important to have no blocking
MPI primitives that actually exploit the full duplex chan-
nel capability. As a future work, we will consider other
MPI implementations that optimize the collective opera-
tions [32, 33].

8 CONCLUSIONS
In this paper, we present an unbalanced domain decom-
position strategy for solving problems that arise from
discretization of partial differential equations on meshes.
Applying the unbalanced distribution in different plat-
forms is simple, because the data partition is easy to ob-
tain. We compare the results obtained with the classical
balanced strategy used. We show that the unbalanced
distribution pattern improves the execution time of do-
main decomposition applications in Grid environments.
We considered two kinds of meshes, which define the
most typical cases. We show that the expected execution
time can be reduced up to 53%.

The unbalanced distribution pattern reduces the num-
ber of remote communications required per host com-
pared with the balanced distribution, especially for box
meshes. However, the unbalanced distribution can be
inappropriate if the total number of processors is less
than the total number of remote communications. The

optimal case is when the number of processors making
calculation in a host is twice the number of processors
managing remote communications. Otherwise, if the
number of processors making calculations is small, then
the unbalanced distribution will be less efficient than the
balanced distribution. In this case, we propose the use of
the multipleCB-domain distribution. In this distribution all
remote communications in a host are concurrently ma-
naged by the same CPU. This distribution has around a
10% worse execution time than others unbalanced distri-
butions.

In general, to obtain a good performance in the strate-
gies presented in this paper the number of processors per
host needs to be equal or higher than 8. In other case the
number of processors performing computation is not
enough to overlap remote communications.

ACKNOWLEDGMENTS
This work was supported by the Ministry of Science and

Technology of Spain under contract TIN2007-60625, the Hi-
PEAC European Network of Excellence and Barcelona Su-
percomputing Center (BSC).

REFERENCES
[1] G. Allen et al. “Classifying and enabling grid applications. Concurrency

and Computation”, Practice and Experience, vol.0, pp. 1-13, 2000. (Journal
citation)

[2] Dimemas, Internet, http://www.cepba.upc.es/dimemas/. 2000.
[3] J. Chen and V. E. Taylor. “Mesh partitioning for efficient use of distri-

buted systems”, IEEE Trans. Parallel and Distributed Systems, vol. 13, no.
1, pp.67-79, 2002. (IEEE Transactions)

[4] C. Walshaw and M. Cross. “Multilevel mesh partitioning for heteroge-
neous communications networks”, Future Generation Computer Systems,
vol. 17, no. 5, pp. 601-623, 2001. (Journal citation)

[5] F. Pelligrini and J. Roman. “A software package for static mapping by
dual recursive bipartitioning of process and architecture graphs”, Proc.
of the High Performance Computing and Networking, pp. 493-498, 1996.
(Conference proceedings)

[6] S. K. Das, D. J. Harvey and R. Biswas. “MinEX: a latency-tolerant dy-
namic partitioner for grid computing applications”, Future Generation
Computer Systems, vol. 18, no. 4, pp. 477-489, 2002. (Journal citation)

[7] S. Huang, E. Aubanel and V. Bhavsar. “Mesh partitioners for computa-
tional grids: a comparison”, Computational Science and Its Applications,
LNCS 2269, pp. 60-68, 2003. (Journal or magazine citation)

[8] S. Kumar, S. Das and R. Biswas. “Graph partitioning for parallel appli-
cations in heterogeneous grid environments”, Proc. Sixteenth Internation-
al Parallel and Distributed Processing Symposium, 2002,
doi.ieeecomputersociety.org/10.1109/IPDPS.2002.1015564. (Confe-
rence proceedings)

[9] W. D. Gropp and D. E. Keyes. “Complexity of Parallel Implementation
of Domain Decomposition Techniques for Elliptic Partial Differential
Equations”, SIAM Journal on Scientific and Statistical Computing, vol. 9,
no. 2, pp. 312-326, 1988. (Journal citation)

[10] D. K. Kaushik, D. E. Keyes and B. F. Smith. “On the Interaction of Ar-
chitecture and Algorithm in the Domain-based Parallelization of an
Unstructured Grid Incompressible Flow Code”, Proc. Tenth International
Conference on Domain Decomposition Methods, pp. 311-319, 1997. (Confe-
rence proceedings)

[11] W. Gropp et al. “Latency, Bandwidth, and Concurrent Issue Limita-
tions in High-Performance CFD”, Proc. First Mit Conference on Computa-
tional Fluid and Solid Mechanics, pp. 830-841, 2001. (Conference proceed-
ings)

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 4, APRIL 2011, ISSN 2151-9617

HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

WWW.JOURNALOFCOMPUTING.ORG 139

[12] R. M. Badia et al. “Dimemas: Predicting MPI Applications Behavior in
Grid Environments”, Proc. of the Workshop on Grid Applications and Pro-
gramming Tools GGF8, 2003. (Conference proceedings)

[13] R. M. Badia et al. “Performance Prediction in a Grid Environment”,
Proc, First European across Grid Conference, 2003. (Conference procced-
ings)

[14] Y. Li and Z. Lan. “A Survey of Load Balancing in GridComputing.
Computational and Information Science”, Proc. First International Sym-
posium (CIS’04), pp. 280-285, 2004. (Conference proceedings).

[15] B. Otero et al. “A Domain Decomposition Strategy for GRID Environ-
ments”, Proc. Eleventh European PVM/MPI Users’ Group Meeting, pp.
353-361, 2004. (Conference proceedings)

[16] B. Otero and J. M. Cela. “A workload distribution pattern for grid envi-
ronments”, Proc. the 2007 International Conference on Grid Computing and
Applications, pp. 56-62, 2007. (Conference proceedings)

[17] B. Otero et al. “Performance Analysis of Domain Decomposition”, Proc.
Fouth International Conference Grid and Cooperative Computing, pp. 1031-
1042, 2005. (Conference proceedings)

[18] B. Otero et al. “Data Distribution Strategies for Domain Decomposition
Applications in Grid Environments”, Proc. Sixth International Conference
on Algorithms and Architecture for Parallel Processing, pp. 214-224, 2005.
(Conference proceedings)

[19] W. Sosnowski. “Flow Approach-Finite Element Model for Stamping
Processes versus Experiment”, Computer Assisted Mechanics and Engi-
neering Sciences, vol. 1, pp. 49-75, 1994. (Journal citation)

[20] N. Frisch et al. “Visualization and Pre-processing of Independent Finite
Element Meshes for Car Crash Simulations”, The Visual Computer, vol.
18, no. 4, pp. 236-249, 2002. (Journal citation)

[21] Z. H. Zhong. Finite Element Procedures for Contact-Impact Problems. Ox-
ford University Press, pp.1-372, 1993. (Book style)

[22] Paraver. http://www.cepba.upc.es/dimemas. 2002.
[23] R. M. Badía et al. “DAMIEN: Distributed Applications and Middleware

for Industrial Use of European Networks”. D5.3/CEPBA. IST-2000-
25406, unpublished. (Unpublished manuscript)

[24] R. M. Badía et al. “DAMIEN: Distributed Applications and Middleware
for Industrial Use of European Networks”. D5.2/CEPBA. IST-2000-
25406, unpublished. (Unpublished manuscript)

[25] B. Otero and J. M. Cela. “Latencia y ancho de banda para simular am-
bientes Grid”, Technical Report TR-UPC-DAC-2004-33, UPC. España,
2004. (Technical report with report number)

 http://www.ac.upc.es/recerca/reports/DAC/2004/index,ca.html.
[26] D. E. Keyes. “Domain Decomposition Methods in the Mainstream of

Computational Science”, Proc. Fourteenth International Conference on Do-
main Decomposition Methods, pp. 79-93, 2003. (Conference proceedings)

[27] X. C. Cai. “Some Domain Decomposition Algorithms for Nonselfad-
joint Elliptic and Parabolic Partial Differential Equations”, Technical
Report TR- 461, Courant Institute, NY, 1989. (Technical report with re-
port number)

[28] K. George and K. Vipin K. “Parallel multilevel k-way partitioning
scheme for irregular graphs”, SIAM Rev., vol 41, no. 2, pp. 278-300, 1999.
(Journal citation)

[29] K. George and K. Vipin. “A fast and high quality multilevel scheme for
partitioning irregular graphs”, SIAM J. Sci. Comput., vol. 20, no. 1, pp.
359-392, 1998. (Journal citation)

[30] Metis, Internet, http://glaros.dtc.umn.edu/gkhome/views/metis.
2011.

[31] Message Passing Interface Forum, MPI-2: Extensions to the MPI, 2003.
http://scc.ustc.edu.cn/zlsc/cxyy/200910/W020100308601028317962.p
df (2011)

[32] N. Karonis, B. Toonen and I. Foster. “Mpich-g2: A Grid-enabled Im-
plementation of the Message Passing Interface”, Journal of Parallel and
Distributed Computing, vol. 63, no. 5, pp. 551-563, 2003. (Journal citation)

[33] I. Foster and N. T. Karonis. “A Grid-enabled MPI: Message Passing in
Heterogeneous Distributed Computing Systems”, Proc. of the
ACM/IEEE Supercomputing, 1998. (Conference proceedings)

B. Otero received her M.Sc. and her first Ph.D. degrees in Computer
Science at University of Central of Venezuela in 1999 and 2006,
respectively. After that, she received her second Ph.D. in Computer
Architecture and Technology in 2007 at Polytechnic University of

Catalonia (UPC). Currently, she is an Assistant Professor at the
Computer Architecture Department at UPC. Her research interests
include parallel programming, load balancing, cluster computing, and
autonomic communications. She is member of HiPEAC Network of
Excellence.

M. Gil is an Associate Professor at the Universitat Politècnica de
Catalunya (UPC). She received her Ph.D. in computer science from
the UPC in 1994. Her research is primarily concerned with the de-
sign and implementation of system software for parallel computing,
to improve resource management. Her work focus mainly in the area
of OS, middleware and runtime multicore architectures support. She
is member of HiPEAC Network of Excellence and in the SARC Eu-
ropean project.

