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Abstract—Short-term electricity market is made up of a
sequence of markets, that is, it is a multimarket enviroment. In
the case of the Iberian Energy Market the sequence of major
short-term electricity markets are the day-ahead market, the
ancillary service market or secondary reserve market (henceforth
reserve market), and a set of six intraday markets. Generation
Companies (GenCos) that participate in the electricity market
could increase their benefits by jointly optimizing their par-
ticipation in this sequence of electricity markets. This work
proposes a stochastic programming model that gives the GenCo
the optimal bidding strategy for the day-ahead market (DAM),
which considers the benefits and costs of participating in the
subsequent markets and which includes both physical futures
contracts and bilateral contracts.

Index Terms—spot electricity markets, financial electricity
markets, Iberian Electricity Market, stochastic programming,
perspective cuts.

INTRODUCTION

Finding the optimal bid to the day-ahead market (DAM)

is a crucial decision in the daily operation of any genera-

tion company (GenCo), as DAM is the market where the

most important part of the electricity demand is negotiated

(78% in the case of the Iberian Electricity Market (MIBEL)).

Moreover, current electricity markets are organized around

a variety of markets, both financial (futures contracts (FC),

bilateral contracts (BC)) and spot (day-ahead market (DAM),

reserve market (RM) and intraday market (IM)) with a strong

dependence between them. Therefore, any GenCo aiming to

participate in the DAM can no longer find its optimal bid

without considering the relation between DAM and the rest of

the spot and financial markets. Optimal multimarket electricity

bid (OMEB) models are large scale nonlinear combinatorial

stochastic optimization models designed to help GenCos to

find the optimal offer bid of each one of their generation

units in such a complex multimarket framework. Due to the

large scale and complexity of the OMEB models, commer-

cial optimization software cannot reach the optimal solution

within the time required by the DAM’s submission deadline,

and more efficient combinatorial nonlinear optimization al-

gorithms are required. The first part of this work presents a

new multistage stochastic optimization model for the OMEB

problem that find the optimal bid for the DAM taking into

account the relation between this spot market and the rest

of the market mechanisms (FC, BC, RM, IM) in the Iberian

Electricity Market. The proposed methodology provides, for

each GenCo’s generation unit, the optimal unit commitment,

and the optimal bid to the DAM. This optimal bid integrates

the negotiated energy of the financial markets (FC and BC),

and takes into account the stochastic behavior of the three spot

markets (DAM, RM and IM). The second part of the work

will present the methodology and computational results of the

application of the perspective cuts algorithm to the solution

of the OMEB problem. The solution to a real case instance

of the OMEB problem corresponding to GenCos operating in

the MIBEL will be presented and analyzed.

I. LITERATURE REVIEW

The optimal multimarket bidding problem has not been

studied as much as the day-ahead bidding problem and there

are few research groups that have confronted this problem

with stochastic techniques. The work of [1] is one of the first

works that defines a bidding strategy for a GenCo participating

in a sequence of three short-term markets. The work in [2]

considers a multistage stochastic model to decide the unit

commitment and the capacity allocation in each market but

without any bidding strategy. Furthermore, [3] propose a

stochastic model for obtaining the bid curve to be submitted

in each market. The most recent contribution, [4], can be

consider as an extension of [2], where a risk aversion tool is

added together with the satisfaction of the committed bilateral

contracts. Contrary to the previous contributions, our approach

takes into account the sequence of markets according to the

specific characteristics of MIBEL regulation and two different

medium-term products, BCs and FCs. The model presented

here extends the optimal bid model in [5], [6] and [7] to the

multimarket environment. The work in [8] follows the same

idea presented in this paper but (a) with a simplified mod-

elization where only linear generation costs were considered

and unit commitment was excluded and (c) using commercial

244

2011 8th International Conference on the European Energy Market (EEM) • 25-27 May 2011 • Zagreb, Croatia

978-1-61284-286-8/11/$26.00 ©2011 IEEE



general purpose optimization software instead of specialized

algorithms.

II. FUNDAMENTALS AND HYPOTHESIS

A. Fundamentals

The main characteristics of the three electricity markets

considered in this work are:

• Day-ahead market: it is the market where the most

important part of the energy transactions are negotiated.

It takes place the day before the delivery day. It has 24

simultaneous auctions, one for each hour of the next day.

The DAM matching process is coordinated with the BCs

and the physical FCs as it will be explained later.

• Reserve market: takes place after the DAM matching

process. It is an ancillary service market where the

participants send bids to increase or decrease the matched

energy of the units in the DAM.

• Intraday market: takes place just before and during the

delivery day. It is composed of 6 consecutive markets.

In these markets the GenCos can either sell or buy

electricity, that is, they can participate as buyers or sellers

of energy. A specific unit can participate in these markets

either if its bids have been matched in the DAM or if it

is producing energy to settle BCs.

These three markets are sequentially cleared leading to a

multistage stochastic programming problem associated with

a set S of scenarios of the DAM, RM and IM market prices

λs = {λD,s
1 ..λD,s

24 , λR,s
1 ..λR,s

24 , λI,s
1 ..λI,s

24 }, s ∈ S.

The MIBEL rules force the GenCo to include in the DAM

bid process the settlement of the energy from other market

mechanisms. In this work, the national bilateral contracts and

the futures physical contracts matched at the derivatives market

are included. Regarding the physical futures contracts portfolio

and the day-ahead bidding mechanism OMEL demands every

GenCo to commit the quantity designed to futures contracts

through the day-ahead market bidding of the physical units that

form each UCP, a pre-stablished subset of the thermal units

which will generate the energy to cover the corresponding

contract. This commitment is done by the so called instru-
mental price offer, that is, a sale offer with a bid price of

0e/MWh (also called price acceptant). Due to the algorithm

the market operator uses to clear the day-ahead market, all

instrumental price offers will be matched (i.e. accepted) in the

clearing process, that is, this energy shall be produced and will

be remunerated at the spot price.

Bilateral contracts in the MIBEL has the classical charac-

teristics, they are agreements between a generation company

and a qualified consumer to provide a given amount of

electrical energy at a stipulated price along a delivering period.

The characteristics of the bilateral contracts (energy, price,

delivering period) are negotiated before the DAM and the

energy that is destined to the BC is excluded from the DAM

bid. Accordingly to the MIBEL rules, the DAM bid of each

unit must include the whole available energy not allocated to

the BC contracts.

B. Hypothesis

The model is built for a price-taker GenCo owning a set

of thermal generation units I with startup, shutdown and

quadratic generation costs. We will assume some modeling

hypothesis about the RM and IM. First, we suppose that all

the units in our model are capable of changing their production

according to the requirements of the ISO, which means all the

available units can participate in the RM. Second, we also

suppose that if the GenCo participates in the RM, then it will

always bid the automatic generation control (AGC) capacity of

the unit, an operational characteristic of each unit that indicates

the quantity that the unit is able to increase or decrease in a

given time. This hypothesis follows the real behavior of some

GenCos observed in the MIBEL. Moreover, we work only with

the first IM session, the session in which the greater part of the

energy is negotiated. Finally, we suppose that all the energy

that is bid to the RM or the IM will be matched. This can

be easily forced by some bidding strategies, but this point is

not dealt with in this work. These hypothesis do not limit the

correct representation of the MIBEL’s market sequence and

they can be easily changed or adapted to different situations.

III. MODEL DESCRIPTION

A. Variables

For every time period t ∈ T and thermal unit i ∈ I , the first

stage variables of the stochastic programming problem are:

• The unit commitment variables: uti ∈ {0, 1}, cu
ti, cd

ti

• The instrumental price offer bid variables: qti.

• The scheduled energy for futures contract j variables:

ftij .

• The scheduled energy for bilateral contract variables: bti.

and the second and third stage variables associated with each

scenario s ∈ S are:

• Total generation: gs
ti

• Matched energy in the day-ahead market: ps
ti

• Reserve market related variables: rs
ti

• Intraday market related variable: ms
ti

B. FCs and BCs Covering Constraints

Both the physical future and bilateral contracts coverage

must be guaranteed:∑
i∈Ij

ftij = LF
j ∀j ∈ F, ∀t ∈ T (1)

∑
i∈I

bti =
∑
j∈B

LB
j ∀t ∈ T (2)

ftij ≥ 0 ∀j ∈ F, ∀i ∈ I, ∀t ∈ T (3)

0 ≤ bti ≤ P iuti ∀i ∈ I, ∀t ∈ T (4)

C. Reserve Market Constraints

By hypothesis the model for the RM assumes that if the unit

bids to the RM, it will bid its fixed AGC capacity, �i(MW).

Therefore the only decision to be optimized is whether the unit

participates in the RM or not. It is known that a unit can only

use its AGC capacity if its generation level is constant; in other
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words, the unit is not increasing or decreasing its production in

the corresponding interval or, equivalently, that the production

level gs
ti has not changed between two consecutive intervals.

For all intents and purposes, the GenCo delegates its ramping

capacity to the ISO. The binary variable rs
ti is introduced to

trace this situation, being that rs
ti = 1 whenever gs

ti = gs
(t−1),i

and rs
ti = 0 otherwise.

gs
ti − gs

(t−1),i ≤ (1 − rs
ti)P i ∀i ∈ I, ∀t ∈ T, ∀s ∈ S

(5)

gs
ti − gs

(t−1),i ≥ (1 − rs
ti)(−P i) ∀i ∈ I, ∀t ∈ T, ∀s ∈ S

(6)

Moreover, uncommitted units (uti = 0) cannot bid to the RM:

rs
ti ≤ uti ∀t ∈ T, ∀i ∈ I, ∀s ∈ S (7)

D. Matched Energy Constraints

The MIBEL’s rules affecting the day-ahead market estab-

lishes a given relation between the variables representing the

energy of the bilateral contracts bti, the energy of the future

contracts ftij , the instrumental price offer bid qti and the

matched energy ps
ti. This relation can be formulated by means

of the following set of constraints:

ps
ti ≤ P iuti − bti ∀i ∈ I, ∀t ∈ T, ∀s ∈ S (8)

ps
ti ≥ qti ∀i ∈ Ut, ∀t ∈ T, ∀s ∈ S (9)

qti ≥ P iuti − bti ∀i ∈ I, ∀t ∈ T (10)

qti ≥
∑

j|i∈Ij

ftij ∀i ∈ I, ∀t ∈ T (11)

where:

• (8) and (9) ensures that if a unit is on, the matched energy

ps
ti will be between the instrumental price bid qti and the

total available energy not allocated to a BC.

• (10) and (11) guarantee respectively that the minimum

generation output of the committed units will be matched,

and that the contribution of the unit to the FC coverage

will be included in the instrumental price bid.

E. Total Generation and Intraday Market Constraints

Finally, the total generation level of a given unit i, gs
ti, is

defined as the addition of the allocated energy to the BC,

plus the matched energy in the DAM and IM (ps
ti and ms

ti

respectively).

gs
ti = bti + ps

ti + ms
ti ∀t ∈ T, ∀i ∈ I, ∀s ∈ S (12)

The model considers the possibility of either selling (ms
ti > 0)

or buying (ms
ti < 0) energy to the IM. The total generation

gs
ti must remain within the operational limits P i and P i. But

if we participate in the RM, the total generation limits change

because of the energy that we must reserve in order to be able

to produce it at the moment that the ISO requests:

P iuti+�ir
s
it ≤ gs

ti ≤ P iuti−�ir
s
it ∀t ∈ T, ∀i ∈ I, ∀s ∈ S

(13)

F. Nonanticipativity Constraints

Nonanticipativity constraints impose that the value of the

second and third stage variables will be the same for those

stages and scenarios sharing the same value of the random

variables λs :

gs
ti = gŝ

ti ∀s, ŝ : (λD,s = λD,ŝ), ∀t ∈ T (14)

rs
ti = rŝ

ti ∀s, ŝ : ((λD,s, λR,s) = (λD,ŝ, λR,ŝ)), ∀t ∈ T
(15)

where (14) models the nonanticipativity constraints for the

DAM stage and (15) models the nonanticipativity constraints

for the RM stage.

G. Unit commitment

Following [9], let ut
i be the first-stage binary variable

expressing the off-on operating status of the ith unit and

cu
ti, cd

ti, continuous variables representing the startup and

shutdown cost, respectively, of unit i in interval t. Additionally,

constant Gi, will be the number of periods that unit i must

be initially online, due to its minimum up-time ton
i , and Hi,

will be the number of periods that unit i must be initially

offline, due to its minimum down-time tdown
i . The following

set of constraints conveniently models the start-up and shut-

down costs and the minimum operation and idle time for each

unit (see [9] for details):

cu
ti ≥ con

i [uti − u(t−1),i] ∀t ∈ T \ {1}, ∀i ∈ I (16)

cd
ti ≥ coff

i [u(t−1),i − uti] ∀t ∈ T \ {1}, ∀i ∈ I (17)

Gi∑
j=n

(1 − uji) = 0 ∀i ∈ I (18)

Hi∑
j=1

uji = 0 ∀i ∈ I (19)

t+ton
i −1∑

n=t

uni ≥ ton
i [uti − u(t−1),i]

∀t = Gi + 1, . . . , |T | − ton
i + 1 ∀i ∈ I (20)

t+toff
i −1∑
n=t

(1 − uni) ≥ toff
i [u(t−1),i − uti]

∀t = Hi + 1, . . . , |T | − toff
i + 1∀i ∈ I (21)

|T |∑
n=t

(uni − [uti − u(t−1),i]) ≥ 0

∀t = |T | − ton
i + 2, . . . , |T | ∀i ∈ I (22)

|T |∑
n=t

(1 − uni − [u(t−1),i − uti]) ≥ 0

∀t = |T | − toff
i + 2, . . . , |T | ∀i ∈ I (23)
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H. Objective Function
The quadratic function that represents the expected benefits

of the GenCo:

Eλ

[
B(g, p,m, r, u, cu, cd)

]
=

=
∑
t∈T

⎡⎣∑
j∈F

(λF
j − λ

D

i )LF
j +

∑
j∈B

λB
j LB

j

⎤⎦ (24)

−
∑
t∈T

∑
i∈I

[cu
ti + cd

ti + cb
iuti] (25)

+
∑
t∈T

∑
i∈I

∑
s∈S

P s
[
λD,s

t ps
ti + λR,s

t �ir
s
ti + λI,s

t ms
ti

−(cl
ig

s
ti + cq

i (g
s
it)

2)
]

(26)

where:

(24) corresponds to the incomes of the FCs and the BCs and

is a constant term.

(25) is the on/off fixed cost of the unit commitment of the

thermal units, deterministic and independent of the real-

ization of the random variable λD
t = {λD

t , λR
t , λI

t }.

(26) represents the expected value of the benefits from the

DAM, the RM and the IM. The first term, λD,s
t ps

ti,

computes the incomes from the DAM based on a value

ps
ti of the matched energy. The second term, λR,s

t �ir
s
ti

computes the incomes from bidding the AGC capacity to

the RM. The third term, λI,s
t ms

ti computes the incomes or

costs from the IM, depending on the sign of ms
ti. Finally,

the term between brackets corresponds to the expression

of the quadratic generation costs with respect to the total

generation of the unit, gs
ti.

Then, the objective function f(x) to be minimized in our

model is:

f(g,p, r,m, u, cu, cd) =
∑
i∈I

∑
t∈T

(
cu
ti + cd

ti + cb
iuti

+
∑
s∈S

P s
[
cl
ig

s
ti + cq

i (g
s
ti)

2 − (λD,s
t ps

ti)

−(λR,s
t rs

ti�i) − (λI,s
t ms

ti)
])

(27)

where λD,s
t , λR,s

t , λI,s
t are the price scenarios for the tth day-

ahead, reserve or intraday market respectively.

I. Optimal multimarket electricity bid model (OMEB)
The final Optimal electricity multimarket bid (OMEB)

model developed in the previous sections is:

(OMEB)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f(g, p, r, m, u, cu, cd)
s.t.

Eq. (1) − (4) BC and FC

Eq. (5) − (6) RM

Eq. (8) − (11) DAM

Eq. (12) − (7) Tot. gen.

Eq. (16) − (23) UC
(28)

This program corresponds to a mixed linearly constrained min-

imization problem with a convex quadratic objective function

with a well-defined global optimal solution.

IV. PERSPECTIVE CUTS

In order to solve OMEB model by commercial MILP

software, the quadratic part of the objective function must be

linearized. Since the sum of the probabilities P s equals one,

we can include the products cb
tiuti in the quadratic parenthesis

for each block (i, t, s) in this way:

cq
i (g

s
ti)

2 + cl
ig

s
ti + cb

ituti,

where the variables uti are binary. For notational simplicity

the indices will be omitted in the rest of this section. The

issue is then how to best represent the quadratic function

f(g, u) = cqg2 + clg + cbu (29)

by means of a piecewise-linear one. There is an effective way

based on ideas developed by [10]. Note that, as u is binary

and uP ≤ g ≤ uP , we have

f(g, u) =

{
0, if u = 0
f(g) = cqg2 + clg + cb, if u = 1

Moreover, when we use the branch and cut methods in order to

find lower bounds for the optimal value, we solve continuous

relaxations of the mixed integer linear problem, i.e. with u ∈
[0, 1]. Therefore, a natural question is whether we can obtain

a convex function with an tighter epigraph for f(g, u), which

can be used to calculate those lower bounds, this leads us

to take into account the convex envelope of f(g, u). As it is

shown in [10] the convex envelope is

h(g, u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if (g, u) = (0, 0)
cqg2

u
+ clg + cbu,

{
if uP ≤ g ≤ uP ,

for u ∈ (0, 1]

}
+∞, otherwise

(30)

This function is the perspective-function f̆(g, u) = uf(g/u)
of f(g), with u limited to be in [0,1], which is known to

be convex if f(g) is convex, see [11]. In addition, to show

that h is a tighter objective function than f for the

continuous relaxation it is enough to compare (29) and (30)

for 0 < u ≤ 1. Also, for g ∈ [P , P ] and u ∈ [0, 1] it can

be showed that the maximum value of h(g, u) − f(g, u) over

the domain of both functions (defined by the pyramid having

as base [P , P ] × {1} and vertex [0, 0]) is cqP
2
/4, attained at

(P/2, 1/2); i.e. h penalizes the highest non-integrality in the

domain. Nevertheless, due to the strong nonlinearity and the

nondifferentiability of h(g, u) at (0, 0), it is not practical to

use it as the objective function instead of f(g, u). A way of

overcoming this difficulty is to replace h(g, u) with the point-

wise supremum of affine functions, which is possible because

the convexity of h. As is showed in [10], by means of the

subgradient inequality

h(g, u) ≥ h(ĝ, û) + (s1, s2)
(
(g, u) − (ĝ, û)

)
,

where (s1, s2) ∈ ∂h(ĝ, û), the epigraph of h is defined by

the subset of

{(v, g, u) | uP ≤ g ≤ uP and 0 ≤ u ≤ 1}
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that is solution of this infinite linear-inequality system

v ≥ (2cq ĝ + cl)g + (cb − cq ĝ2)u, taking ĝ ∈ [P , P ].
(31)

For each ĝ we have an inequality so-called a perspective
cut (PC), which is the unique supporting hyperplane to the

function passing by (0, 0) and (ĝ, 1). Consequently, PC
formulation (PCF) consists of using these perspective cuts to

construct an objective function that is the point-wise maximum

of the linear functions of these hyperplanes, i.e. it is a

polyhedral function. A small set of initial PCs is chosen to

solve the problem with the continuous relaxation. Then, given

a solution (v∗, g∗, u∗) corresponding to an approximation of

h by a finite number of perspective cuts, when u∗ > 0, it is

tested to know if this solution fulfills (31) with ĝ = g∗/u∗;

otherwise, this supporting hyperplane is a new perspective cut

to be added to PCF. Thus, additional cuts are then dynamically

generated when necessary.

V. NUMERICAL EXAMPLES

The OMEB model (28) has been implemented and solved

with CPLEX 12.0 [12] using the ad-hoc implementation of the

perspective cuts algorithm described in Section IV. It has been

solved using a SunFire X2200 with 32 Gb of RAM memory

and two dual core processors AMD Opteron 2222 at 3 GHz.

The total execution times for the perspective cuts methodology

are shown in Table I. It must be stressed that all these problems

were unsolvable with CPLEX (the execution aborted with an

internal error after several days of execution).

A. Scenario generation and reduction

All the available historical data of the sequence of market

prices has been reduced in order to obtain suitable scenario

sets. Initially, all the instances are equiprobable and, after

applying the reduction algorithm [13], the different subsets

of scenarios and the respective probabilities are obtained. The

main computational characteristics for each reduced set of sce-

narios are in Table I. It can be observed that both the objective

function and the variation of the optimal value of the variables

(measured through the index
‖xs−x180‖

‖x180‖ ) stabilizes after 50

scenarios. Considering the computational burden introduced

by the increase of second and third stage binary variables as

the number of scenarios grows, we conclude that 50 scenarios

retain enough information to obtain suitable results.

B. Case Study

A set of computational tests has been performed in order

to validate the proposed model. The instances used in the test

have 9 thermal units. Its technical values can be obtained from

the authors upon request. One of the objectives of the tests is to

study the influence of the sequence of markets in the DAM bid.

As it has been explained, the DAM bid of the GenCo will be

fixed by the quantity committed to bilateral contracts, that will

be excluded from the DAM bid, and the quantity committed to

futures contracts, which must be bid at the instrumental price

(see [6]). Thus, we focus on the two variables that represent

these quantities in order to study its optimal value when taking

TABLE I
OPTIMIZATION CHARACTERISTICS OF THE CASES STUDIES AND RESULTS

FOR DIFFERENT NUMBER OF SCENARIOS.

|S| c.v. b.v. CPU(s) Objective function
‖xs−x180‖

‖x180‖
25 19680 6240 612 89230500 1,000
50 37680 12240 3093 88268300 0,001
75 55680 18240 12316 88624200 0,002

100 73680 24240 25728 88177400 0,001
120 88080 29040 32570 88209200 0,001
140 102480 33840 60030 88318100 0,002
160 116880 38640 74865 88298800 0,002
180 131280 43440 93532 88209200

|T | = 24; |I| = 9

into account, or not, the sequence of markets. The optimal

value of these two variables can be observed in Figure 1.

This figure represents the economic dispatch of the bilateral

contracts, i.e., the quantity each unit commits to the bilateral

contracts for each interval t, and the quantity to cover the

futures contracts. It can be also observed the big differences

among the optimal economic dispatch if we include the RM

and the IM in the optimization model (Figure 1(a)) or not

(Figure 1(b)). On the one hand, if a unit participates into the

RM market, it must reserve a part of its participation and

thus cannot use it to cover the medium-term products (see,

for instance, Unit 2 at intervals 3, 7 or 8). On the other hand,

they could buy or sell energy into the IM, and this can change

the settlement of the medium-term products. Those differences

will lead to different offer curves for each unit and interval.

Finally, although second and third stages variables are not

related with any actual decision, as they differ from scenario to

scenario, it could be interesting to observe the behavior of the

GenCo in the IM, where the GenCo can submit either sell or

purchase bids, depending on the sign of variable ms
ti (ms

ti > 0
and ms

ti < 0 respectively). Figure 2 represents the bidding

energy for a given unit throughout the 24 hourly auctions of the

IM market day at two different scenarios. It can be observed

that, depending on the auction, the GenCo either buys or sells

energy, or it does not participate in the IM.

VI. CONCLUSION

This work has developed a new quadratic mixed-integer

stochastic programming model, to assist to the optimization of

the day-ahead bid with futures and bilateral contracts taking

into account the reserve and the intraday market. The optimal

solution of our model determines the optimal instrumental

price bidding strategy and the optimal economic dispatch for

the BCs and the committed FCs for each hour. The model

maximizes the expected benefits of the sequence of electricity

markets while satisfying the thermal operational constraints

and the MIBELs rules. The results of the computational tests

validate the model and show the influence of market sequence

on the optimal bidding strategy of the GenCo, as well as the

short-sight effect of optimizing the DAM bid without taking

into account the possibilities of the next markets.
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Fig. 1. Economic dispatch of bilateral and futures contract, bti (blue) and
qti (orange) . (a) Taking into account market sequence (b) With the DAM
only.
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Fig. 2. Energy send to the IM by Unit 1 in two different scenarios.
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