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Abstract. Standard learning algorithms may perform poorly when learn-
ing from unbalanced datasets. Based on the Fisher’s discriminant analysis,
a post-processing strategy is introduced to deal datasets with significant
imbalance in the data distribution. A new bias is defined, which reduces
skew towards the minority class. Empirical results from experiments for
a learned SVM model on twelve UCI datasets indicates that the proposed
solution improves the original SVM, and they also improve those reported
when using a z-SVM, in terms of g-mean and sensitivity.

1 Introduction

In bi-classification, learning from unbalanced datasets occurs when the provided
datasets to the learning algorithms contain many examples for a class, but very
few for the other. Hence, a good model is difficult to generate using traditional
classification techniques since the objective functions used for learning the clas-
sifiers typically tend to favor the larger, usually less important, class [1]. This
situation arises in domains such as medical diagnosis, text classification, credit
card fraud detection, intrusion in communication networks, and others.

Support Vector Machine [2] is an attractive option for dealing with unbal-
anced datasets because its learning mechanism usually considers a small subset
of patterns to build the classification model. However, like other learning ma-
chines that build these models, SVM aims to minimize the error on the entire
dataset, so it is inherently biased towards the majority class. Thus, SVM will
learn to classify all examples as belonging to this class for a severe imbalance.

This paper is focused on SVM learning from unbalanced datasets. In par-
ticular, SVM performance will be improved by introducing a new bias for the
induced classification function. Previously, some general strategies and metrics
to evaluate classifiers are introduced in the next section. Section 3 presents the
problem for the case of SVM learning. A new SVM bias is defined in Section 4,
as a novel post-processing strategy. Experimentation and results are presented
in Section 5. Finally, some conclusions and future work are provided.
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2 Binary learning from unbalanced datasets

In binary learning from unbalanced datasets, the class with fewer examples is
known as the minority class or positive, while the other class is called the major-
ity class or negative. Reasons leading to the imbalance between classes are the
nature of the problem or the cost in obtaining data. A particular case is when
binary classifiers, like SVM, are used to solve multi-class classification problems
by considering the standard one versus rest strategy.

With unbalanced datasets, often the simplest learned hypothesis is to classify
all examples as negative. To overcome this problem different strategies have been
proposed [1, 3], including: sampling methods; generating artificial data, either
by over-sampling the minority class, or under-sampling the majority class; cost-
sensitive learning, over-weighting errors on the minority class; ensemble methods,
trained from learning sets with different data distributions; post-processing by
tuning the learned classification function to improve performance on minority
class; modified traditional algorithms and new algorithms.

Furthermore, the usual classification error and predictive accuracy metrics
are not appropriated when the prior probabilities of the classes are very different
because they do not consider costs from wrong classifications and thus they are
very sensitive to the bias between classes [1]. Therefore, other measures of
assessment based on the confusion matrix are considered: Sensitivity = tp

tp+fp

and Recall = tp
tp+fn

, with tp being true positives, fp false positives and fn false
negatives. Sensitivity is a measure of accuracy among examples classified as
positive and Recall is a measure of completeness. Both measures, in contrast
to Error and Accuracy, are not sensitive to changes in data distribution and
can effectively evaluate the classification performance in unbalanced learning
scenarios. Hence, the g-mean measure, defined as,

g −mean =

√

tp

tp+ fn
·

tn

tn+ fp
(1)

can measure the accuracy of both classes with a good trade-off. Other evaluation
techniques are the ROC curve analysis (Receiver Operating Characteristics) and
the analysis based on Sensitivity and Recall curves.

3 SVM learning from unbalanced datasets

SVMs are learning machines which implement the structural risk-minimization
inductive principle to obtain good generalization on a limited number of learning
patterns [2]. This theory was developed on the basis of a separable binary clas-
sification problem where the optimization criterion is the width of the margin
between the positive and negative examples. The extension of binary classifica-
tion to multi-classification is currently an on-going research issue, however the
binary ad-hoc methods of one-versus-rest SVMs to solve the multi-class problem
still prevails due to in general good performance and manageable optimization.



Let Z = {(x1, y1), . . . , (xn, yn)} be a training set, with xi ∈ X as the input
space, yi ∈ Y = {θ1, θ2} = {+1,−1} the output space, and zi = (xi, yi). Let
φ : X → F , x = φ(x), be a feature mapping with a dot product denoted by 〈·, ·〉.
A binary linear classifier, f(x) = 〈x,w〉 + b, is sought with w ∈ F , b ∈ R, and
where outputs are obtained as h(x) = sign(f(x)). The standard primal C-SVM
2-norm formulation leads to the optimization problem

min
w∈F ;b∈R

1
2
‖w‖2 + C

∑

i ξi

s.t. yi (〈xi,w〉+ b) + ξi ≥ 1, ξi ≥ 0, zi ∈ Z
(2)

where C is a regularization term, and ξi are slack variables. The solution can
be written as w =

∑

i αiyixi, where αi are Lagrange multipliers for the dual
formulation of (2), with

∑

i αiyi = 0. Vector xi is called support vector when
αi 6= 0. Term b is calculated a posteriori [4]. Hence, the classifier can be written
as f(x) =

∑

i αiyi〈xi, x〉+ b.
For moderately unbalanced sets, empirical results show that, unlike other

machine learning techniques, SVM can produce a good hypothesis, in terms of
accuracy, without any modification [5, 6]. Nevertheless, performance decreases
when the imbalance in the data distribution is significant. Some strategies have
been proposed in the literature, which can be applied in different time during
the learning process: pre-processing strategies, like over-sampling, sub-sampling,
feature selection or weighted variables; training strategies, like assigning different
costs through the C parameter, kernel matrix modifications; post-processing
strategies, like bias tuning, and probabilistic or fuzzy output are some examples.

4 A novel post-processing strategy

Results given in the text classification domain [3] suggest a further research in
post-processing strategies when learning SVM for unbalanced datasets. Further-
more, they do not directly affect the SVM training procedure.

Post-processing strategies apply on either, modifications in the weight vector
of the decision function, or determining a new bias. By using this last strategy,
it has been empirically shown that the learned hyperplane by a SVM in the
presence of unbalanced sets has approximately the same orientation as the ideal
hyperplane [7]. Hence, the critical point is the selection of the bias since standard
SVM learns a boundary that is too close to the minority class: the penalty asso-
ciated with errors in a small number of positive examples is exceeded by the one
introduced by a large number of negative examples. Therefore, the minimiza-
tion problem is more related with maximizing the margin from the examples of
the majority class, resulting in a hyperplane biased towards the minority class.
The so-obtained bias results in a very low generalization performance or in no
generalization for patterns of this class [5].

Let Z1 = {zi ∈ Z|yi = +1}, Z2 = {zi ∈ Z|yi = −1} are the sets of pat-
terns for the positive and negative class, respectively. By defining values, β =
minzi∈Z1

〈xi,w〉 , α = maxzi∈Z2
〈xi,w〉 a new bias for general training datasets

was defined in [4] as bs = −β+α
2

.



Let Nk=1,2 = #Zk=1,2 represent the number of patterns, so an unbalanced
dataset meets N1 ≪ N2. Based on the proposed bias bs, and inspired by the
Fisher discriminant analysis, which takes into account the number of instances
of each classes to build the decision function, a new bias bf = −N1·α+N2·β

N1+N2

is
defined, which reduces skew towards the minority class. Furthermore, since the
SVM decision function is built based on the support vectors, the more informa-

tive instances for classification, a second bias is defined as bfs = −
NSV1

·α+NSV2
·β

NSV1
+NSV2

,

based on the same argumentation given for bf , with NSVk=1,2
being the number

of support vectors for each class.

5 Experimentation

Both new proposed post-processing strategies for a learned SVM model were ex-
perimented on twelve standard UCI datasets [8] presented in Table 1. Datasets
being originally not unbalanced, they were split in the form of one class, in
parenthesis in the first column, versus the rest of the classes. Performance has

Data Total Positive Negative

Abalone (19) 4177 32 (0.77%) 4145 (99.23%)

Page-Blocks (5) 5473 115 (2.10%) 5358 (97.90%)

Yeast (5) 1484 51 (3.44%) 1433 (96.56%)

Car (3) 1728 69 (3.99%) 1659 (96.01%)

Ecoli (5) 336 20 (5.95%) 316 (94.05%)

Satimage (4) 6435 626 (9.73%) 5809 (90.27%)

Euthyroid 2000 238 (11.90%) 1762 (88.10%)

Glass (7) 214 29 (13.55%) 185 (86.45%)

Segmentation (1) 2310 330 (14.29%) 1980 (85.71%)

Haberman (2) 306 81 (26.47%) 225 (73.53%)

Waveform (0) 5000 1657 (33.14%) 3343 (66.86%)

Pima Diabetes (1) 768 268 (34.90%) 500 (65.10%)

Table 1: Twelve UCI datasets displayed from extreme to moderate imbalance

been evaluated on models using the Gaussian kernel, similar to [6]. The criteria
used to estimate the accuracy is the 10-fold cross-validation on the whole set
of training data and this procedure is repeated 3 times in order to ensure good
statistical behavior. The best cross-validation g-mean rate and its standard de-
viation are reported in Table 2. Similarly, a sensitivity performance comparison
is presented in Table 3.

Some studies can be completed according to the experimentation carried out:

• The ‘general purpose’ bias bs defined in [4] generates a new decision func-
tion that ever improves the original SVM’s decision function in terms of
g-mean performance. It also does the same for the ten most extreme un-
balanced datasets in terms of sensitivity.



Data SVM (b) bs bf bfs

Abalone 0.000 ± .000 0.649 ± .116 0.623 ± .064 0.649 ± .088

Page-Blocks 0.530 ± .124 0.718 ± .139 0.828 ± .032 0.895 ± .028

Yeast 0.000 ± .000 0.646 ± .138 0.641 ± .057 0.729 ± .125

Car 0.000 ± .000 0.533 ± .169 0.936 ± .058 0.555 ± .184

Ecoli 0.816 ± .263 0.915 ± .131 0.939 ± .111 0.915 ± .131

Satimage 0.810 ± .048 0.813 ± .052 0.892 ± .027 0.833 ± .047

Euthyroid 0.774 ± .045 0.830 ± .078 0.746 ± .052 0.859 ± .068

Glass 0.000 ± .000 0.858 ± .199 0.908 ± .068 0.863 ± .200

Segmentation 0.991 ± .012 0.993 ± .012 0.993 ± .012 0.993 ± .012

Haberman 0.449 ± .197 0.615 ± .097 0.626 ± .097 0.626 ± .090

Waveform 0.877 ± .013 0.860 ± .019 0.883 ± .011 0.862 ± .019

Pima Diabetes 0.673 ± .065 0.670 ± .065 0.735 ± .053 0.670 ± .066

Table 2: G-mean performance comparison for the proposed approaches

Data SVM (b) bs bf bfs

Abalone 0.000 ± .000 0.331 ± .149 0.906 ± .112 0.359 ± .130

Page-Blocks 0.297 ± .131 0.547 ± .193 0.972 ± .046 0.958 ± .062

Yeast 0.000 ± .000 0.448 ± .182 0.889 ± .168 0.571 ± .187

Car 0.000 ± .000 0.314 ± .167 0.899 ± .108 0.343 ± .190

Ecoli 0.733 ± .314 0.867 ± .225 0.917 ± .190 0.867 ± .225

Satimage 0.677 ± .080 0.678 ± .087 0.881 ± .061 0.722 ± .082

Euthyroid 0.617 ± .075 0.724 ± .138 0.957 ± .052 0.809 ± .134

Glass 0.000 ± .000 0.900 ± .155 0.900 ± .155 0.900 ± .155

Segmentation 0.984 ± .025 0.988 ± .023 0.989 ± .023 0.989 ± .023

Haberman 0.269 ± .168 0.545 ± .153 0.632 ± .160 0.575 ± .150

Waveform 0.824 ± .026 0.776 ± .038 0.919 ± .018 0.780 ± .039

Pima Diabetes 0.510 ± .088 0.498 ± .090 0.695 ± .088 0.499 ± .090

Table 3: Sensitivity performance comparison for the proposed approaches

• Using the last post-processing strategy, bias bfs ever improves bias bs for
both considered measures, g-mean and sensitivity.

• It is evident from Table 3 that the bias bf moves the original bias bs
towards the majority class more than bfs. Hence, the best results for
the sensitivity performance are obtained. With respect to the g-mean
measure, some good results are obtained. Nevertheless, several results are
worse than those obtained with the bias bs. In any case, the best mean
results for both measures are provided by the bias bf .

Therefore, it can be concluded that both Fisher-based strategies that were intro-
duced help to improve the performance of the original SVM, as well as those using
the bias bs in its decision function, when learning from unbalanced datasets.

Finally, these results are compared with those reported in [6] where a z-SVM
is presented. The z-SVM can be considered as the post-processing strategy most



similar to those presented in this work, because it was designed to reduce the
bias of a trained SVM to the majority class for imbalanced data. It is built by
reformulating the SVM’s decision function as f(x, z) = z

∑

i:yi=+1 αiyi〈xi, x〉 +
∑

i:yi=−1 αiyi〈xi, x〉+ b. A univariate unconstrained optimization problem must
be solved to determine the optimal z.

G-mean Sensitivity

Data z-SVM bf bfs z-SVM bf bfs

Abalone 0.620 0.623 0.649 0.627 0.967 0.442

Yeast 0.728 0.641 0.729 0.667 0.889 0.571

Car 0.936 0.936 0.917 0.917 0.899 0.343

Euthyroid 0.904 0.746 0.859 0.869 0.957 0.809

Segmentation 0.976 0.993 0.993 0.967 0.989 0.989

Table 4: G-mean and Sensitivity performance comparison

It can be seen from Table 4 that the proposed biases obtain similar or better
results than those reported using z-SVM. Moreover, the optimization problem
associated with the z-SVM approach is replaced by a direct calculation of the
bias.

6 Conclusions

The main contribution of this paper is that the accuracy rate of unbalanced
dataset measured by geometric mean and sensitivity can be improved by using
different bias. A major advantage is that the SVM optimization problem is not
changed for each chosen bias and the computational cost is null. As further
research, a theoretical framework to study bias movements depending on its
definition is being developed.
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