Migration of a Generic Multi-Physics Framewaork
to HPC Environments

P. Dadvand**, R. Rossi**, M. Gil***, X. Martorelf*,
J. Coteld™*, E. Juanperg*, S.R. Idelsohhand E. Onate**
Corresponding author: pooyan@cimne.upc.edu

* Centre Internacional de Métodes Numerics en Enginyerisi (&)
Gran Capita s/n, Edifici C1 - Campus Nord UPC, 08034 BarcelSpain.
** Universitat Politecnica de Catalunya (UPC)
Jordi Girona 1-3, Edifici C1, 08034 Barcelona, Spain.
** Computer Architecture Department - UPC
Jordi Girona 1-3, Edifici C6, 08034 Barcelona, Spain.

Abstract: Creating a highly parallelizable code is a challenge aneldgment for
distributed memory machines (DMMs) can be very differembfaleveloping a se-
rial code in term of algorithms and structure. For this reasnany developers in
the field prefer to develop their own code from scratch. Hamwefor an already
existing framework with large development background theaiof transformation
becomes attractive in order to reuse the effort done dur@agsyof development. In
this presentation we explain how a relatively complex frewor but with modular
structure can be prepared for high performance computitiyg winimum modifica-
tion. Kratos Multi-Physics [1] is an open source generictirdisciplinary platform
for solution of coupled problems consist of fluid, structutermal and electromag-
netic fields. The parallelization of this framework is perfed with objective of
enforcing the less possible changes to its different satvedules and encapsulate
the changes as much as possible in its common kernel. Thestolg is achieved
thanks to the Kratos design and also innovative way of dgalith data transfers for
a multi-disciplinary code. This work is completed by the raigpn of the framework
from the x86 architecture to the Marenostrum Supercomgutlatform. The migra-
tion has been verified by a set of benchmarks which show vesyg goalability, from
which we present the Telescope problem in this paper.

Keywords:Parallelization, Computational Fluid Dynamics, DomaircDmposition.

1 Introduction

The present work is based on Kratos Multi-Physics [1] a fogesn source framework for the develop-

ment of multi-disciplinary solvers. The complexity of theupled problems and their large representing
models in practice were the motivation to port the code td lpigrformance computing platforms. The

preparation was started by parallelizing the code for Shitemory Machines (SMMs) and then com-

pleted by adapting to domain decompaosition methodologpfstributed Memory Machines (DMMSs).

In this work we describe the methodology and changes madeler to use different high performance
platforms.

2 Kratosstructure

In this section a brief description of Kratos structure vioé given in order to understand better the
parallelization procedure and its implications in the code

Kratos is written in C++ and organized following objectearied paradigms. We will focus on
classes that encapsulate the algorithms involved in Kizaoallelization. A complete description of the
classes can be found in [1]. The solution algorithms in Ksatee encapsulated in classes below:

Li near Sol ver encapsulates the algorithms used for solving a linear sysfeequations. Different
direct solvers and iterative solvers can be implementedriatd§ as a derivatives of this class.
Li near Sol ver is implemented based on tBpaceclass.Space defines a matrix and a vector and
also encapsulates their operators.

St r at egy encapsulates the solving algorithm and general flow of drepjwrocess. Strategy manages
the building of equation system and then solve it using alimelver and finally is in charge of
updating the results in the data structure.

Bui | der AndSol ver is used by thestrat egy classes to perform all of the building operations and
the inversion of the resulting linear system of equatioBsi | der AndSol ver covers the most
computational intensive phases of the overall solutiorcgss.

Scheme is designed to be the configurable partSof at egy. It encapsulates all operations over the
local system components before assembling and updatiresolts after solution.

Pr ocess is the place for adding new algorithms to Kratos. Mapping&tgms, Optimization proce-
dures and many other type of algorithms can be implementachag process in Kratos.

Another important class for our purpose is telel Part which holds all data related to an arbi-
trary part of model. It stores all existing components arid dach adlodes, Properti es, El ement s,
Condi ti ons and solution data related to a part of model and providemthdgace to access them and
their data in different ways.

From a very global point of view Kratos implements a kernedl application mechanism. Each
application act as a plug-in and is compiled separately d&smeed object. This structure of Kratos lets
developers to concentrate on their own application medevériabling the use of other applications
via Kratos. This mechanism also results to be a key pointérptirallelization of the code as we will
describe later.

Finally Kratos uses the Python script as its main procedurhis is a large added value in its
flexibility and also a very useful tool to handle several folahs by configuring the input script for
the specific target without changes in the c++ code.

3 SMMsParalldization

The first step toward high performance computing is the fmizdtion for shared memory machines.
The OpenMP library is used for this purpose. The ease of uddtsrportability between different
platform constitute the key points for this selection. Hwuere the lack of conformance to the last
standards in some compilers results in extra modificationsrder to increase the portability of the
code.

Li near Sol ver classes were the first part to be parallelized. As mentioeéal® the operation used
in linear solvers is encapsulated in tBgace classes. So, just by replacing the Space with a parallel
version of it, all iterative solvers in Kratos became padaNithout further effort. However, in practice
some modifications had to be madeBun | der AndSol ver classes to optimize the memory access for
NUMA machines.

Following the parallelization of the linear solvers, tBe at egy classes were parallelized. As de-
scribed before th&t r at egy classes usBui | der AndSol ver andSchenes to perform different tasks in
the solution. For most of the strategy classes, the paratain is reduced to changing théiri | der AndSol ver
andSchenes to a parallel version.

Finally, somePr ocess classes had to be customized in order to parallelize them mrotect them
from possible racing conditions.

All these improvements result in a good speedup of the cadadilti-CPUs machines, but the mem-
ory bandwidth limit in desktop multi-core CPUs preventsshalability of the solvers in these machines.
In Kratos, most of the applications implement only new eleta@nd conditions using standard strate-
gies or providedui | der AndSol ver andSchenes. One can observe that many applications became
parallel without any modification, which is considered asmaportant added value for the design.

4 DMMsParallelization

After the preparation for SMMs the next step is to deal witlistérs using a standard domain decom-
position approach. In this process, the main objective isatee the same code for serial and parallel
versions, and also to keep the data transferring part agnatitoas possible for the applications. With

this two objectives in mind, most of the changes are carrigdrothe kernel part of the Kratos, and a

new Communi cat or class is implemented, which is in charge of transparent tdatsfer.

4.1 Partitioning

Following a standard domain decomposition approach, thestiep is to partition the domain efficently.
To this end, the METIS [2] library is used, since it reducexifian interfaces better than other methods
such as greedy or spatial bi-sectioning. The possibilitysifig a balanced kd-tree still exists, although
so far remains unexplored.

Partitioning must be completed with a colouring procedamminimize the transference latency and
also to avoid blocking in the processes. In this processpalefor a sequence of data transfers between
domains which maximizes the number of simultaneous datafees at the same time.

Regarding the code structure, the METIS patrtitioner is ddda a new application; so one can
compile it as a separate shared library and use it only if e@eMETIS partitioning has an interface to
Python, so one can call it from the input script file when ragrin a cluster. Thus, simply by changing
the Python script, the same code with minimal changes casdxfor both SMMs and DMMs.

4.2 Communications

As mentioned above one of our main goals is to make the datsfénaing part as automatic as possible
for the applications. Another goal is to keep the serial amltel codes in applications as similar as
possible. These two goals are reflected in the design dfutineuni cat or class. This class encapsulates
all necessary data for domains, their interfaces and thendjeasition data transfers in a generic way.
TheCommuni cat or class is the base and it can store the following data:

Nei ghbour | ndi ces Neighbour domains, with respect to the colouring

Local Mesh Entities that belong to this domain, including internalites

Chost Mesh Stores all entities which are a duplicated of the entitiestiver domains

I nt er f aceMesh Contains the entities that can be ghost or local but theyratteei interface between
this domain and other domains

Local Mesh[i] Stores all entities that belong to this domain but are daf#id in domain
Chost Mesh[i] Contains entities which are a duplicated of the entitiesgigimbour domaim

I nt erfaceMesh[i] Contains the entites that can be ghost or local but they amntdrface between
this domain and domain

And theComuni cat or class defines the following groups of methods:

Synchr oni ze Different versions of synchronize are in charge of copyiifecent data from local
entities to all their duplicated ghosts in other domains.

Assenbl e Calculates the sum of the data in a local entity and all itssghand set the result in the
local and the ghosts.

MaxAl | ,M nAl | ,SumAl |, etc. A group of method reimplementing the MPI communication $ask

It is important to mention that th@onmuni cat or base class provides the interface to these meth-
ods with an empty version of them. Tl Cormuni cat or class derives fronCommuni cat or and
implements these methods for using MPI. This allows us tbaaynchronize when necessary. In
a serial run, the code uses tBemmuni cat or base class, which does nothing. In a parallel run, the
MPI Cormuni cat or will be used, and the synchronize will be performed using M#thout needing to
customize the application for each platform.

4.3 Solution

Implementing a MPI version of the solution consists of inmpéatation ofSt r at egy classes for MPI.
Here again, as in shared memory parallelization, the entajmn of the solution ikt r at egy classes
and the use of a feBui | der AndSol ver andScherne classes help to minimize the effort required. The
new adapted strategies are based on Trilinos [3] librarys fitbrary provides a very good performance
while providing a very clean interface in comparison withastsimilar libraries.

5 Benchmarks

We have performed the evaluation of the Kratos migrationhenMarenostrum Supercomputer at the
Barcelona Supercomputing Center. Marenostrum is builigudual-core PowerPC 970MP processors
(2.3 Ghz). It has 2500 blades, for a total of 10000 processkech processor has a 64Kb instruc-
tion/32Kb data L1, and a 2Mb shared L2 cache memories. Foexberiments, all Kratos software
has been compiled with GCC 4.4, except the BLAS and LAPACKaliles that were compiled with the
XLC10.1 compiler. Using the XLC compiler on those librarresulted in an overall improvement of
5 to 10% on the Kratos computation time. The experimentsepted in this paper use from 4 to 253
nodes, with the 4 cores available on them, for a total of utt®lcores. Time restrictions did not allow
us to run on 1024 and above, yet.

We have used an input problem named Telescope, computingirffav on the surroundings of
the Canaries Great Telescope in the island of La Palma, i€#mary Islands, Spain (see Fig. 1). The
problem has 24 million elements. All the experiments scaléagtly.

1024

896

768

640

Speedup

512

384

256

=~ Compute
Linear

128

0 128 256 384 512 640 768 896 1024

Number of processors

Figure 1: Snapshot of the Telescope solution Figure 2: Speedup achieved on the Telescope
problem

Using this problem, we have evaluated the cost of (1) reatlieginput problem and generating
the appropriate partitions according to the number of gsaes, and (2) the computation time taken to
compute 100 time steps of the airflow simulation. The first (iBris done in a single processor, and the
computation (2) is performed in parallel. Writing the reéswlso occurs in parallel, and it is intermixed
with the computation. This is done by writing the values categ after some of the time steps.

Figure 2 shows the speedup obtained in the computation piiabe Telescope experiment, com-
pared to the perfect linear scaling. As it can be seen, Kretakes very well when using up to 1012
processors. It is important to note that the data distidoutian be done once for a problem, and then
several experiments can be launched on it, so that achisucly good scalability is very important for
the scientists interested in the solutions given by Kraddbeir problems.

6 Acknowledgments

The authors wish to acknowledge the support of the Spavislsterio de Ciencia e Innovacidrough
the E-DAMS project and the European Commission thorugh tredtine project. The work of J. Cotela
is funded by the Spanisilinisterio de Educaciorthrough a doctoral grant in the FPU program. This
work is supported by the HIPEAC European Network of Excelge(FP7/ICT 217068), the Ministry
of Science and Technology of Spain and the European UnioBDEHR under contract TIN2007-60625
and by the Generalitat de Catalunya (2009-SGR-980).

References

[1] P. Dadvand, R. Rossi, E. Ofiaen object-oriented environment for developing finite elengedes
for multi-disciplinary applicationsArchives of computational methods in engineering. Vol. 4y,
253 - 297, 09/2010 .ISSN 1134-3060.

[2] G. Karypis and V. KumarMeTis: Unstructured Graph Partitioning and Sparse Matrixd@ring
System, Version 4,0Jniversity of Minnesota, Minneapolis, MN, 2009.

[3] M. Heroux, R. Bartlett, V. H. Robert Hoekstra, J. Hu, T. |da, R. Lehoucq, K. Long, R.
Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminal. Willenbring, A. WilliamsAn
Overview of Trilinos Sandia National Laboratories, SAND2003-2927, 2003.

