
Migration of a Generic Multi-Physics Framework
to HPC Environments

P. Dadvand∗,∗∗, R. Rossi∗,∗∗, M. Gil∗∗∗, X. Martorell∗∗∗,
J. Cotela∗,∗∗, E. Juanpere∗∗∗, S.R. Idelsohn∗ and E. Oñate∗,∗∗

Corresponding author: pooyan@cimne.upc.edu

∗ Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)
Gran Capità s/n, Edifici C1 - Campus Nord UPC, 08034 Barcelona, Spain.

∗∗ Universitat Politècnica de Catalunya (UPC)
Jordi Girona 1-3, Edifici C1, 08034 Barcelona, Spain.

∗∗∗ Computer Architecture Department - UPC
Jordi Girona 1-3, Edifici C6, 08034 Barcelona, Spain.

Abstract: Creating a highly parallelizable code is a challenge and development for
distributed memory machines (DMMs) can be very different form developing a se-
rial code in term of algorithms and structure. For this reason, many developers in
the field prefer to develop their own code from scratch. However, for an already
existing framework with large development background the idea of transformation
becomes attractive in order to reuse the effort done during years of development. In
this presentation we explain how a relatively complex framework but with modular
structure can be prepared for high performance computing with minimum modifica-
tion. Kratos Multi-Physics [1] is an open source generic multi-disciplinary platform
for solution of coupled problems consist of fluid, structure, thermal and electromag-
netic fields. The parallelization of this framework is performed with objective of
enforcing the less possible changes to its different solvermodules and encapsulate
the changes as much as possible in its common kernel. This objective is achieved
thanks to the Kratos design and also innovative way of dealing with data transfers for
a multi-disciplinary code. This work is completed by the migration of the framework
from the x86 architecture to the Marenostrum Supercomputing platform. The migra-
tion has been verified by a set of benchmarks which show very good scalability, from
which we present the Telescope problem in this paper.

Keywords:Parallelization, Computational Fluid Dynamics, Domain Decomposition.

1 Introduction

The present work is based on Kratos Multi-Physics [1] a free,open source framework for the develop-
ment of multi-disciplinary solvers. The complexity of the coupled problems and their large representing
models in practice were the motivation to port the code to high performance computing platforms. The
preparation was started by parallelizing the code for Shared Memory Machines (SMMs) and then com-
pleted by adapting to domain decomposition methodology forDistributed Memory Machines (DMMs).

1



In this work we describe the methodology and changes made in order to use different high performance
platforms.

2 Kratos structure

In this section a brief description of Kratos structure willbe given in order to understand better the
parallelization procedure and its implications in the code.

Kratos is written in C++ and organized following object-oriented paradigms. We will focus on
classes that encapsulate the algorithms involved in Kratosparallelization. A complete description of the
classes can be found in [1]. The solution algorithms in Kratos are encapsulated in classes below:

LinearSolver encapsulates the algorithms used for solving a linear system of equations. Different
direct solvers and iterative solvers can be implemented in Kratos as a derivatives of this class.
LinearSolver is implemented based on theSpaceclass.Space defines a matrix and a vector and
also encapsulates their operators.

Strategy encapsulates the solving algorithm and general flow of a solving process. Strategy manages
the building of equation system and then solve it using a linear solver and finally is in charge of
updating the results in the data structure.

BuilderAndSolver is used by theStrategy classes to perform all of the building operations and
the inversion of the resulting linear system of equations.BuilderAndSolver covers the most
computational intensive phases of the overall solution process.

Scheme is designed to be the configurable part ofStrategy. It encapsulates all operations over the
local system components before assembling and updating of results after solution.

Process is the place for adding new algorithms to Kratos. Mapping algorithms, Optimization proce-
dures and many other type of algorithms can be implemented asa new process in Kratos.

Another important class for our purpose is theModelPart which holds all data related to an arbi-
trary part of model. It stores all existing components and data such asNodes, Properties, Elements,
Conditions and solution data related to a part of model and provides theinterface to access them and
their data in different ways.

From a very global point of view Kratos implements a kernel and application mechanism. Each
application act as a plug-in and is compiled separately as a shared object. This structure of Kratos lets
developers to concentrate on their own application meanwhile enabling the use of other applications
via Kratos. This mechanism also results to be a key point in the parallelization of the code as we will
describe later.

Finally Kratos uses the Python script as its main procedure.This is a large added value in its
flexibility and also a very useful tool to handle several platforms by configuring the input script for
the specific target without changes in the c++ code.

3 SMMs Parallelization

The first step toward high performance computing is the parallelization for shared memory machines.
The OpenMP library is used for this purpose. The ease of use and its portability between different
platform constitute the key points for this selection. However, the lack of conformance to the last
standards in some compilers results in extra modifications in order to increase the portability of the
code.



LinearSolver classes were the first part to be parallelized. As mentioned before the operation used
in linear solvers is encapsulated in theSpace classes. So, just by replacing the Space with a parallel
version of it, all iterative solvers in Kratos became parallel without further effort. However, in practice
some modifications had to be made inBuilderAndSolver classes to optimize the memory access for
NUMA machines.

Following the parallelization of the linear solvers, theStrategy classes were parallelized. As de-
scribed before theStrategy classes useBuilderAndSolver andSchemes to perform different tasks in
the solution. For most of the strategy classes, the parallelization is reduced to changing theirBuilderAndSolver
andSchemes to a parallel version.

Finally, someProcess classes had to be customized in order to parallelize them or to protect them
from possible racing conditions.

All these improvements result in a good speedup of the code for multi-CPUs machines, but the mem-
ory bandwidth limit in desktop multi-core CPUs prevents thescalability of the solvers in these machines.
In Kratos, most of the applications implement only new elements and conditions using standard strate-
gies or providedBuilderAndSolver andSchemes. One can observe that many applications became
parallel without any modification, which is considered as animportant added value for the design.

4 DMMs Parallelization

After the preparation for SMMs the next step is to deal with clusters using a standard domain decom-
position approach. In this process, the main objective is tohave the same code for serial and parallel
versions, and also to keep the data transferring part as automatic as possible for the applications. With
this two objectives in mind, most of the changes are carried out in the kernel part of the Kratos, and a
newCommunicator class is implemented, which is in charge of transparent datatransfer.

4.1 Partitioning

Following a standard domain decomposition approach, the first step is to partition the domain efficently.
To this end, the METIS [2] library is used, since it reduces partition interfaces better than other methods
such as greedy or spatial bi-sectioning. The possibility ofusing a balanced kd-tree still exists, although
so far remains unexplored.

Partitioning must be completed with a colouring procedure to minimize the transference latency and
also to avoid blocking in the processes. In this process, we look for a sequence of data transfers between
domains which maximizes the number of simultaneous data transfers at the same time.

Regarding the code structure, the METIS partitioner is added via a new application; so one can
compile it as a separate shared library and use it only if needed. METIS partitioning has an interface to
Python, so one can call it from the input script file when running in a cluster. Thus, simply by changing
the Python script, the same code with minimal changes can be used for both SMMs and DMMs.

4.2 Communications

As mentioned above one of our main goals is to make the data transferring part as automatic as possible
for the applications. Another goal is to keep the serial and parallel codes in applications as similar as
possible. These two goals are reflected in the design of theCommunicator class. This class encapsulates
all necessary data for domains, their interfaces and the decomposition data transfers in a generic way.
TheCommunicator class is the base and it can store the following data:

NeighbourIndices Neighbour domains, with respect to the colouring

LocalMesh Entities that belong to this domain, including internal entities



GhostMesh Stores all entities which are a duplicated of the entities inother domains

InterfaceMesh Contains the entities that can be ghost or local but they are in the interface between
this domain and other domains

LocalMesh[i] Stores all entities that belong to this domain but are duplicated in domaini

GhostMesh[i] Contains entities which are a duplicated of the entities in neighbour domaini

InterfaceMesh[i] Contains the entites that can be ghost or local but they are ininterface between
this domain and domaini

And theCommunicator class defines the following groups of methods:

Synchronize Different versions of synchronize are in charge of copying different data from local
entities to all their duplicated ghosts in other domains.

Assemble Calculates the sum of the data in a local entity and all its ghosts and set the result in the
local and the ghosts.

MaxAll, MinAll, SumAll, etc. A group of method reimplementing the MPI communication tasks.

It is important to mention that theCommunicator base class provides the interface to these meth-
ods with an empty version of them. TheMPICommunicator class derives fromCommunicator and
implements these methods for using MPI. This allows us to call a synchronize when necessary. In
a serial run, the code uses theCommunicator base class, which does nothing. In a parallel run, the
MPICommunicator will be used, and the synchronize will be performed using MPI, without needing to
customize the application for each platform.

4.3 Solution

Implementing a MPI version of the solution consists of implementation ofStrategy classes for MPI.
Here again, as in shared memory parallelization, the encapsulation of the solution inStrategy classes
and the use of a fewBuilderAndSolver andScheme classes help to minimize the effort required. The
new adapted strategies are based on Trilinos [3] library. This library provides a very good performance
while providing a very clean interface in comparison with other similar libraries.

5 Benchmarks

We have performed the evaluation of the Kratos migration on the Marenostrum Supercomputer at the
Barcelona Supercomputing Center. Marenostrum is built using dual-core PowerPC 970MP processors
(2.3 Ghz). It has 2500 blades, for a total of 10000 processors. Each processor has a 64Kb instruc-
tion/32Kb data L1, and a 2Mb shared L2 cache memories. For theexperiments, all Kratos software
has been compiled with GCC 4.4, except the BLAS and LAPACK libraries that were compiled with the
XLC10.1 compiler. Using the XLC compiler on those librariesresulted in an overall improvement of
5 to 10% on the Kratos computation time. The experiments presented in this paper use from 4 to 253
nodes, with the 4 cores available on them, for a total of up to 1012 cores. Time restrictions did not allow
us to run on 1024 and above, yet.

We have used an input problem named Telescope, computing theairflow on the surroundings of
the Canaries Great Telescope in the island of La Palma, in theCanary Islands, Spain (see Fig. 1). The
problem has 24 million elements. All the experiments scale perfectly.



Figure 1: Snapshot of the Telescope solution Figure 2: Speedup achieved on the Telescope
problem

Using this problem, we have evaluated the cost of (1) readingthe input problem and generating
the appropriate partitions according to the number of processors, and (2) the computation time taken to
compute 100 time steps of the airflow simulation. The first part (1) is done in a single processor, and the
computation (2) is performed in parallel. Writing the results also occurs in parallel, and it is intermixed
with the computation. This is done by writing the values computed after some of the time steps.

Figure 2 shows the speedup obtained in the computation phaseof the Telescope experiment, com-
pared to the perfect linear scaling. As it can be seen, Kratosscales very well when using up to 1012
processors. It is important to note that the data distribution can be done once for a problem, and then
several experiments can be launched on it, so that achievingsuch good scalability is very important for
the scientists interested in the solutions given by Kratos to their problems.

6 Acknowledgments

The authors wish to acknowledge the support of the SpanishMinisterio de Ciencia e Innovaciónthrough
the E-DAMS project and the European Commission thorugh the Realtime project. The work of J. Cotela
is funded by the SpanishMinisterio de Educaciónthrough a doctoral grant in the FPU program. This
work is supported by the HiPEAC European Network of Excellence (FP7/ICT 217068), the Ministry
of Science and Technology of Spain and the European Union (FEDER) under contract TIN2007-60625
and by the Generalitat de Catalunya (2009-SGR-980).

References

[1] P. Dadvand, R. Rossi, E. Oñate.An object-oriented environment for developing finite element codes
for multi-disciplinary applications.Archives of computational methods in engineering. Vol. 17,pp.
253 - 297, 09/2010 .ISSN 1134-3060.

[2] G. Karypis and V. Kumar,MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering
System, Version 4.0, University of Minnesota, Minneapolis, MN, 2009.

[3] M. Heroux, R. Bartlett, V. H. Robert Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R.
Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, A. WilliamsAn
Overview of Trilinos, Sandia National Laboratories, SAND2003-2927, 2003.


