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Abstract

A sensor based on a coplanar waveguide structure was designed to perform non-destructive
tests for material characterization in which the measurement can be done only on one side of
the sample. The measurements were compared with the impedance of a capacitor filled with
the same material. The permittivity and insertion loss of the sensor showed valuable
information about the setting process of a mortar slab during the first 28 days of the
hardening process, and a good correlation between both measurements was obtained, so the
proposed setup can be useful for structural surveillance and moisture detection in civil

structures.
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1. Introduction

The electromagnetic characterization of construction
materials, such as concrete or mortar, gives the chance to
monitor structures. Nowadays, the use of non-destructive
testing applied to civil structures is gaining significance, and
many authors have recently developed different methods to
estimate some physical parameters from an electromagnetic
measurement.

Previous works have reported good results working with
low frequency (LF) impedance measurements (Torrents et al
2001), but showed great difficulties when applying them in a
field context. Some of these problems can be reduced by using
microwaves, due to their capability to penetrate through solid
materials, so in this work frequencies up to 3 GHz were used.
Using a time domain reflection (TDR) technique, Xu et al
(2002) and other authors have developed embedded sensors
to monitor the evolution of electromagnetic constants during
setting (mainly permittivity and conductivity), and particularly
the monitoring of moisture in concrete has been studied using
coaxial sensors (Sokoll and Jacob 2007). Huebner and Kupfer
(2007) developed a planar TDR sensor, to be surrounded
by the material under test. However, there is a need to
develop methods to measure big structures or precast walls, so
embedding sensors are sometimes not easily put into practice.
Many non-contact sensors have been studied which can be
placed in contact with the sample under test in order to provide
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useful information about its physical properties (Volgyi 2007,
Yoo Jin et al 2003).

Similarly, the use of transmission lines for the
characterization of concrete reported good results, using time
domain transmission (TDT) or frequency domain transmission
(FDT) procedures. In these experiments, the sensor, both a
waveguide (Pauli er al 2007) and a coaxial line (Millard et al
2001), was filled with concrete and the propagation delay gave
information about the dielectric constant and loss factor of the
material. Nonetheless, these tests are of application only in a
laboratory situation but not for field structures. Based on the
same principle, Stuchly and Bassey (1998) designed a surface
sensor attached to the sample under test to perform dielectric
measurements.

The measurement of mortar setting has been explored
using similar methods, showing a permittivity decrease as
the sample hardens (Roqueta et al 2009). If the dielectric
constant is unchanging for a certain range of frequencies, an
effective permittivity is proportional to the phase slope of the
transmitted wave.

The aim of this work is to measure the evolution of the
dielectric constant and loss factor of a mortar sample during
the setting process by a surface sensor, a promising sensing
system to give reliable information about mortar setting. This
is alaboratory experience. The long-term goal of this system is
to apply this experience to the surveillance of field structures.

© 2010 IOP Publishing Ltd  Printed in the UK & the USA
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Figure 1. Geometrical model of a two-layer coplanar waveguide.

2. Principle of measurement

A TDT/FDT technique was applied to a sensor with two ports
attached to one of the faces of the sample in which the analysis
of the s,; parameter was provided with useful information
about the setting process of the mortar tested. The wave was
transmitted through a coplanar waveguide (CPW), a common
structure based on three conductors on the surface of a substrate
(Wen 1969). The material permittivity is obtained numerically
from the theoretical model of a multilayer coplanar waveguide
with finite-width ground planes (Simons 2001, chapter 4). The
signal attenuation provides information about the loss factor,
which is directly related to the water content (Juan-Garcia and
Torrents 2009).

The measured permittivity is a combination of the
dielectric constant of the mortar, the substrate and the
surrounding air. Therefore, an effective permittivity (gefr) iS
defined in the design equations. As the dielectric constant
of the substrate and air are perfectly known, from the
measurement of the effective permittivity of the whole setup,

the real permittivity can be numerically estimated. The
characteristic impedance can be calculated as
30 K (k)
(€2, ey

e K(K)
where K(x) is the complete elliptic integral of the first kind,
and

k=_ b2 — g2

s = VIR )

where a, b and ¢ are geometrical dimensions of the CPW as
shown in figure 1.

In this work, a two-layer CPW was designed, so the
effective permittivity was calculated using formulae developed
for multilayered CPW with finite ground planes (Simons 2001,
chapter 4):
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where h; and h, are geometrical dimensions of the CPW,
and ¢,; is the dielectric constant of each layer, as shown in
figure 1.

The propagation of an electromagnetic wave along a
transmission line is defined by its propagation constant. For a
non-magnetic material, it is given by

. 27
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where A is the free space wavelength, « is the attenuation
constant, B is the phase constant, &’ is the dielectric constant
and ¢” is the loss factor (von Hippel 1954, chapter 1). The
dielectric constant and loss factor can be expressed as
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For low-loss materials (¢”/¢’ < 0.3), the propagation
parameters can be simplified (Stuchly and Bassey 1998) as
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3. Material and methods

3.1. Sample preparation

Two identical mortar samples were prepared using ordinary
portland cement and calcareous sand, passed through a 5 mm
sieve, with a water/cement ratio of 0.50 and a sand/cement
ratio of 2, without using additives. The samples were cast
on 350 x 180 x 40 mm plastic moulds. A surface sensor
was attached to one of the moulds, and the mortar was poured
over it. A capacitor was embedded in the other sample to
monitor permittivity changes by impedance measurements,
as is detailed below. The permittivity measurement using a
capacitor was performed to compare the results with the CPW
measurement.

3.2. Coplanar sensor design

A 300 x 150 x 1.6 mm?> coplanar waveguide with finite-width
ground planes was designed in order to measure the dielectric
constant from only one face of the sample under test, using the
equations presented in section 2. The CPW, fabricated on a
FR4 substrate, has a central conductor of 3 mm and a maximum
gap of 62 mm. It was adapted to 50 €2 in the input port and
widened to reach an impedance of 200 €2 in its broader end,
using a 1:4 exponential impedance transformer to minimize
the reflected wave. The length of the taper (15 cm) is directly
related to the low-frequency limit (Pozar 2005, chapter 5), in
this case fixed at 300 MHz, and the dimensions of the taper
were based on an ideal model of the mortar as an homogeneous
material with a permittivity of 5. The maximum penetration
of the wave inside the material is theoretically limited by 75%
of the gap between the conductors (Seagar et al 1987), so the
dimensions of the line were designed in accordance with the
sample thickness.
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Figure 2. Diagram of the measurement setup.

3.3. Capacitor design

Two 150 x 150 mm? copper sheets separated 35 mm from each
other were embedded in one of the mortar samples, creating
a capacitor between them. Once the mortar was poured,
the empty space between them was completely filled with
the material under test, so the measurement of capacitance
variations showed changes in the material permittivity that
were correlated afterwards with the data obtained from the
coplanar sensor.

According to Elliott (1966, p 189), the capacitance of this
structure (@ = 0.15 m, 2 = 0.035 m) can be expressed as

i:“—z[u%m(n%)]. 8)

geff N

3.4. Measurement instruments

Reflection and transmission parameters of the coplanar sensor
were obtained with an HP8753C vector network analyser
(VNA) by performing a wideband frequency sweep from
300 MHz to 3 GHz. 401 points per sample were measured,
leading to a resolution of 6.73 MHz, with an input power of
0 dBm. The measurements were then calibrated using a TRL
algorithm (Engen and Hoer 1979), more suitable for planar
structures than the traditional SOLT.

The capacitance measurements were acquired using an
LF impedance analyser, HP4192A, measuring ten points
per decade from 10 Hz to 10 MHz with 1.1 Vyys voltage
excitation. All the data were acquired by a PC via GPIB
connection, using a LabView automation driver, sampling each
5 min for 28 days. A schematic diagram of the whole setup is
provided in figure 2. The temperature inside the sample and
in the environment was measured with a thermocouple using
a Fluke 185 multimeter as a data logger.

4. Results and discussion

The coplanar sensor was placed in the mould with the copper
sheet in the upper part before pouring the mortar over it

(figure 3). Previous works showed the setting process of
mortar by putting the sensor over the mortar (Juan-Garcia and
Torrents 2009), but since the surface of the mortar hardens in
the first stages, no significant changes were observed after the
first 24 h. However, by placing the sensor in the inner part of
the mould, relevant changes in the permittivity can be observed
during the whole setting process. Moreover, the gap between
the sensor and the sample must be perfectly known in order
to estimate the material permittivity from the measurement of
the effective permittivity, so by pouring the mortar over the
sensor a lack of gaps is ensured, whilst when measuring in
the surface, air bubbles would appear, changing the effective
permittivity and its effect should be taken into account.

Once the phase slope is processed, an effective
permittivity value is obtained for each time sample. The
mortar permittivity was estimated afterwards by numerical
computation using a model of the multilayer CPW with finite-
width ground planes described in more depth in Simons (2001,
chapter 4), using a three-layer model analogous to the model
presented in section 2 (adding a third layer of polyethylene),
taking into account the permittivity of the surrounding air
(¢, = 1.0), the FR4 substrate (¢, = 4.2) and the mould, made
of polyethylene (¢, = 2.3). The estimation was performed
applying the analytical model of a single CPW with finite
ground planes to the tapered line. The line was divided
into 300 segments (each one being 1 mm long), as shown in
figure 4. Each segment has its own propagation velocity,
which is related to the effective permittivity of the coplanar
waveguide for each geometry, so the theoretical impedance
was calculated for each segment of the tapered coplanar
waveguide and the obtained values were finally averaged.

It has to be stated that in the initial stages, there was a high
amount of water in the mixture, so high losses were expected,
because the effects of conductivity are far more relevant than
those of permittivity. What is more, there is a certain range of
frequencies in which the amplitude of the transmitted signal
was under the sensitivity of the measurement instrument, so a
cut-off effect appears. The upper limit of suitable frequencies
for this measurement (figure 5) starts around 1.4 GHz, so the
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Figure 3. Setup (a) before pouring the mortar and () after pouring the mortar.
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Figure 4. Diagram for the calculation of the effective permittivity as
a function of the geometry of the coplanar waveguide.

results of both the permittivity and the insertion loss were
obtained under 1 GHz.

The initial permittivity is around 20, mainly due to the
great amount of water (¢, = 80) in the sample. As the sample
sets and the hydration process takes place, the amount of
free water diminishes, so the dielectric constant decreases
proportionally (see figure 6). As was expected, the main
variations occur in the first 24 h, when the sample loses its
viscosity and hardens significantly. The permittivity values
for set mortar, which were obtained using equation (7), are
in accordance with the measurements performed by other
authors using different methods (Peer et al 2003). However,
assuming that (7) is valid when &” /¢’ < 0.3, the permittivity
measurements using the CPW method are significant after the
first 18 h. From the beginning of the experiment up to 18 h,
the high values of conductivity make this assumption wrong
and distort the permittivity results using the approximation
in (7).

As for the insertion loss, it shows a similar trend to the
permittivity, but is frequency dependent. The initial amount
of water leads to a value of nearly 60 dB (figure 6) and rapidly

cutoff frequency
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Figure 5. Maximum suitable frequency against time.

decreases while the free water reacts with the cement forming
a conductive matrix filled with dielectric gaps. Similar to the
permittivity behaviour, the loss factor changes significantly for
weeks, although the main changes occur in the first 24 h.

To validate the results, both the permittivity and
loss measurements were compared with the measurements
performed with the capacitor at low frequencies. However,
the permittivity measured with the capacitor system showed
values over 1000. According to the literature (Macdonald and
Barsoukov 2005, p 469), the double-layer effect is the cause of
those high values of permittivity. The capacitor measurements
are performed at low frequency (100 kHz), which entails a high
ion exchange phenomenon, whereas the CPW measurements
are performed over 300 MHz, so the ion exchange is far lower.
Thus, the capacitive measurement is highly affected by the
double-layer effect, whilst the CPW measurement leads to
more accurate permittivity results. Despite the fact that the
absolute values obtained were different with the capacitor and
the CPW line, both values were normalized with respect to
the average value over the time. Such comparison showed
good agreement in their time changes (figure 7), except in the
initial stages, due to the high conductivity of water, whereas
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Figure 6. Setting progress results: (a) permittivity measured from 300 MHz to 1 GHz and () insertion loss measured at 1 GHz.
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Figure 7. (a) Permittivity progress measured by the CPW sensor (from 0.3 to 1 GHz) and the capacitor (at 100 kHz). () Insertion loss
(at 1 GHz) and conductance of the capacitor measurement (at 100 kHz). Temperature measurements are included to show the thermal

dependence of the capacitor (LF) measurements.

the CPW measured feasible values (with a loss of resolution
because of the high attenuation of the signal).

Moreover, temperature changes led to variations in the
permittivity measured with the capacitor (as well as the
insertion loss), but the measurement of permittivity using a
CPW was hardly affected by temperature variations.

5. Conclusions

The setting progress of a mortar sample was measured for 28
days using a new coplanar sensor in the range of microwaves.
The dielectric constant was measured, as well as the insertion
loss factor, and good results were obtained, which showed a
decreasing trend of the permittivity as the sample hydrated,
and a decreasing insertion loss associated too with the amount
of water in the sample. From the measurement of the

transmission parameters of the transmission line, and using
its theoretical model, the permittivity of the material was
estimated. The measurements showed good agreement with
the impedance at low frequencies of a capacitor filled with the
same material, but were more reliable using the CPW sensor
due to the high amount of water in the sample, particularly in
the early stages. The suitable frequencies for the permittivity
measurements were studied, and a maximum cut-off frequency
was defined. The promising results of this experiment open
the door to further works in a field context.
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