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Abstract

The need for data privacy motivates the development of new methods
that allow to protect data minimizing the disclosure risk without los-
ing information. In this paper, we propose a new protection method for
numerical data called Ordered Neural Networks (ONN) method. ONN
presents a new way to protect data based on the use of Artificial Neural
Networks (ANN). ONN combines the use of ANN with a new strategy for
preprocessing data consisting in the vectorization, sorting and partition-
ing of all the values in the attributes to be protected in the data set. We
also present an statistical analysis that allows to understand the most im-
portant parameters affecting the quality of our method, and we show that
it is possible to find a good configuration for these parameters. Finally,
we compare our method to the best methods presented in the literature,
using data provided by the US Census Bureau. Our experiments show
that ONN outperforms the previous methods proposed in the literature,
proving that the use of ANNs in these situations is convenient to protect
the data efficiently without losing the statistical properties of the set.
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1 Introduction

Managing confidential data is a common practice in any organization. In many
cases, these data contain valuable statistical information required by third par-
ties and, thus, privacy becomes essential, making it necessary to release data
sets preserving the statistics without revealing confidential information. This is
a typical problem, for instance, in statistics institutes.

In this scenario, an intruder might try to re-identify a percentage of the
protected individuals by applying Record Linkage (RL) techniques [9, 18] be-
tween some attributes in the protected data set and some attributes obtained
from other data sources which includes at least one identifier1. Depending on
the non-protected attributes obtained by the intruder from other sources, the
probability of re-identifying individuals increases, in other words, the larger the
number of attributes known, the higher the probability to reveal the identity of
the individuals in the protected data set.

Special efforts have been made to develop a wide range of protection meth-
ods. These methods aim at guaranteeing an acceptable level of protection of
the confidential data. The number of techniques applied to protect data is very
large, ranging from simply swapping values of the data set [13] to using complex
data models [5].

We present a new type of perturbative2 protection method called Ordered
Neural Network (ONN). ONN is based on the use of an array of artificial neural
networks (ANN) [11] in order to protect the numerical values of a data set. ONN
consists of a set of steps that include data preprocessing, the learning process
using the ANNs, and the final protection step. The combination of these steps
improves the capacity of our method to protect data without losing information.

We also present an statistical model that allows to predict the quality of the
protected data set, depending on a set of the most influent parameters in the
protection process. This study allows us to find out which are these parameters
and to understand their impact on the quality of the results.

This paper is organized as follows. Section 2 presents some ANN basics. In
Section 3, we present a detailed description of the ONN method. Section 4 de-
scribes the measure used to evaluate a protection method. Section 5 presents an
statistical analysis of ONN. Section 6 presents some results. Section 7 includes
a brief overview of the related work. Finally, Section 8 draws some conclusions
and presents some future work.

2 Preliminaries

In this section, we introduce the minimum basic knowledge necessary to follow
the details of our method. First, we give a brief description of a general ANN.

1The identifier attributes are used to identify the individual unambiguously. A typical
example is the passport number.

2Following the definition used in [8].
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Figure 2: Representation of the activation function and the range of values after

normalization.

vm,n the nth element of Pm.
The normalized input values are defined as:

{

vm,n := 2 Bin
vm,n−minm

maxm −minm

− Bin if maxm 6= minm

vm,n := 0 if maxm = minm

where 0 ≤ m < P and 0 ≤ n < k.
Note that maxm = minm means that all the values in the partition are the same.
In this case, the normalized value is set to 0, in other words, it is centered in
the normalization range.

Analogously, the desired output, which it is denoted by ym,n, where 0 ≤
m < P, 0 ≤ n < k, is normalized between B1out and B2out:

{

ym,n := (B2out − B1out)
ym,n−minm

maxm −minm

+ B1out

ym,n := 0.5

where the first component of this expression is used when maxm 6= minm and
the second component is used otherwise.
The range of values of the desired outputs is then (B1out, B2out). Notice that, in
the input layer, the outputs fall in the same range, making the training process
easier.
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Learning

Finally, ONN creates an array of ANNs in order to learn the whole data set,
where each ANN is associated to a partition. Therefore, the array contains P

ANNs. The objective for each ANN is to learn the values in its corresponding
partition. However, an specific ANN is not only fed with the values in that
partition, but uses the whole data set to learn. In some sense, using the whole
data set, we are adding non-linear noise to the learning process by using input
data that is not correlated with the data to be learned.

Specifically, the ANN that learns the values of a partition Pm receives the
nth value of that partition, vm,n, together with the P − 1 nth values of the
remaining partitions. Since the network is intended to learn all values vm,n

in Pm, the desired output is set to ym,n = vm,n. This process is repeated
iteratively until the learning process finishes.

In our proposal, each ANN contains three layers: the input layer, a single
hidden layer and the output layer, which can be described as follows:

Input Layer. The input layer consists of M1 = P neurons. Each of them
takes the data from a different partition as input. That is, input of the
ith neuron comes from partition P i.

Hidden Layer. The hidden layer has M2 = nh neurons. As explained in [11],
nh has an effect on the speed of the learning process and the ability of the
network to learn complex patterns.

Output Layer. The output layer consists of one single neuron (M3 = 1).

The structure of the array of neural networks is shown in Figure 4.
All networks are forced to learn the example pairs updating their weights

by using the iterative backpropagation algorithm explained in Section 2.2. The
quality of the data protection obtained depends on the level of accuracy reached
when the algorithm is stopped. This level depends basically on the parameters
and structure that define the array of ANNs and the way the training set is
preprocessed.

Protecting Data

Once the ANNs have been trained, and therefore the weights updated, the last
step obtains the protected values for the data set.

Let pm,n be the protected value for vm,n. As mentioned before, the mth
ANN of the array has been trained to reproduce vm,n when the values in the
P input neurons is v0,n, ..., vP−1,n. This way, pm,n is defined as the output
obtained when having v0,n, ..., vP−1,n as input of the mth already trained ANN.

Finally, the protected value pm,n for vm,n is obtained by de-normalizing pm,n

as follows:

pm,n = minm +
(pm,n − B1out)(maxm −minm)

B2out − B1out
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Figure 3: Array of ANNs used by ONN.
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If maxm = minm the expression used is the following:

pm,n = (pm,n + 0.5)vm,n

The protected values pm,n are placed in the protected data set in the same
place occupied by the corresponding vm,n in the original data set. This way, we
are undoing the sorting and vectorization steps.

4 Scoring protection methods

In order to measure the quality of a protection method, we need a protection
quality measurement that assigns a score to a method depending on its capacity
to (i) make it difficult for an intruder to reveal the original data and (ii) to avoid
the information loss in the protected data set. In this paper, we use the score
defined in [8] which has been used in several other works.

In order to calculate the score, we must first calculate some statistics:

• Information Loss (IL): Let X and X ′ be matrices representing the
original and the protected data set, respectively. Let V and R be the
covariance matrix and the correlation matrix of X , respectively; let X

be the vector of variable averages for X and let S be the diagonal of V .

Define V ′, R′, X
′

, and S′ analogously from X ′. The information loss is
computed by averaging the mean variations of X −X ′,V −V ′,S −S′, and
the mean absolute error of R − R′ and multiplying the resulting average
by 100.

• Disclosure Risk (DR): We use the three different methods presented
in [18] in order to evaluate DR: (i) Distance Linkage Disclosure risk
(DLD), which is the average percentage of linked records using distance
based RL, (ii) Probabilistic Linkage Disclosure risk (PLD), which is the
average percentage of linked records using probabilistic based RL and (iii)
Interval Disclosure risk (ID) which is the average percentage of original
values falling into the intervals around their corresponding masked val-
ues. The three values are computed over the number of attributes that
the intruder is assumed to know. The Disclosure Risk is computed as
DR = 0.25 · DLD + 0.25 · PLD + 0.5 · ID.

• Score: The final score measure is computed by weighting the presented
measures and it was also proposed in [8]:

score = 0.5 IL + 0.5 DR

A simplified version of the score can be used involving only DLD. In this
case, the score is

scoresimp = 0.5 IL + 0.25 DLD + 0.25 ID
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Due to the large execution cost of PLD, we use the scoresimp to save the execu-
tion time of the experiments run in the next section. This simplified score was
used in [16] for similar reasons. Note that the better a protection method, the
lower its score.

5 ONN Parametrization

In previous sections, we have seen that there are several parameters that must
be taken into consideration in order to adjust ONN. The suitability of neural
networks has shown to be deeply dependant on the specific problem to be solved.
Since the initial weights are randomly assigned to ANNs, whether adjusting
these parameters has a direct effect on the quality of the results is still an
intriguing question.

Here, we present an statistical analysis that allows us to accurately adjust
the parameters involved in ONN, showing that it is possible to find a good set of
values that consistently improve the scores obtained by our method. Specifically,
we show that it is possible to find a model that predicts the average best score
obtained by ONN.

5.1 Analysis of Variance

The variables studied in this chapter are usually called factors in statistics. A
factor is considered to be a categorical variable, i.e., a variable that gives the
appropriate label of an observation after allocation to one of several possible
categories or values [10], called levels in statistics.

The technique used to find this model is the Analysis of Variance [12, 15]
which is the equivalent to regression when we have categorical variables instead
of continuous variables. The Analysis of Variance (from here on ANOVA) is
the statistical technique that allows us to distinguish between the variability in
the data due to an specific cause, controlled by the experimenter, from the vari-
ability prompted by other circumstances. As a broad outline, ANOVA aims at
decomposing the total variability of a sample among different parts correspond-
ing to the factors that could potentially be the cause. Once the contribution
of each level of each factor in the result is estimated, by comparing variances
using a Fisher test, we can decide if the differences caused by the different levels
of a factor are statistically significant or not. In our case, the ANOVA allows
us to estimate the contribution of each parameter to the score obtained from a
set of data protected using the ONN method. Therefore, we will be able to see
whether the contribution of each variable, alone or in combination with others,
is significant or not.

If the levels of a factor are fixed a priori, which is our case, they are considered
constants and the factor is known as a fixed effects factor.

In order to define an appropriate model to fit a set of data, we must also take
into account the interaction between the factors. Two factors A and B are said
to be crossed factors when each level of A is observed for each level of B and
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vice versa. Given two crossed factors, it makes sense to ask for their interaction,
i.e. the situation where two explanatory variables do not act independently on
the response variable. More exactly, A and B interact when the effect of a given
level of A depends on the level of B with which it is combined. The ANOVA
technique allows to determine which interactions are significant.

In order to accept an specific model as a good model to fit a set of data,
two conditions must be met: (i) the proportion of the variability in the data
explained by the model (R2) must be close to one (R2 ranges from 0 to 1)
and (ii) the residuals, a measure of the discrepancy between the real values and
the values predicted by the model, must be independent and follow a normal
distribution with zero mean and constant variance (σ2). The mean square error
(MSE) is the estimation of σ2. The smaller the value of MSE, the better the
model fits our data. Another important coefficient to take into account is the
coefficient of variation (CV), which is defined as:

CV =

√
MSE

y
· 100 (3)

where y is the arithmetic mean of all the observations of the response variable.
The CV is a measure of dispersion (or spread) relative to the size and distribu-
tion of the values in the data set. Since the CV is a dispersion measure, it is
desired that the value of this coefficient is small.

5.2 Statistical Model

In this section, we propose an statistical model that allows to estimate the effect
of the different factors that have an impact on the score obtained from a data
set protected with our method. In order to create and analyze the model and
the data, we have used the Statistical Analysis System (SAS) Release 8.00 [1].

5.3 Variables in the model

The dependant variable in our scenario is the score. As we have seen in previ-
ous sections, there are several factors that might have an impact on the score.
Among them, we have chosen the factors with a higher impact. These parame-
ters, summarized in Table 1, are (i) the number of attributes used by an intruder
to reveal data using RL techniques, denoted by V , (ii) the number of partitions
into which the data are split, denoted by P , (iii) the normalization range size
(B2out − B1out) denoted by B, (iv) the learning-rate parameter η, denoted by
E in the model, (v) the activation function parameter c, denoted by C in the
model and, finally, (vi) the number of neurons in the hidden layer, denoted by
H .

There might be more parameters to take into consideration. However, as we
will see during this section, the statistical model is accepted only considering
the variance produced by these parameters. This implies that the effect of other
parameters may be neglected.
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Factors Description
V # of attributes used in the DR process
P number of partitions
B normalization range size
E learning-rate parameter (η)
C activation function parameter
H # of neurons in the hidden layer

Table 1: Independent factors in the model.

5.4 Description of the experiments

The first approach to the values selected for each factor is based on empirical
results in order to use reasonable and realistic values. In the case of V , we have
chosen two levels corresponding to half of the attributes (V = 7) and all the
attributes (V = 13). Table 2 summarizes the levels used for the different factors
in the experiment.

Given these levels for each factor we run experiments for every possible
combination of the values of these six factors. The number of combinations can
be calculated as 2 × 7 × 7 × 4 × 5 × 2 = 3920. For every possible combination
we run 10 executions and calculate the average score obtained. Therefore, we
have run 39200 independent executions and, after obtaining the averages, the
number of observations for the dependant variable is equal to 3920.

After studying the initial data set, we have not detected any significant
outlier out of the 3920 observations. Therefore, it has not been necessary to
remove any value from the data set.

5.5 Model definition and Goodness of fit

The process of building a model that properly predicts the behavior of a response
variable in front of some factors is iterative. This means that we depart from a
maximal or quasi-maximal model and, consecutively, we remove the terms that

Factor Studied Levels
V 7 and 13
P 8, 9, 10, 12, 13, 15 and 30
B 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9
E 0.1, 0.2, 0.3 and 0.4
C 2, 2.5, 3, 3.5 and 4
H 2 and 8

Table 2: Factor levels studied in the experiment.
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are not statistically significant. In our case, we have removed the interactions
between V and C, and between E and C, for not being statistically significant.
The final model is:

yijklmn = µ + τi + βj + δk + γl + αm + λn + (τβ)ij +

+(τδ)ik + (τγ)il + (τλ)in + (βδ)jk + (βγ)jl +

(βα)jm + (βλ)jn + (δγ)kl + (δγ)kl + (δα)km +

(δλ)kn + (γλ)ln + (αλ)mn + eijklmn (4)

where,

• yijklmn is the response or dependent variable corresponding to the average
score obtained from a data set protected using our method. As already
said, the average is calculated from 10 executions under the same condi-
tions.

• µ represents the mean value of the average score under the baseline situa-
tion. In general, the baseline situation corresponds to the combination of
the last levels of all the factors.

• τi, βj , δk, γl, αm and λn correspond to the main effects of the six factors
presented before. Specifically:

– τi corresponds to the effect of the ith level of V .

– βj corresponds to the effect of the j th level of P .

– δk corresponds to the effect of the kth level of B.

– γl corresponds to the effect of the lth level of E.

– αm corresponds to the effect of the mth level of C.

– λn corresponds to the effect of the nth level of H .

• (τβ)ij corresponds to the interaction of the ith level of V with the j th level
of P . Analogously (τδ)ik, (τγ)il, (τγ)il, (τλ)in, (βδ)jk , (βγ)jl, (βα)jm,
(βλ)jn , (δγ)kl, (δα)km, (δλ)kn, (γλ)ln and (αλ)mn correspond to the dif-
ferent interactions of the corresponding levels between the factors consid-
ered in the model, except for the two interactions removed in the model.

• eijklmn corresponds to the experimental error.

Appendix B details the SAS program used to fit our data following Model
(4).

For this model, the value of R2 is equal to 0.9914 indicating that the model
explains 99.14 % of the total variability in the data. The MSE is equal to 0.464
and the CV is equal to 1.27. Both are really small values, indicating once again
that the model fits appropriately the data.

The studentized residuals are obtained from the raw residuals by dividing
by its estimated standard deviation. This way, we obtain values from a nor-
mal distribution with zero mean and variance equal to 1. Since 95 % of the
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Figure 4: Residuals versus fitted values.

observations from a normal distribution with zero mean and variance equal to 1
range from −1.96 to 1.96, we expect at least 95 % of our studentized residuals
to belong to this interval. Figure 5 shows the studentized residuals versus the
values fitted by the model. Out of the 3920 residual values, only 205 present an
absolute value larger than 1.96, which represents the 5.22 % of the total residual
values.

As shown in Figure 6, the studentized residuals follow a normal distribution
with zero mean.

Model Analysis

In this subsection, we first analyze the importance and effect of the different
factors studied separately. Second, we study the most significant interactions.

Since our model satisfactorily predicts the real score values, we can assure
that the factors used in the model are the most significant ones and, also, that
they are sufficient to explain the variability of the quality of the results.

The first conclusion extracted from the results is that the number of variables
used in the RL process (V ) is very influent on the score. Intuitively, the larger
the number of variables in the model, the higher the DR and, subsequently, the
score. The second most important factor in terms of its effect on the score is
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Figure 5: Distribution of Studentized Residuals.

the size of the normalization range (B). Figure 7 shows the average score for
different values of the size fo the normalization range, both when the number
of variables used in the process is 7 and 13. As expected, the larger the size
of the normalization range, the easier the recognition of patterns using ANNs.
Nevertheless, later in this subsection, we will see that the best parametrization
might not imply having a size close to 0.95, like this first analysis would suggest.
Also, note that a normalization range size tending to 1 would also be unsuitable
since:

lim
B→1

Bin = ∞

In this situation, the ANN would not be able to learn.
Our results show that the number of partitions P is also statistically signif-

icant. This makes sense since P allows to control the IL of the ONN method.
In general, the larger the number of values in a partition, the larger the differ-
ence between the original and the protected data because the learning process
becomes more difficult. Therefore, as this difference grows, the IL increases
affecting negatively the score.

Although factors E and H are statistically significant, variations in their
values have a lower impact on the score, compared to V , B and P . In general,
the larger η or the number of hidden neurons, the lower the scores. Finally, C

is the less significant factor, meaning that there is not a clear relation between
choosing one of the levels of this factor and the score.
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Score Evolution considering P and B
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Figure 6: Graphical score evolution considering factors B and T.
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Interaction P*T
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Figure 7: Graphical score evolution considering factors P and T.

Regarding the interactions, we have seen that all of them are statistically
significant except for those between V and C and between E and C. Among
the significant interactions, we can see that those between factors P and B,
V and B, and V and P , in this order, present a larger effect on the score.
For example, studying the most significant interaction (between P and B), as
observed in Figure 8, the values in our data set show that there is not a unique
optimum number of partitions, but it depends on the normalization range size.
Specifically, this figure shows that there are two specific configurations that
achieve small values for the scores. These configurations correspond to the cases
where B = 0.6 and P = 8, and B = 0.8 and P = 12, respectively. Although it
cannot be seen in the plots, these results stand when we analyze the values for
the two levels of V separately.

A detailed analysis of all the interactions is beyond the scope of this paper
due to a lack of space. However, studying these interactions we conclude that
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P B E C H
A 8 0.8 0.4 4.0 8
B 10 0.8 0.1 3.5 8
C 10 0.8 0.1 3.0 8
D 10 0.8 0.1 4.0 8
E 8 0.8 0.1 4.0 2
F 8 0.8 0.3 4.0 8
G 8 0.8 0.1 3.5 2

P B E C H
a 8 0.795 0.4 4.0 8
b 8 0.785 0.3 4.0 8
c 8 0.800 0.4 4.0 8
d 10 0.805 0.2 4.0 8
e 8 0.795 0.3 4.0 8
f 8 0.820 0.4 4.0 8
g 8 0.815 0.4 3.5 8

(a) (b)

Table 3: ONN parameters used in the experiments.

there are two combinations of the values of the parameters that reduce the
score. Specifically, the configurations near to (P, B, E, C, H) = (8, 0.6, 0.3, 4, 8)
and (P, B, E, C, H) = (10, 0.6, 0.3, 4, 8) obtain the best scores both for V = 7
and V = 13.

6 Experiments

In order to test ONN, we use the data set provided by the US Census Bureau,
described in detail in [8, 14]. The Census data set is used in other works like
[7, 8, 19]. This data set contains 1080 records consisting of 13 attributes (which
is equal to 14040 values to be protected).

In this section, we compare ONN with the best ranked protection methods
presented in the literature. The survey in [8] reviews the most common protec-
tion methods concluding that Rank Swapping (RS-p) [13] and Microaggregation
(MIC-vm-k) [6] are the two methods that obtain lower scores for numerical data
protection. For this reason, we compare ONN with these two methods. Specif-
ically, we have chosen the best five parameterizations for RS-p and MIC-vm-k.

RS-p sorts the values of each attribute. Then, each value is swapped with
another sorted value chosen at random within a restricted range of size p. MIC-
vm-k builds small clusters from v variables of at least k elements and replaces
original values by the centroid of the clusters that the record belongs to.

Analogously to RS-p and MIC-vm-k, we have computed the score of the best
five parameterizations of ONN obtained from the ANOVA (see Table 3.a), and
the scores of the best five parameterizations extracted from a more accurate
ad-hoc search of the parameter values, using configurations close to the best
ones found by the ANOVA (see Table 3.b), executing another 4000 extra runs.

We have divided our experiments into two different scenarios. First, we
assume that the intruder only has half of the original protected attributes (V =
7), this scenario was used in [8]. Second, we assume that the intruder is able to
obtain all the original attributes (V = 13). This scenario could be considered
the most favorable scenario for the intruder.

Table 4.a shows the scores in the first scenario. As we can observe, the IL
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Method IL DR SCR
RS-14 23.83 24.21 24.02
RS-17 27.40 21.87 24.64
RS-12 21.08 27.83 24.45
RS-15 27.44 23.62 25.53
RS-13 25.39 26.35 25.87

MIC4m17 23.98 31.67 27.82
MIC4m19 26.10 31.09 28.59
MIC4m11 21.27 36.22 28.74
MIC3m20 21.95 35.85 28.90
MIC3m15 18.98 39.33 29.15
ONN-A 20.42 26.25 23.33
ONN-B 20.59 26.95 23.77
ONN-C 20.31 27.26 23.78
ONN-D 20.66 26.96 23.81
ONN-E 22.38 25.65 24.01
ONN-a 19.70 26.37 23.04
ONN-b 19.24 26.91 23.17
ONN-c 20.42 26.25 23.33
ONN-d 20.00 26.67 23.33
ONN-e 21.01 25.72 23.37

Method IL DR SCR
RS-14 23.83 31.32 27.58
RS-17 27.40 28.43 27.92
RS-12 21.08 35.83 28.46
RS-15 27.44 30.51 28.98
RS-13 25.39 33.79 29.59

MIC4m17 23.98 40.80 32.39
MIC4m19 26.10 40.10 33.10
MIC4m11 21.27 46.45 33.86
MIC3m20 21.95 46.70 34.33
MIC3m15 18.98 50.94 34.96
ONN-A 21.45 33.52 27.49
ONN-F 22.23 32.99 27.61
ONN-E 22.38 33.04 27.71
ONN-B 20.59 34.88 27.73
ONN-G 22.56 33.20 27.88
ONN-a 19.70 33.73 26.72
ONN-b 19.24 34.33 26.78
ONN-e 21.01 33.02 27.01
ONN-f 23.33 31.01 27.17
ONN-g 22.86 31.60 27.23

(a) (b)

Table 4: Average results of IL, DLD, PLD, ID using (a) 7 variables and (b) 13
variables.

when protecting data using ONN is lower than that obtained using RS-p or
MIC-vm-k. This means that ONN is able to fit the data set better than the
other two approaches. These results are coherent with the methodology used
by ONN to protect data. Since ONN is trained using the data set after being
preprocessed, the patterns learned depend on values that come from different
individuals in the original data set. Because of this, it would be necessary for
an intruder to know the values in each partition to be able to understand the
learned patterns. Since this information is no longer available after protecting
the data, with ONN we can get lower ILs while preserving relatively good rates
of DR.

Regarding DR, the best disclosure risk corresponds to RS-p. This results
make sense because when the intruder has a reduced set of variables, it is very
difficult to re-identify individuals because, by swapping, RS-p mixes values from
different individuals. ONN presents a good DR, better than that obtained by
MIC-vm-k.

Observing the scores, ONN shows to be the best protection method among
those presented in this paper and, therefore, all the methods studied in [8]. The
scores obtained by ONN are better than those obtained by RS-p and MIC-vm-
k, both using the configurations of ONN extracted from the ANOVA and the
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configurations of ONN determined by the ad-hoc accurate search. Naturally, the
scores in the latter case are even lower, being the best score equal to 23.04. Note
that, although the DR is lower for RS-p, the scores show that ONN is better
ranked, meaning that the benefits obtained by avoiding the IL compensate for
the increase in the DR.

Table 4.b shows similar results for the second scenario, where the intruder has
all the variables. As we can observe, the results are very similar. It is important
to notice that, the larger the number of variables known by the intruder, the
more similar the DR presented by RS-p and ONN.

7 Related Work

Privacy in statistical databases (PSD) is about finding trade-offs to the tension
between the increasing societal and economical demand for accurate information
and the legal and ethical obligation to protect the privacy of individuals and
enterprisers which are the respondents of the statistical data. Statistical agencies
cannot expect to collect accurate information from an individual or entity unless
they feel that the privacy of their responses is guaranteed; also, recent surveys
of web users show that a majority of these are unwilling to provide sensible data
to a web site unless they know that privacy protection measures are in place [2].

For these reasons, special efforts have been made to develop a wide range
of protection methods. These methods aim at guaranteeing an acceptable level
of protection of the confidential data. Good surveys about protection methods
can be found in the literature [3, 8].

Another research area where privacy is involved, is Preserving Privacy Data
Mining (PPDM) [4]. PPDM studies the case when a data mining technique
allows an intruder to obtain confidential information about specific individuals.

Recently, some authors are working in RL improvements to increase the DR
of a specific protection methods, for example, in [17] the authors show that the
IPSO protection method [5], which uses multiple regression models to protect
numerical data, increases its DR when a Mahalanobis distance is applied to
Distance Based RL. For this reason, it is clear that new protection methods
have to be designed to make the re-identification process more difficult, avoiding
ah-hoc attacks.

8 Conclusions & Future Work

In this paper, we have presented ONN, a new method for protecting data mini-
mizing the information loss. To our knowledge, no previous attempts had been
made to use artificial neural networks for this purpose. The use of neural net-
works, combined with other preprocessing techniques, to create a protected data
set from the original data has shown to be very useful and efficient. Specifically,
we have proven that ONN reduces the combined disclosure risk and the infor-
mation loss metric beyond the best approaches presented in the literature.

21



Through an statistical analysis, we have shown that it is possible to find a
configuration of the different parameters in the method that allows us to tune
our algorithm to obtain a good protection score. Among the main conclusions,
we have detected the most important parameters to explain the variation in
the score, we have deduced that the number of partitions used in our method
controls the information loss, and we have seen that the normalization method
used by ONN is necessary.

Future directions of this work include the establishment of a set of criteria
that allow to automatically tune the parameters of our method. It would also
be interesting to extend the use of ANN for data quality by providing solutions
in order to prepare data containing blanks or outliers, for data mining.
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A Model definition

A.1 Simple Example

The process of building a model that properly predicts the behavior of a response
variable in front of some factors is iterative. This means that we depart from a
maximal or quasi-maximal model and, consecutively, we remove the terms that
are not statistically significant.

Following, we initially present a simple example that allows us to understand
how to build an statistical model using the ANOVA technique. Let us suppose
that we need to study the impact of the number of processors and the memory
available on the execution time of a process. To that end, we study the case for
2, 4 and 8 processors (factor A) and 512 MB and 1 GB memory cards (factor B).
For any combination of an specific number of processors and an specific amount
of memory, we run the process ten times obtaining ten observations. Thus, the
number of observation in our data set is equal to 3× 2× 10 = 60. The maximal
initial model to analyze the set of data obtained would be the following:

yijk = µ + αi + βj + (αβ)ij + eijk

where, yijk is the kth observation of the response variable under the ith level
for the number of processors (i has three levels, i.e. it can take three possible
values: i = 1 corresponds to 2 processors, i = 2 corresponds to 4 processors and
i = 3 corresponds to 8 processors) and the j th level for the memory available
(which has two levels: j = 1 corresponds to 512 MB and j = 2 corresponds
to 1 GB). Parameter µ indicates the expected time for a baseline situation. In
general, the baseline situation corresponds to the combination of the last levels
of all the factors. In our case, it would correspond to the configuration where
we have 8 processors and 1 GB of memory. Parameter αi is a real number
that indicates the variation from µ produced by the knowledge of the number of
processors corresponding to the ith level of A. Analogously, βj is a real number
that indicates the variation from µ produced by the knowledge of the available
memory corresponding to the j th level of factor B. The term (αβ)ij corresponds
to the interaction of the two factors. Its value represents the contribution in the
execution time due to the fact that the observation has been obtained under the
ith level for the number of processors and the j th level for the available memory.
This interaction will not be significant if the effect of the number of processors
is the same for any amount of available memory. The term eijk corresponds to
the experimental error and contains the information in the data which is not
explained by any of the different factors. This term is equal to the observed
value minus the predicted value under conditions i, j and k and it is also known
as the raw residual.

In order to estimate the parameters of the model, some conditions must
be assumed. By default, the statistical software used (SAS v8.0 [1]) assumes
the constraints known as corner-point constraints, which are: α3 = 0, β2 =
0, (αβ)12 = (αβ)22 = (αβ)32 = 0. This conditions assume the situation where
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we use 8 processors and 1 GB of memory as the baseline, as we mentioned
before.

Once the parameters are estimated, ANOVA allows us to accept or refuse
the following three hypothesis tests:

H0 : ∀i ∈ {1, 2, 3} αi = 0

H1 : ∃i ∈ {1, 2, 3} such that αi 6= 0

H0 : ∀j ∈ {1, 2} βj = 0

H1 : ∃j ∈ {1, 2} such that βj 6= 0

H0 : ∀(i, j) ∈ {1, 2, 3}× {1, 2} (αβ)ij = 0

H1 : ∃(i, j) ∈ {1, 2, 3}× {1, 2} such that (αβ)ij 6= 0

If any of these H0 hypothesis is accepted, it means that the corresponding
factor or interaction is statistically not significant and can be removed from the
model in order to simplify it. For further details we refer the reader to [15].

Sometimes, it is not possible to find a good statistical model for a data set
because the response variable is not a linear function of the factors. When
this happens, the first thing to do is to apply a transformation on the response
variable in order to achieve this linearity. The most common transformations are
the squared root and the logarithm. When we apply a transformation, instead
of studying the variability produced by the factors on the response variable,
we study the variability produced in the new scale measurement. Nevertheless,
applying the inverse function, it is also possible to extract conclusion on the
initial response variable.

A.2 SAS Program

The program used in SAS is as follows:

PROC GLM;

CLASS V P T E C H;

MODEL y = V P T E C H V*P V*T V*E V*H P*T P*E P*C P*H

T*E T*C T*H E*H C*H / SOLUTION;

OUTPUT out=fittedAndResidual P=Fitted R=residuals

student=stud stdr=standard;

B SAS Program

The program used in SAS is as follows:

PROC GLM;

CLASS V P B E C H;
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MODEL y = V P B E C H V*P V*B V*E V*H P*B P*E P*C P*H

B*E B*C B*H E*H C*H / SOLUTION;

OUTPUT out=fittedAndResidual P=Fitted R=residuals

student=stud stdr=standard;
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