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Abstract

A general non-local approach to regularise strain-softening continua is pre-
sented. The key idea is to introduce the gradient-type enrichment at the level
of displacements (rather than some internal variable), so the model is formu-
lated with two distinct displacement fields. In fact, gradient models based on
two displacement fields are usual in non-local elasticity, where the goal is to
avoid the shortcomings of classical (local) elasticity (i.e. strain singularities
in statics, non-dispersive behaviour in dynamics). We show that such a gradi-
ent elasticity backbone model can be combined with any standard nonlinear
constitutive driver to render a regularised model for softening inelasticity.
To illustrate the generality of the approach, two prototype models (isotropic
damage and von Mises plasticity) are discussed. The numerical examples
show that the regularised models exhibit all of the desired features: mesh
insensitivity, imperfection size insensitivity and description of size effects.
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1. INTRODUCTION

Classical continuum theories are material models in which the stress is
related to the strain or the stress rate related to the strain rate. Further
derivatives (either spatial or temporal) are absent in the constitutive re-
lations. These models do not include any information on the underlying
microstructure of the material, and it is well known that they are not capa-
ble to describe realistically phenomena that are driven by physical processes
in which the microstructure interacts with the macroscopic geometry and
boundary conditions. Without attempting to be complete, a few examples
of the anomalies are given of classical continuum descriptions for elasticity
and inelasticity. Firstly, classical elasticity predicts singularities in stresses
and strains at the tip of sharp cracks or at dislocations. This indicates that
the usual definitions of stress and strain break down when used at very small
levels of observation. Secondly, classical elasticity predicts a non-dispersive
propagation of waves, whereas experiments conducted on heterogeneous ma-
terials show a dependence of the propagation characteristics (angular fre-
quency, phase velocity) on the wave number, i.e. in reality wave propagation
is dispersive. Thirdly, classical continua are not able to provide a mathe-
matically well-posed problem in case the peak in the stress-strain curve is
exceeded — a loss of uniqueness is observed and, correspondingly, numerical
simulations exhibit a strong and unrealistic sensitivity to the used spatial
discretisation. Finally, experiments indicate that the mechanical properties
of proportionally scaled specimens of different size depend on the actual size
of the specimen. These so-called “size effects” are not predicted by classical
continua.

Thus, amendments to classical continuum descriptions are needed for ap-
plications in elasticity as well as inelasticity. A popular class of non-classical
continua are the so-called non-local continua, in which the governing equa-
tions are extended with additional spatial averages (via integrals) or spatial
derivatives of one or more variables. These additional terms are accompanied
by additional material parameters which are normally expressed as internal
length scales, and precisely these internal length scales are a manifestation
of the microstructure that is lacking in classical continuum models. For a
general overview of non-local continuum models, we refer to the reviews by
Bazant and Jirasek (2002) and Aifantis (2003).



1.1. Computational aspects

In the computational mechanics community, many different implementa-
tions have been suggested during the last few decades for non-local continua.
Two relevant issues, when considering non-local continuum models for fi-
nite element implementation, are (i) employing standard element-by-element
assembly procedures or not, and (ii) the required continuity of the interpola-
tion functions. Regarding the first issue, there is a certain drawback in using
non-locality of the integral-type, as this class of models requires assembly
of element contributions that go beyond the nearest neighbours. While this
is not impossible (Jirdsek and Patzak, 2002; Rodriguez-Ferran et al., 2004),
nevertheless such procedures are not straightforwardly embedded in existing
finite element software that is normally based on an element-by-element as-
sembly of the tangent stiffness matrices (de Vree et al., 1995). In contrast,
the differential nature of gradient-type non-locality combines naturally with
finite element assembly procedures.

The second issue, that of continuity of the interpolants, is normally not
relevant for the integral-type non-locality but may become problematic for
classes of gradient enrichment where the governing partial differential equa-
tions are of the order four or higher. This can often be avoided in the
formulation of gradient damage and gradient plasticity theories, but gradi-
ent elasticity theories are normally fourth-order differential equations and
would, thus, require C!'-continuity of the interpolations. Several strategies
have been proposed to accomodate C!-continuous interpolations for gradient
elasticity, including meshless methods (Askes and Aifantis, 2002; Tang et al.,
2003), continuous/discontinuous Galerkin methods (Engel et al., 2002) or
the simultaneous interpolation of multiple state variables (Shu et al., 1999;
Amanatidou and Aravas, 2002; Askes and Gutierrez, 2006; Zervos, 2008).
However, these strategies often lead to either an important increase in the
number of degrees of freedom or to nodal connectivities that extend beyond
the nearest neighbour, thus affecting element assembly procedures.

A competitive implementation strategy is based on the operator split of
Ru and Aifantis, in which the fourth-order partial differential equations of
gradient elasticity are split into two sets of second-order partial differential
equations (Ru and Aifantis, 1993). The associated finite element implementa-
tions have also been pursued by (Tenek and Aifantis, 2002; Askes et al., 2008),
and more recently the extension towards dynamics has been made by Askes
et al. (2007). Interestingly, whereas the original splits of Ru and Aifantis were
formulated for use in gradient elasticity, similar strategies of reformulation



into two sets of coupled second-order differential equations were suggested
for gradient-enriched inelastic models (Rodriguez-Ferran et al., 2005; Jirdsek
and Marfia, 2005). As in the approach of Ru and Aifantis, the two sets of
unknowns are two sets of displacements, one of which is local or unsmoothed
and one of which is non-local or smoothed.

1.2. Towards a general formulation of gradient theories

The recent progress made in the implementation of various gradient-
enriched theories using two distinct displacement fields as the primary un-
knowns has inspired to attempt a further unification of the various imple-
mentations of gradient theories. This is based on the following observations:

e Microstructural influences occur in elastic as well as inelastic stages of
the loading process. Thus, it would be desirable to have a material
model that is equipped with non-locality in both stages of loading;

e In certain earlier formulations of gradient theories, the non-locality
was embedded within the nonlinear constitutive update, see for in-
stance Muhlhaus and Aifantis (1991); de Borst and Muhlhaus (1992)
as well as Ramaswamy and Aravas (1998a) and Ramaswamy and Ar-
avas (1998b). For a straightforward coupling of non-locality with the
various classical nonlinear material models that exist in the literature,
it would be desirable if the non-locality does not interfere with the
constitutive parts of the finite element package.

For these reasons, the aim is to formulate a general framework of non-local
models of the gradient-type, whereby the gradient-enrichment affects the
elastic parts as well as the inelastic parts of the response. Furthermore, in
its implementation the formulation should exhibit a clear division between
the non-locality and the (nonlinear) constitutive driver. In short, a gradient
elasticity backbone model is combined with a standard constitutive driver.

1.8. Outline

The remainder of this paper is organised as follows. The general gradient-
enriched model is presented in Section 2, first for elasticity and then for in-
elasticity. As prototype inelastic models, von Mises plasticity and isotropic
damage will be used. The appropriate formats for softening regularisation
are chosen based on the localisation analysis of Section 3. The finite element
discretisation is described in Section 4. One- and two-dimensional numerical



examples are shown in Section 5. Two key features are analysed: regulari-
sation of softening and modelling of size effects. The concluding remarks of
Section 6 close the paper.

2. MODEL FORMULATION

In the 1990s, Aifantis and coworkers formulated a gradient elasticity the-
ory whereby the stresses o are not only related to the strains € but also to
the Laplacian of the strains (Aifantis, 1992; Altan and Aifantis, 1992; Ru
and Aifantis, 1993):

o=C:(e—1*V%) (1)

where C' is a fourth-order tensor with the elastic moduli and ¢ is an internal
length scale. The infinitesimal strains equal, as usual, the symmetric gradient
of the displacements u,, that is € = V*u, (the subscript ¢ in u, indicates
that this concerns a gradient-enriched displacement field). The equilibrium
equations thus read

v (C: (Vi — £9°V,) ) +5=0 2)
where b are the body forces.

2.1. The Ru-Aifantis operator split for elasticity

Equation (2) is a fourth-order differential equation in terms of the dis-
placements, and its finite element implementation would therefore require
C!-continuity of the shape functions. However, a simplification of Equation
(2) is possible as shown by Ru and Aifantis (1993). An operator split can be
applied such that Equation (2) is rewritten as

V- (C:Vu)+b=0 (3)

from which u. can be computed. Afterwards, u, serves as input for a second
equation,
u, — °Vu, = u, (4)

from which u, is determined. Note that Equation (3) represents the equi-
librium equations of classical elasticity. Therefore, u. is interpreted as the
displacements of classical elasticity. Instead of solving the fourth-order dif-
ferential equations of expression (2), one must solve two sets of second-order
differential equations.



The first of these is no different from classical elasticity and uses exactly
the same boundary conditions, namely

Voa+b= 0 in €,
on= t  only, (5)
U= U onl,,
where n is the outward unit normal to the boundary, ¢ are prescribed tractions
on I'; and u are prescribed displacements on I',,.
The second of these two equations, Equation (4), introduces the gradient
effects and is accompanied by the following boundary conditions:

Uy N =U.N 50 (©)
on
V(ug-t) - n=V(u.-t) -n

where n and t are the directions normal and tangent to the boundary 0f2
respectively.

As mentioned already, the gradient effects are absent in Equation (3), but
gradient enriched displacements and, via derivation, strains can be obtained
from Equation (4). Singularities are removed from these gradient-enriched
strains (Askes et al., 2008), but not from the stresses since these are the
same as in classical elasticity (Ru and Aifantis, 1993). The gradient-enriched
strains can be subsequently used in the formulation of nonlinear material
models, as explained in the next Section. Splitting the original fourth-order
equation (2) into two second-order equations (3) and (4) has a major advan-
tage for finite element applications, in that the widely available C°-continuous
elements can be used, as has been explored by Tenek and Aifantis (2002) and
Askes et al. (2008). Due to the specific uncoupled nature of this case, the
two sets can be solved sequentially: firstly the classical local displacements
u, are resolved from Equation (3), after which they are used as a source term
in Equation (4) so as to solve for u,,.

2.2. FEaxtension to inelasticity

To move from elasticity into inelasticity, the counterpart of Equation (3)
is needed. A general framework is

V.o(eq4,e5) +b=0 (7)



with the stress defined as
0(€a,€y) =C 1€, — 8" (€4, €,) (8)

where €, = V*u, is the gradient-enriched strain and €, = V*u, is the strain
associated to the auxiliary displacement field u, defined, in analogy with
Equation (4), as

u, — (*°Vu, = u, (9)

There are two important differences with the elastic case of Equations (3)—
(4). Firstly, since u, and u, appear in both Equations (9) and (7), the system
of equations is fully coupled: it is not possible to solve the equilibrium equa-
tion (7) for u, and then use it as a source term in Equation (9) to compute
uy. The second, closely related difference is that the auxiliary displacements
u, are not the classical displacements of local inelasticity. Nevertheless, in
analogy to Bennett et al. (2007), u, can be identified as the microscopic
displacements whereas u, are the macroscopic displacements. With this in-
terpretation in mind, u, are regarded as auxiliary local (i.e. unsmoothed)
displacements in the remainder of this paper.

Note that the elastic part of the stress —that is, the first term in the
RHS of Equation (8)— depends only on the local strain &,, so the non-local
strain €, only appears in the inelastic part of the stress, s™°. This choice
is common in non-local models for damage and plasticity, see Bazant and
Jirdsek (2002). In addition, as shown in Section 3, it is the only format that
regularises softening.

The general framework of Equation (8) was illustrated for damage models
by Rodriguez-Ferran et al. (2004, 2005). Here it is extended to plasticity
models, to illustrate its generality.

2.2.1. Damage model.
For non-local damage models, Equation (8) takes the form (Rodriguez-
Ferran et al., 2004, 2005)

0(€a,89) = [(1 —w(ey)]C : & (10)

where w is the damage parameter, driven by the non-local strain €,. The
inelastic stress is defined as

s = w(e,)C : &, (11)



The damage parameter w depends on the non-local strain g, via the
history variable x, defined as

k(t) = max Y (¢) (12)

T<t

where Y is a scalar state variable. In a one-dimensional setting, Y is simply
the scalar strain ¢,. In a multi-dimensional setting, Y is defined either as

Y = \/Z max(0, ;)2 (13)

where ¢; are the principal strains of €, (Mazars model, see Mazars (1986))

or as
k—1 1 k-1 \> 12k

Y=———0L+ /| —=—1 —J 14

2k(1 — 2v) 1+2k\/(1—2y 1) o (14)

where I| = &) + ey +¢e3 and Jo = 1 [(61 — €2)? + (€2 — €3)” + (g3 — £1)?] are
the first invariant and the second deviatoric invariant respectively (e; are the
principal strains of ), v the Poisson’s ratio and £ the ratio of compressive
to tensile strength (modified von Mises criterion, see de Vree et al. (1995)).

Two different damage evolution laws are used: linear and exponential.
The linear law is

0 if Kk < K;
w(k) = § I iR <R <Ry (15)
1 if K > Ky

where k; is the damage initiation strain and k, is the ultimate strain. Equa-
tion (15) results in a linear softening branch in the stress-strain diagram.
The constant slope of this branch facilitates the localisation analysis of the
model, see Section 3.

The exponential law is

H<
w=1-——exp(—pO(k—r;)) for k>~ (16)

K
where k; is the damage initiation strain and [ is a material parameter that

controls the slope of the softening branch. This model is suitable for quasi-
brittle materials such as concrete.



2.2.2. Plastic model with non-local plastic strain.

Several non-local models for softening plasticity can be found in the lit-
erature, and have been thoroughly analysed and compared in Jirdsek and
Rolshoven (2003) (integral-type models) and more recently in Jirdsek and
Rolshoven (2009a,b) (gradient models). These models can be accommodated
in the general framework presented here.

Consider, as a first example, the model based on non-local plastic strain
Bazant and Lin (1988):

0(€a,€g) =C : (e, — ) (17)

In a displacement-based setting, the non-local plastic strain €f is obtained
from an auxiliary standard plasticity model involving the non-local strain g,
and a non-local stress s (different from stress ¢). This model reads

Hooke’s law s =C": (g, — €})

Flow rule €= \jr(s,q,)

(18)
(19)
Softening rule ¢, = —\;h(s,q,) (20)
Kuhn-Tucker conditions }\g >0; f(s,q,) <0; ng(s,qg) =0 (21)
(22)

Plastic consistency }\gf(s, q,) =0

Standard notation and concepts (see e.g. Simo and Hughes (1998)) are used
in Equations (18)-(22). Equation (18) reflects the additive decomposition of
strains into elastic and plastic strains. Plastic flow is governed by a generic
flow rule r in Equation (19). The evolution of the internal variables g,
is described by a generic hardening/softening rule h in Equation (20). The
yield function f and the plastic multiplier A, evolve according to the loading-
unloading (or Kuhn-Tucker) conditions (21) and the consequent consistency
(or persistency) condition (22), which establishes that the stress state should
“persist” on the yield surface for plastic flow to occur. Note that the inelastic
stress s = C': el only depends on the non-local strain.

The plastic model (18)-(22) is formally standard, in the sense that it
involves only one (not two) strain fields and it is completely local (all non-
local information already embedded into €,). For this reason, the usual return
mapping algorithms can be applied.



2.2.3. Plastic model with combination of local and non-local softening vari-
ables.

As discussed in Jirdsek and Rolshoven (2003) and illustrated in Section 5.1
with a uniaxial tensile test, the plastic model based on non-local plastic strain
locks for the late stages of softening. One possible remedy is to incorporate
non-locality into the model via a weighted combination of local and non-local
softening variables in the yield condition Vermeer and Brinkgreve (1994).
This model reads

Hooke’s law o =C: (g, —€b) (23)

Flow rule &7 = \,r(0,q,) (24)

Softening rule ¢, = —}\ah(a,qa) (25)

Kuhn-Tucker conditions A\, > 0; flo,q) <0; }\af(a,q) =0 (26)
Weighted softening variable g = (1 —m)q, +mgq, (27)
Plastic consistency A\, f(0,§) = 0 (28)

Note that the softening variable q is obtained from the local variable g, and
the non-local variable g, (with weights (1 —m) and m), so the plastic model
(23)-(28) must be solved in conjunction with the auxiliary model (18)-(22).
This renders the model based on a combined local /non-local softening vari-
able, which does not suffer from locking, more computationally demanding
that the model based on non-local plastic strain.

2.3. Boundary conditions

Boundary conditions for the regularisation equation are a key ingredi-
ent in gradient-enriched formulations. For the displacement-based approach
considered here, a natural choice is to prescribe non-homogeneous Dirichlet
boundary conditions (Rodriguez-Ferran et al., 2004, 2005):

u, = u, on 0f) (29)

Equation (29) has a clear physical meaning: auxiliary local and gradient
non-local displacements coincide along the boundary. However, as noted in
Jirdsek and Marfia (2006), this can have the negative effect of not allowing
displacement smoothing along the boundary. Such effect is especially detri-
mental in problems where localisation starts at the boundary (e.g. notched
specimens).
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To remedy this deficiency, non-homogeneous Neumann boundary condi-
tions were proposed in Jirdsek and Marfia (2006):

Vu, -n = Vu, -n on 02 (30)

(n is the outward unit normal). Equation (30) permits displacement smooth-
ing along the boundary, because u, and u, may be different on 9. However,
it does not ensure volume preservation. Assuming a constant density, this
condition reads

oz/gv.(ug—ua)dgz [y~ )t (31)

where the divergence theorem has been applied. Equation (31) and the above
discussion suggest the following combined boundary conditions:

Uy N =U, N
Q 2
V(ug-t) - n=V(u,-t)-n }on@ (32)

The essential boundary condition (32); ensures volume preservation, whe-
reas the natural boundary condition (32), allows displacement smoothing
along the tangent ¢t to the boundary. It may be argued that volume preser-
vation is not essential, because u, is simply an auxiliary displacement field
used to regularise the problem. However, volume preservation has a clear
geometrical meaning and does not preclude smoothing along the boundary,
as shown above. These combined boundary conditions have been used in
the two-dimensional examples of Section 5. Note that, in a one-dimensional
setting, Equation (32) reduces to the Dirichlet boundary conditions (29).

3. LOCALISATION ANALYSIS

A localisation analysis is carried out with a twofold aim: (i) investigate
appropriate formats of the constitutive equations for damage and plasticity,
and (ii) establish expressions for the critical wave length that can be used
to estimate a priori the width of the localisation zone. The one-dimensional
governing equations are written as

do do
0= J/(Ea,a’fg) = a—gaug + a—ggu;’ (33)

11



where a superimposed comma denotes an z-derivative. Equation (33) is used
together with
Uq = ug — CPul) (34)

A uniform reference state ¢; is assumed, and infinitesimal perturbations are
taken as u, = uy + du, together with u, = uy + du,. Note that the refer-
ence displacement v is linear and results in a uniform strain ¢, = ¢, = ¢o.
The perturbations are taken as general harmonic functions through du, =
Ajcoskx and du, = Ajcoskx, where k is the wave number and the two
amplitudes are denoted A; and A;. We require strain fields that are regu-
larised yet allow for strain concentrations; hence, k£ should be finite and real,
If k£ is not finite and real, the solution may be non-regularised (leading to
Dirac-delta type strain fields) or over regularised (precluding any localisation
of strain), but examining the exact nature of such cases is beyond the scope
of our study.

A relation between these two amplitudes is found by substituting the two
perturbation into Equation (34), which yields

Ap = Ay (1+ K*0%) (35)
Similarly, substituting the two perturbations into Equation (33) renders

97 | 4,27 _ (36)

A
' B2, Oeg

Finally, substituting Equation (35) into Equation (36) gives

do do 1

i — 37
Oe, * Ogg 1+ K202 (37)

3.1. Damage model

For uniaxial tension, k = Y = ¢, and the damage loading function is
given by
k(e — K;) Ow KKy

by which == (38)

wie) = O 2(ky — ki)

e(Ky — K;)

Four different formats of the constitutive law will be distinguished, depending
on which strain (g, or g4) is used.

12



format 1: It is assumed that 0 = (1 —w(e,))Ee,. When this is substituted
into Equation (37), one obtains

liiE

Ry — Ry

=0 (39)

which does not depend on k£ and has no solution. This format is not
suitable for regularisation.

format 2: The stress-strain relation is taken as 0 = (1 — w(g,))Ee,. Sub-
stitution into Equation (37) gives

E
i (1 + @m?) =0 (40)

Ry — K €0

which again leads to an imaginary wave number k (i.e. model not
regularised).

format 3: Next, it is assumed that 0 = (1 — w(ey))Fe,. This is combined
with Equation (37) and yields

b {—1 + (ﬁ - 1) W?] —0 (41)

Ky — Ky €o

resulting in a real wave number k., which means that this format is
suitable for regularisation.

format 4: Finally, 0 = (1 — w(e,))FE¢, is investigated. Equation (37) can
then be elaborated as
) 1
Ky — Ki 1+ k202

=0 (42)

which leads to an infinite wave number £ (i.e. format not suitable for
regularisation).

3.2. Plasticity model with non-local plastic strain

Similar to damage, a piecewise linear stress-strain relation is assumed.
The one-dimensional model can be written as

. . E?
o= Eé — 5™(¢) in which §mel(g) = P

where H is the hardening modulus. Again, four different formats of the
constitutive law are studied.

¢ (43)
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format 1: The stress-strain relation is taken as & = Eg, — §™°!(¢,). Substi-
tution into Equation (37) yields

EH
E+H
This format is not valid for regularisation.

(44)

format 2: Next, it is assumed that ¢ = F¢, — §™(¢,). Combined with

Equation (37) this gives

EH E ..\
E+H(1—ﬁk5)_0 (45)

For softening (H < 0), this leads to an imaginary wave number.

format 3: With an assumed stress-strain relation as ¢ = FE¢, — §"(¢,),
Equation (37) yields

EH E+H ,,
1 = 4
E+H(+ - M) 0 (46)

A real wave number k. is obtained for negative H under the condition
that £+ H > 0. This format is valid for regularisation.

format 4: Finally, 6 = E¢, — §™°(¢,) is tested. When this is substituted
into Equation (37), the result is

EH 1
E+ H1+ k?0?
which leads to an infinite wave number k. Thus, this format is not
good for regularisation.

=0 (47)

The above localisation analysis shows that, for both models, the only
combination of strains that regularises softening is format 3 (i.e. strain g,
in the elastic part of the stress, and softening driven by ¢,). Of course,
format 1 (local model with no enrichment) has no regularisation capabilities.
The analysis also shows that format 4 (i.e. “fully” enriched model) and
format 2 (inverse of format 3) are invalid combinations as well. This is in
correspondence with the numerical results of Chang et al. (2002) for damage
with format 3.

14



3.3. Plasticity model with local/non-local softening variable

The non-locking plasticity model is considered now. The goal is to assess
the influence of the weighting parameter m on its regularisation capabilities.
The one-dimensional model can be written as

_ EH(1-m) . E?Hm
T ErHA-m) T (E+HE+ H(1—m)

Eg (48)

Substitution into Equation (37) renders

EH(1—m) E?Hm 1
E+xH(1-m) (E+ME+H(1-m)]l+ ke

As a first check, note that Equation (49) coincides with Equation (44) if
m = 0 and with Equation (47) if m = 1. These are the expected results,
because the model is local for m = 0 and “fully” enriched for m = 1.
Equation (49) can be recast as

EH E__1 )| 2o (50)
E+H1-m)|  "\E+H1+Rr2E -

which has a real solution ke if m > 1 or m <1+ E/H. It is interesting to
note that the requirement m > 1 is common to all the versions of the model:
the one based on two displacement fields presented here, and the original
ones based on regularising the softening variable, either with an integral-
type approach (Jirdsek and Rolshoven, 2003) or with a gradient approach
(Jirdsek and Rolshoven, 2009b).

Although a (large) negative m < 1+ FE/H is admissible according to
Equation (50), it does not render a regularised model. In fact, as shown by
Jirdsek and Rolshoven (2009b), a positive “local” plastic modulus (1 —m)H
is needed (that is, m > 1).

=0 (49)

3.4. Chritical wave lengths

The width of the zone in which strain localisation is active can be es-
timated from the critical wave length A associated to the critical wave
number k. For the damage formulation (format 3) it is found that

1 €0 2 Ky — €0
v ;o Aait = 7— =27l
é Ry — €0 kcrit €0

(51)

kcrit =

15



For the plasticity model with non-local plastic strain (again format 3) one

obtains
1 —-H 2m E+H
kCI‘i - - ; )\cri - — 2 g
TV ETH ke OV —H
Finally, for the plasticity model with weighted local /non-local softening vari-
able, the critical wave length is

2 (1—m)(E+H)
haie = 7 = 27r£\/ S H—m) (53)

(52)

so, for the value m = 2 suggested by Jirdsek and Rolshoven (2003), one gets

2 EF+H
/\cri:_:2€
ke VE-H

(54)

4. FINITE ELEMENT DISCRETISATION

The derivation of the weak form of Equations (7) and (9) and its finite
element discretisation are standard, and leads to

requil(um ug) = int(uaa ug) - fext =0 (55>
Tregn (g, Uy) := —Mu, + (M + *D)u, = 0 (56)

Note that upright boldface is used for finite element vectors and matrices: the
nodal displacements u, and ug; the internal and external forces fi,,; and fo;
the (non-linear) equilibrium residual requi(u,, uy) and the (linear) regulari-
sation residual ryeg(u,,uy); and the mass and diffusivity matrices, defined
as

M = / N'NdQ and D= / VNTVNd (57)
Q Q

with N the matrix of shape functions and VIN the matrix of shape function
gradients. The Voigt notation is used, so o, &, and €, now represent the

usual finite element vectors rather than tensors. The internal force vector is
defined as

ot — / B0 (e, e,)d0) (58)
Q

where B is the usual matrix of shape function derivatives. The integrals in
Equations (57) and (58) are typically approximated by means of a Gaussian
quadrature.
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Consistent linearisation is required for the solution of Equations (55) and
(56) by means of Newton’s method, and results in

K, K, ]fouit') _ f[—ri (59)
-M (M + /?D) (5u;+1 0
where 7 is the iteration counter, du is the iterative correction in displacements,
and the stiffness matrices are

OT equil 0Aa(e,,€,)
Ko = —2= = | Bl———Bd(
T Ou, /Q ohe, O (60)
81‘e uil aAG(EG € )
K = —2 = [ B"m—2"2BdQ 1
Y Ou /Q OAe, I (61)

where finite (rather than infinitesimal) increments of stress and strain are
taken for consistency.

The computational efficiency of regularising the problem at the level of
displacements is clear from Equation (59): since the residual ryeq, is linear,
the two blocks in the second row of Equation (59) are constant and rf,, is
zero after the first iteration. This is not the case in standard gradient models,
where the regularisation equation (written in terms of, say, inelastic strains

or state variables) is nonlinear Rodriguez-Ferran et al. (2005).

4.1. Damage
For the damage model of Equation (10), the tangent operators are
0A0(€,,€,) 0Ac(e4,€,) Ow
— L = [(1- C d —% = Ceg,— 2
8A8a [( w<6g)] an aAeg € aeg (6 )
so the stiffness matrices are
Ko = / B’ [(1 — w(eg,)] CBdQ (63)
Q
Koy = — / B Ce, 2 Bao (64)
Q ey

Note that K,, in Equation (63) is the usual secant matrix, whereas K,
is the tangent contribution to the stiffness. The only difference with respect
to a local damage model is that this latter matrix depends on both strain

fields.
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4.2. Plasticity

Similarly, if the plastic model with non-local plastic strain is used, see
Section 2.2.2, the tangent operators are

0A0(€q,€5) 0A0(€q,€5)
Jhe. C., and one, C, (65)
where
C, = C (66)
C, = CP-C (67)
with
(Ce:Vsf)(Vsf: Cp)
ep _ _
Ce Ce H+Vsf :C.:Vsf (68)
C. = (C'4+AaN: V)™ (69)
B

For simplicity, an associated flow rule r = a—i: and only one internal vari-
able ¢, are assumed. Note that Equations (68) and (69) are the standard
definitions of the consistent tangent operators for the auxiliary model in
terms of s and g,,.

For the plastic model with combined local /non-local softening variables,
see Section 2.2.3, the tangent operators are

(Cc,a . vafa)(va'fa . Cc,a)
(1 - m>H + Va‘fa : Cc,a . vafa
C - mH(Cc,a : vafa)(vsfg : Cc,g)
, = ()
[(1 - m)H + vafa : Cc,a : Va'fa] [H + vsfg : Cc,g : stg}
with C., and C., given by Equation (69).
The stiflness matrices are now

Ca = Cc,a_

(70)

Ko = / B’ C,BdQ (72)
Q
K. = / B'C,Bd (73)
Q
In this case, K,, is simply the elastic stiffness matrix (so it does not de-
pend on the iteration counter ¢) and K, is the tangent contribution. Again,

the only difference with respect to a local model is that this latter matrix
depends on the two strain fields rather than only local strains €.
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5. NUMERICAL EXAMPLES

5.1. Uniaxial tensile test

The regularisation capabilities are assessed first by means of a uniaxial
tensile test, see Figure 1 and Rodriguez-Ferran et al. (2005).

7
A ™ g

W
L 1

Figure 1: Uniaxial tensile test

The central tenth of the bar is weakened (10% reduction in Young’s
modulus) to trigger localisation. The geometrical and material parameters
are summarised in Table 1. As suggested in Jirdsek and Rolshoven (2003),
the weighted softening variable of Equation (27) is computed with m = 2.
The numerical tests are displacement-controlled. The three inelastic models
(damage and two plasticity models) will be discussed in parallel.

Table 1: Uniaxial tensile test. Geometrical and material parameters

Meaning Symbol Value
Length of bar L 100 cm
Idem of weakened part Ly 10 cm
Cross-section of bar A 1 cm?
Young’s modulus E 20000 MPa
Idem of weaker part Ew 18 000 MPa
Damage model

Damage threshold K 1074
Ultimate strain K, 1.25 x 1072
Plasticity models

Initial yield stress oy 2 MPa
Idem of weakened part oyw 1.8 MPa
Softening modulus (Section 2.2.2) H —2000 MPa
Softening modulus (Section 2.2.3) H —200 MPa
Weighting parameter m (Section 2.2.3) m 2

The goal of the first analysis is to check whether the models regularise
softening. A fixed internal length ¢ = /5 cm and five different meshes of 40,
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80, 160, 320 and 640 elements (corresponding respectively to element sizes h
of 2.5, 1.25, 0.625, 0.3125 and 0.15625 cm) are used.

The results are summarised in Figure 2. The excellent agreement in force-
displacement curves of Figures 2(a), 2(c) and 2(e) clearly indicates that mesh
dependency is completely removed. Indeed, as shown in Figures 2(b), 2(d)
and 2(f), the width of the localisation band does not depend on the element
size.

Figure 2 also shows the different response at the late stages of softening
between the two plasticity models. The model based on non-local plastic
strain locks and does not unload to zero stress, see Figure 2(c), and exhibits
an expanding plastic strain profile, see Figure 2(d). The model based on a
weighted local /non-local softening variable, on the other hand, is locking-free,
see Figures 2(e) and 2(f).

In the second analysis, a fixed mesh of 80 elements and different values of
the internal length ¢ (1, V2, /5, V10, v/20 and v/40 cm) are considered. The
results are summarised in Figures 3 (damage model) and 4 (plastic model
with local/non-local softening variable). Note that, as desired, both the
ductility in the force-displacement response and the width of the localisation
zone increase with the internal length.

In fact, the relation between the internal length scale and the width of the
localisation zone is provided by the localisation analysis of Section 3. The
critical wave lengths are Aeiy = 2704/ (Kky — K;i)/K; for the damage model and
Aait = 2m+\/(E + H)/(E — H) for the plasticity model with local/non-local
softening variable, see Egs. (51) and (54) where we have substituted gy = k;
to evaluate the critical wave length at damage initiation.

The values of A\ and the width of the localisation zone for the different
¢ are shown in Table 2. The agreement is excellent for the damage model,
see Figure 3(b). For the plastic model the relation is not so straight-forward,
because two different plastic strains are involved. Table 2 shows, however,
that the critical wave length is an intermediate value between the two possible
definitions of “width of localisation zone”, see Figures 4(b) and (c).

The expressions of the critical wave length in Section 3 also provide insight
in the different qualitative behaviour of the two plasticity models. To avoid
negative yield stresses, the softening modulus is set to zero when the yield
stress is null. Setting H = 0 results in an infinite critical wave length for
the model with non-local plastic strain, see Equation (52), so the width of
the localisation zone expands. For the model with local/non-local softening
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variable, on the other hand, the critical wave length remains finite for H = 0,
see Equation (54), and so does the width of localisation.

Table 2: Uniaxial tensile test: critical wave length vs. observed width of localisation zone
(in cm)

Damage model

0 1 V2 V5 VIO
Nerit 213 30.1 476 67.8
width in Figure 3(b) | 225 30 50 77.5

Plasticity model with local/non-local softening variable
( 1 V5 V10 V20 V40
Acrit 6.2 139 19.7 2738 39.3
width in Figure 4(b) | 5 10 15 20 27.5
width in Figure 4(c) | 12.5 27.5 375 55 77.5
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Figure 2: Influence of mesh size on uniaxial tensile test: force-displacement curves (left)
and localisation zone (right) for damage model (top row), plasticity model with non-local
plastic strain (middle row) and plasticity model with local/non-local softening variable
(bottom row).
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Figure 3: Influence of internal length ¢ on uniaxial tensile test — damage model: (a)
force-displacement curves; (b) final profiles of damage w.
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Figure 4: Influence of internal length ¢ on uniaxial tensile test — plastic model with
weighted softening variable: (a) force-displacement curves; (b) final profiles of local plastic
strain ef; (c) final profiles of non-local plastic strain 5.
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5.2. Biaxial compression test

The classical biaxial compression test (Pamin, 1994; de Borst and Pamin,
1996) is analysed next using a von Mises plastic model with linear softening
and non-local plastic strain, see Section 2.2.2. As in Pamin (1994), the
case with an imperfection at the left bottom corner is used to illustrate
mesh insensitivity, whereas the case with a centred imperfection illustrates
imperfection size insensitivity. The material and geometrical parameters are
summarised in Table 3.

Table 3: Biaxial compression test. Geometrical and material parameters

Meaning Symbol Value
Height of specimen L 120 mm
Width of specimen B 60 mm
Shear modulus G 4000 MPa
Poisson’s ratio v 0.3
Initial yield stress oy 100 MPa
Idem of imperfection oy 90 MPa
Softening modulus H —400 MPa
Internal length scale /¢ 0.5 mm

Figure 5 shows the four finite element meshes used for the first analysis.
Note that the bottom corner imperfection has a constant size of 10 x 10. The
results are clearly mesh-insensitive in all the relevant outputs: deformation
patterns, Figure 6(a); plastic strain profiles, Figure 6(b); force-displacement
curves, Figure 7.

In the second analysis, the medium mesh of 12 x 24 elements and two
centred imperfections of sizes 5 x 5 and 25 x 25 are used, see Figure 8. Again,
mesh-insensitive results are obtained, see Figures 9 and 10.

To sum up: neither the finite element size nor the imperfection size control
the mechanical response. This clearly shows the gradient-enriched plasticity
model also regularises softening in a multidimensional setting.
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(a) (b) (c) (d) (e)

Figure 5: Biaxial compression test: (a) problem statement; finite element meshes of (b)
6 x 12 elements; (c¢) 12 x 24 elements; (d) 18 x 36 elements; (e) 24 x 48 elements

Figure 6: Biaxial compression test: (a) deformation pattern and (b) equivalent plastic
strain for the four finite element meshes
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Figure 7: Biaxial compression test: force-displacement curves for the four finite element
meshes

(a) (b)

Figure 8: Biaxial compression test: (a) small imperfection; (b) large imperfection
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Figure 9: Biaxial compression test: (a) deformation patterns and (b) equivalent plastic
strain for the two imperfection sizes
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Figure 10: Biaxial compression test: force-displacement curves for the two imperfection
sizes
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5.8. Direct tension test

As a final example of softening regularisation, a direct tension test is
simulated, see Figure 11(a). A square plate is clamped at the right edge and
subjected to a linear distribution of displacements at the top and bottom
edges. A damage model with the Mazars definition of the state variable and
linear softening is used, see Section 2.2.1. An imperfection of constant length
and variable width (one finite element) triggers localisation. The geometrical
and material parameters are summarised in Table 4.

N

L1,

L=10

Wi~
I

(a) (b) (c) (d) ()

Figure 11: Direct tension test: (a) problem statement; finite element meshes of (b) 10 x 11
elements; (c) 20 x 21 elements; (d) 30 x 31 elements; (e) 40 x 41 elements

Table 4: Direct tension test. Geometrical and material parameters

Meaning Symbol Value

Size of specimen L 10 cm

Length of weaker part Ly 1 cm

Width of weaker part hw 1 finite element

Young’s modulus E 20000 MPa

Idem of weaker part Ew 2000 MPa (90% reduction in E)
Damage threshold Ki 1074

Ultimate strain Ku 1.25 x 1072

Characteristic length [ V7 x107* em

As a first test, a Poisson’s coefficient v = 0 is considered. To assess the
regularisation capabilities, the simulation is carried out with four different
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meshes of 10 x 11, 20 x 21, 30 x 31 and 40 x 41 elements, see Figures 11(b)-
(e). Note that mesh size and imperfection size insensitivies are analysed
simultaneously.

The results are summarised in Figures 12 and 13. The damage distri-
butions of Figure 12 and the force-displacement curves of Figure 13 clearly
show that the model is regularised. Figure 12 also shows the crack branching
caused by the boundary conditions at the right-hand-side of the specimen.

Figure 12: Direct tension test: damage for the four finite element meshes with deformed
meshes (x50)

16,
—10x11 mesh

14 —20x21 mesh
—30x31 mesh
---40x41 mesh

0 002 004 006 008 0.1
Displacement

Figure 13: Direct tension test: force-displacement curves for the four finite element meshes

As a second test, the finest mesh of 40 x 41 elements and four different
Poisson’s coefficients v = 0, v = 0.2, v = 0.25 and v = 0.3 are considered.
Again, mesh-insensitive results are obtained. Figure 14 shows the influence
of v in the crack pattern: the length of the damaged branch and the initiation
of the branching phenomenon strongly depend on the Poisson’s ratio.

5.4. Three-point bending test
Together with softening regularisation, non-local models are also expected
to capture size effects. To check whether this is the case for the approach
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Figure 14: Direct tension test: damage for the four Poisson’s coefficients with deformed
meshes (x50)

presented, the three-point bending test reported in Askes et al. (2004) is
reproduced here. The beam has dimensions 4D x D and a proportional
wedge-shaped notch with dimensions 0.25D x 0.25D, see Figure 15(a). Seven
different sizes are analysed (D = 1, 2, 4, 8, 16, 32 and 64 mm) with a constant
internal length scale of £ = 0.1 mm. The damage model given by Equations
(14)—(16), with the material parameters of Table 5, are used.

Table 5: Three-point bending test. Material parameters

Meaning Symbol Value
Young’s modulus E 30000 MPa
Poisson’s ratio v 0.15
Damage initiation strain Ki 0.0001
Post-peak slope parameter I} 500
Compressive-to-tensile strength ratio & 10
Internal length scale l 0.1 mm

The results are plotted in Figure 15(b), which shows the nominal strength
o (defined as the peak load divided over the structural dimension D) versus D
in the usual log-log scale. Note that a size effect in the whole dimension range
is indeed predicted by the numerical experiments, and it is in reasonable
accordance with Bazant’s Size Effect Law (SEL), given by

o bR -

J1+ D/D,

where parameters Bf] (f;: tensile strength of the material; B: geometry-
related parameter) and Dy (characteristic size) are fitted via linear regression
(resulting in B f] = 0.3287 MPa and D, = 34.55 mm).
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Figure 15: Three-point bending test: (a) problem statement; (b) nominal strength vs.
structural dimension

The authors appreciate that the correspondence with SEL is not as strong
as perhaps would be expected: the large-size asymptote does not exhibit a
slope of -1:2 as predicted by SEL. However, this seems to be quite common:
numerical simulations carried out with non-local damage models tend to
predict large size asymptotes with less steep slopes, see for instance (Le
Bellégo et al., 2003) where an integral nonlocal model was used and (Askes
et al., 2004; Tacono et al., 2008) where gradient-type non-locality was used.
The results of these studies, alongside those of the present paper, are obtained
from various independently developed finite element codes; thus, the observed
large-size asymptotes seem to be a property of the non-locality rather than
of the particular implementation.

6. CONCLUDING REMARKS

We have presented a general framework for the regularisation of strain-
softening continua. Generality stems from the fact that gradient enrich-
ment is introduced at the level of displacements, rather than some (model-
dependent) internal variable. This approach does not provide a universal
recipe for the formulation of non-local models: as illustrated for plasticity in
Sections 2.2.2 and 2.2.3, careful design and analysis of the localisation prop-
erties are still required. However, it brings together gradient elasticity (goals
of gradient enrichment: removal of singularities and dispersive behaviour)
and gradient inelasticity (goals: softening regularisation and description of
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size effects). Moreover, working with two displacement fields has attractive
features regarding consistent linearisation of the equilibrium equation and
the prescription of boundary conditions for the regularisation equation.

The 1D and 2D examples clearly show that mesh sensitivity and im-
perfection size sensitivity are indeed avoided with the proposed approach.
Although simple prototype models have been used (i.e. isotropic damage
and Mises plasticity), we conjecture that two displacement fields may also be
used to regularise more sophisticated models (for instance, coupling damage
and plasticity).

As dictated by the one-dimensional localisation analysis, the gradient
enrichment affects only the inelastic part of the stress, whereas the elastic
stress remains local. The localisation analysis also provides 7) insight into the
different qualitative behaviour (locking vs. non-locking) of the two plasticity
models (non-local plastic strain vs. local/non-local softening variable) and
ii) an approximation to the width of the localisation zone.
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