

A Comparative Analysis of i*-Based Agent-Oriented Modeling Languages
�

Claudia P. Ayala, Carlos Cares, Juan P. Carvallo, Gemma Grau, Mariela Haya,
Guadalupe Salazar, Xavier Franch, Enric Mayol, Carme Quer

Universitat Politècnica de Catalunya (UPC)
C/Jordi Girona 1-3, UPC-Campus Nord (C6), Barcelona (Spain)

{cayala, ccares, carvallo, ggrau, mhaya, gsalazar, franch, mayol, cquer}@lsi.upc.edu
http://www.lsi.upc.edu/~gessi/

�

Abstract

Agent-oriented models are frequently used in disciplines

such as requirements engineering and organizational process
modelling. i* is currently one of the most widespread notations
used for this purpose. Due to its strategic nature, instead of a
single definition, there exist several versions and variants, often
not totally defined and even contradictory. In this paper we
present a comparative study of the three most widespread i*
variants: Eric Yu’s seminal proposal, the Goal-oriented
Requirement Language (GRL) and the language used in the
TROPOS method. Next, we propose a generic conceptual model
to be used as reference framework of these three variants and
we show its use for generating specific models for the three
mentioned variants, as well as for other existing proposals.

1. Introduction

In the last years, the construction of agent-oriented models

has become an extended practice in fields such as requirements
engineering and organizational process modelling [1, 2, 3].

There exist several proposals of languages for the
construction of agent-oriented models. Among them, we are
interested in the i* notation proposed by Eric Yu in the first half
of the 90’s [4, 5]. i* allows for the clear and simple statement of
actor’s goals and dependencies among them. It also includes a
graphical notation which allows for a unified and intuitive vision
of the environment being modelled, showing its actors and the
dependencies among them. Moreover, the i* framework also
provides an interactive support for an argumentative, but not
fully automatic, style of reasoning about actors and their
dependencies.

A characteristic that is soon discovered when starting to use
i* is that there is not a single definition of the language. This
looseness is somehow intentional because, due to its nature and
objectives, it was pretended to give the language some degree of
freedom. But on the other hand, flexibility generates some
doubts when using the notation. Furthermore, the existing
definitions suffer from several pathologies that are well-known
when defining formal languages, among them ambiguities,
contradictions and incompleteness. As a result, there is a

tendency of each research team to create its own customized i*,
resulting in multiple variants and hampering therefore the
exchange of knowledge in the interested community. Some of
the i* variants in process of consolidation are the Goal-oriented
Requirement Language (GRL) [6, 7] and the language of the
TROPOS method [8, 9, 10]. As a matter of fact, these two
variants raise other questions: when to use one or another, or
Yu’s seminal proposal?, and, which are the characteristics of
each of these three proposals? The answers are not clear,
especially when considering that there is more than one version
for some of these proposals.

The objective of this paper is to clarify some of these
questions, by means of the definition of a reference framework,
to be used in the analysis and classification of the analyzed i*
variants. Sections 2, 3 and 4 briefly present the characteristics
and our analysis of each of these variants. Additionally, we
complement the study with observations following Meyer’s [11]
criteria for the analysis of informal specifications (since this is
the predominant style in the description of these variants): noises
(existence of irrelevant information), silences (information that
is not mentioned), contradictions and ambiguities. Section 5
shows a comparison of the proposals. Section 6 proposes a
conceptual model to be used as common reference framework
and studies one of the analyzed variants, more precisely Yu's i*,
with respect to this framework. Section 7 briefly describes how
other i* variants can be integrated into the framework. Finally,
section 8 includes the conclusions. The paper assumes a basic
knowledge of i* from the reader.

2. The i* framework

The i* framework defined by Eric Yu [2, 4] is the seminal

proposal of the family of agent-oriented languages in which we
are interested. Particularly, his doctoral thesis dissertation [4] is
the most cited document describing the i* language and
therefore we have used it as main reference in this section.

The i* framework proposes the use of two models, each one
corresponding to a different abstraction level: a Strategic
Dependency (SD) model represents the intentional level and the
Strategic Rationale (SR) model represents the rational level.

A SD model consists of a set of nodes that represent actors
and a set of dependencies that represent the relationships among
them, expressing that an actor (depender) depends on some
other (dependee) in order to obtain some objective (dependum).
The dependum is an intentional element that can be a resource,
task, goal or softgoal (see [4] for a detailed description of their
meaning). It is also possible to define the importance (strength)
of the dependency for each of the involved actors using three
categories: open, committed and critical.

A SR model allows visualizing the intentional elements into
the boundary of an actor in order to refine the SD model with
reasoning capabilities. The dependencies of the SD model are
linked to intentional elements inside the actor boundary. The
elements inside the SR model are decomposed accordingly to
two types of links:
• Means-end links establish that one or more intentional

elements are the means that contribute to the achievement
of an end. The “end” can be a goal, task, resource, or
softgoal, whereas the “means” is usually a task. There is a
relation OR when there are many means, which indicate the
different ways to obtain the end. The possible relationships
are: Goal-Task, Resource-Task, Task-Task, Softgoal-Task,
Softgoal-Softgoal and Goal-Goal. In Means-end links with
a softgoal as end it is possible to specify if the contribution
of the means towards the end is negative or positive.

• Task-decomposition links state the decomposition of a task
into different intentional elements. There is a relation AND
when a task is decomposed into more than one intentional
element. It is also possible to define constraints to refine this
relationship. The importance of the intentional element in
the accomplishment of the task can also be marked in the
same way that in dependencies of a SD model.

The graphical notation is shown in Figure 1 using an example
about academic tutoring of students. On the left-hand side, we
show the SR model of a tutor and the hierarchical relationships
among their internal intentional elements. On the right-hand
side, we show the SD dependencies between a student and a
tutor.
Actors can be specialized into agents, roles and positions. A
position covers roles. The agents represent particular instances

of people, machines or software within the organization and
they occupy positions (and as a consequence, they play the roles
covered by these positions). The actors and their specializations
can be decomposed into other actors using the is-part-of
relationship.

SR models have additional elements of reasoning such as
routines, rules and beliefs. A routine represents one particular
course of action (one alternative) to attain the actor’s goal
among all alternatives. Rules and beliefs can be considered as
conditions that have to fulfil to apply routines.

In Figure 2 we show an extract of the conceptual model in
UML [12], corresponding to the i* language. It integrates most
of the described concepts, except those related to the additional
reasoning elements. New concepts that are useful for modelling
are: the class Dependable Node, which models the intentional
elements for which it is possible define dependencies, that is,
actors and intentional elements of the SR model; the Root
association which represents the root of a SR decomposition
inside an actor; the Dependency Equivalence that states
equivalences among SD dependencies and their refinement in
the corresponding SR models.

After the analysis of the i* language based on the study of [4]
we have identified some anomalous situations, mainly due to the
(intended) incompleteness of the formalization of i* in TELOS
[13] included in the thesis. This incompleteness implies the need
of an intensive study of the textual descriptions and the
examples to complete the knowledge about i*. Altogether leads
to the following observations:
• Noise. The is-a relation (generalization/specialization) is

used profusely in the examples as a simplification of the
notation, but it is not defined as a constructor of the
language. On the other hand, the routine concept is defined
in the formalization and description of SD models. This
situation induces to confusion, since in fact its use as a
reasoning element is just noticeable in the SR model.

• Silence. The following situations have been detected: it is
not indicated if it is allowed more than one root in the
internal decomposition of an actor; it is not explicit if any
type of intentional element can be root of a decomposition;
it is not specified if an actor can decompose into other
actors by means of an is-part-of; it is not detailed if a
dependum can be related to more than one depender; the
formalization and description of constraints of the task-
decomposition link is incomplete; although definitions of
the different types of nodes exist (actors and intentional
elements), their criteria of use can be deduced only by
analyzing the examples included in the text.

• Ambiguities. The importance (strength) of a dependency is
interpreted differently depending on whether it is defined in
the depender or in the dependee side, which seems to imply
that a dependency can have different importance for each
involved actor. Nevertheless, we have not found examples
clarifying this point.

�

Figure 1. Example of an i* model for an academic tutoring system.

3. The Goal-oriented Requirement Language

The Goal-oriented Requirement Language (GRL) is a

language used in agent- and goal-oriented modelling and
reasoning with non-functional requirements. It is strongly
influenced by i* and the NFR framework for specifying non-
functional requirements [14]. GRL is part of URN (User
Requirements Notation) [6] that has been proposed as standard
of ITU-T (International Telecommunication Union-
Telecommunication Standardization Sector) [15].

GRL distinguishes three main conceptual categories (as i*
does): intentional elements, intentional relationships and actors
(specializations are not allowed). The main differences with
respect to i* are: GRL offers constructors for enabling
relationships with external elements (non-intentional elements
and connection attributes) and it has additional elements of
argumentation and/or contextualization as beliefs, correlations,
contribution types and evaluation labels for specifying
satisfaction states, extending in this way the types and
qualification ranges of the intentional relationships of i*.

The observations from our analysis are:
• Noise. The existence of a triple syntactic specification

(graphical BNF, textual BNF and XML) does not allow an
obvious validation of the syntactic correctness of GRL
expressions; therefore the effort for understanding this
variant is higher.

• Silence. The syntactic specification allows the use of a
variety of formulas that are not included in the natural
language description.

• Ambiguities. The formal syntactic specification,
accompanied with concise explications and simple

examples, prevent ambiguities in the construction of GRL
expressions. However, there exist semantic ambiguities
with respect to contributions. This is the case of
contributions that have a qualification by means of binary
operators (AND, OR) but that permit their construction with
only one operand.

• Contradictions. It was detected a contradiction between
the different syntactic specifications of GRL: the textual
BNF determines a fixed set of values for contribution types
with 11 terminal elements; on the contrary, the
corresponding XML specification determines as a terminal
element a basic data type (CDATA), which means that a
value type is not necessarily within a fixed set of types.
Another contradiction is that the tool for editing GRL
models, OME [16], allows the definition of actor
specializations, which does not match with any of the
syntactic GRL specifications.

4. Tropos

Tropos is a project [10], whose mainly purpose is to define

an agent-oriented software development method, using a variant
of i* [8, 9] as modelling language.

This method supports all the development stages from
requirements analysis to implementation. Each stage adopts the
concepts of i* (i.e. actor, dependency) to show a framework of
the model depending the stage.

In the requirements analysis stage, the actors are used to
model stakeholders of the domain and the system to be
constructed. Therefore, dependencies represent dependencies

constraint: Assertion

SR- Task- Elem ent

Actor

Agent Position Roleoccupies

* *

covers

* *

* / plays *

has- parts *

*

Is- part-o f

SR- Elem ent
1

boundary

*

0..1 1

{ subset }

subcom ponent*

*{ incom plete }

m eans

*
*

end

contribution [0 ..1]: { positive, negative}

M eans- End Link

strengh : { Open, Com m ited, Critical}

Task- Decom position L ink

Dependable Node SD- Dependum

**

*

dependee_ strengh: { Open, Com m ited, C ritica l }
depender_ strengh: { Open, Com m ited, C ritical }

Dependency

dependee

depender

type : { Goal, Softgoal, Task , Resource}

Intentional E lem ent

{ d isjoint, com plete }

labe l : String

Node

SD- Dependency0..1

SR- Dependency

0..1

/ Dependency Equivalence

{ dis jo in t, incom plete }

root

{ dis jo in t, incom plete }
{ disjo in t, incom plete }

�

Figure 2. Extract of the UML conceptual model for the i* language.

between stakeholders and dependencies between them and the
new software system.

In the design stage, the actors represent the components of
the system architecture and the agents that should be
implemented. The dependencies represent the data and control
interchange between components and agents, and define the
abilities or responsibilities of each one that must be
implemented.

The differences between the language proposed in Tropos
and i* are related to the syntax of some concepts. For example,
Tropos does not distinguish between SD and SR models.
However, it proposes different views for each development
stage: Tropos models explicitly and in a separated way aspects
related to the domain and to the software system.

The observations from our analysis are:
• Noise: The Tropos literature is more focused on the

method than on the language to be used.
• Silence: It exists a Tropos user guide [9] written in Italian.

It details the language and explains some rules how to use
it, but as far as we know it does not exist any English
version.

• Ambiguities: Some papers describing Tropos method like
[17] use Yu’s i* version or GRL instead of the Tropos own
version of the language; this fact is very confusing.

• Contradictions: Tropos starts from the hypothesis that all
goals and all tasks (named plans in Tropos) of the model
must be assigned to an actor, but in the Tropos conceptual
model included in [9] this aspect is optional. Also, the
intentional elements that take part in the contribution
relationships (contributors and contributed) are not the
same in the meta-model and explanations found in the main
sources of information [8, 9]; even more, in [9] the
examples do not adhere completely to the explanations.

5. Comparative Analysis
�

In this section we present a comparative analysis of the three
variants studied. With this purpose, we have identified fourteen
criteria corresponding to two categories.
• Eight structural criteria consider the characteristics of the

language constructors, and are related to models, actors,
intentional elements, decomposition elements, additional
reasoning elements and external model elements. This
criteria form a semantic baseline upon which i* variants
may be assessed.

• Six non-structural criteria analyze the definition of the
languages, its use, and also the elements that complement
them, as can be formalizations, methodologies and software
tools. Specifically, the definition analyzes the languages
used to describe the syntax and semantics of the different
variants, and the use considers the publications, standards
and information found about the different languages
through the Internet. In other words, these criteria are
syntactical and therefore not as fundamental as the

structural ones. However, they are relevant when
considering understandability and accuracy of the notation.

Next, we give the details of the comparison for each of the
fourteen criteria.
• Types of models. In Tropos and GRL do not exist any

type of models. However, the level of abstraction of the SD
and SR models of i* (SD and SR) can be achieved in
Tropos and GRL by drawing in their models the limits of
the actors. As can be observed, we do not consider the
views of Tropos as types of models because they represent
different images of the same model that correspond to the
different development stages.

• Types of actors. GRL can be distinguished from the two
other variants since it does not allow the specialization of
actors, although we have found contradictions among the
different sources of information. On the other hand, it is
worth to say that in TROPOS some specializations are
specific of the design stage.

• Intentional elements. The intentional elements are the
same in the three variants, although some of them differ in
how they are named. Thus: the tasks of i* and GRL are
named plan in Tropos; Tropos names hardgoals the same
concept that is named goal in the other variants, and it
generalizes hardgoal and softgoal as goal. Note that,
although GRL defines beliefs as intentional elements, it
uses them as reasoning elements (see below).

• Relationships among actors. We can distinguish between
dependencies and other types of relationships. GRL is the
only variant that does not allow other types of relationships.
On the other hand, the relationship is-part-of just exists in
i*.

• Relationships among intentional elements. The three
variants support four types of relationships: dependencies,
means-end relationships, decompositions and
contributions. Dependencies are used in a same way in the
three languages (they allow the same four types of
dependums). Nevertheless, the other three types of
relationships differ in: the lexicon used; the intentional
elements allowed as source and destination of the
relationships; the combination of the elements that take part
in the contribution; the expressive power of the types of
contributions. Table 2 shows these differences for means-
end relationships, decompositions and contributions.
Specifically, for each of the variants compared, we can see
how the constructor is named, the valid combinations of
intentional elements (the source at the left side of the “-“
and at the target side at the right side of the “-“), and the
way of combining the elements that take part in the
constructor. It is important to emphasize that the concept of
contribution in GRL has two constructors, contributions
and correlations. To understand the valid combinations in
the different constructors it is necessary to know the
abbreviations we have used, by means of one or two letters
of the word: Objective, Non-Functional requirement, Task,

Resource, Belief and reLationship, representing this last
concept the three types of relationships that GRL consider
as possible participant in the contributions. Also an
abbreviation “*” has been used instead of O, NF, T and R
altogether. For example, as can be seen in the table, just
Tropos allows defining relationships means-end in which
the means is an objective or non-functional requirement.

• Decomposition elements. In i* the relationships is-part-of
among actors facilitate the decomposition. In Tropos the
decomposition is possible by allowing new actors to appear
inside the limits of an actor.

• Additional reasoning elements. The types of reasoning
elements are different in the three variants, and also the
elements for each of the types. In Tropos there are some
elements that are specific of the design stages.

• Relationships with external model elements. Although
this feature seems necessary in any language for modelling
systems, these relationships and the external elements exist,
according to the documents that we have consulted, just in
GRL.

• Life-cycle stages. From our point of view, the three
variants may be used in any stage of the development of
software. However, according to the documents consulted,
i* is concerned to be used in the early and late requirements

stages, GRL just in the early requirements stage, and
Tropos from early requirements to implementation.

• Dissemination and standardization. The analysis of the
use of the variants has been done by considering the
amount of papers published in the main conferences and
journals, and references to these papers found in these
sources. On the other hand, the only language that is
currently in process to be accepted as standard is GRL [15].

• Tools. We have not found any tool that supports Tropos,
but there exists the tool T-Tool that supports Formal Tropos
[18] that is one evolution of it. On the other hand, OME
[16] offers the possibility of editing i* and GRL models,
but it allows elements that are not reported in the studied
documents. This also happens in REDEPEND [19] for i*.

• Additional elements. The additions are listed in the table.
Methodologies are just provided by GRL and Tropos. On
the other hand, languages related with them exist also for
GRL (UCM), and Tropos (Formal Tropos). Additional
documents of i* offer examples of case studies that
illustrate its use.

• Syntactic definition. There only exists a formal syntactic
definition for GRL. The other two variants define its syntax
by means of natural language and graphic notation.

• Semantic definition. There exist an incomplete semantic
definition of i* using TELOS [13]. In the case of

 Criteria Yu’s i* GRL TROPOS
Types of models SD and SR None None (views)

Types of actors 1 generic
3 specific: role, position and agent

1 generic 1 generic
3 specific: role, position and agent

Intentional
elements

Goal, softgoal, task, resource Goal, softgoal, task, resource Goal (hardgoal), softgoal, task (plan),
resource

Relationships
among actors

Dependencies among actors by means of
intentional elements.

Relationships among specific types of actors:
“occupies”, “covers” and “plays”.

Relationship “is part of”

Dependencies among actors by means of
intentional elements

Dependencies among actors by means of
intentional elements

Relationships among specific types of actors:
“occupies”, “covers” and “plays”

Relationships
among intentional
elements (see table

2)

Dependencies among actors
Means-end relationships
Decomposition relationships
Contribution relationships

Dependencies among actors
Means-end relationships
Decomposition relationships
Contribution relationships

Dependencies among actors
Means-end relationships
Decomposition relationships
Contribution relationships

Decomposition
elements Decomposition of actors unlimited Decomposition of actors restricted Decomposition of actors unlimited

Additional
reasoning elements

Explicit: Strength, Contribution,
Constraints

Dynamic Reasoning: Routine, Rule, Belief
Properties: Workability, Ability, Viability,

Believability

Explicit: Belief, Contribution Types,
Correlation Types, Evaluation
Labels, Criticality

Explicit: Belief, Contribution Types,
Mode
Dynamic behaviour: Capability, Events

St
ru

ct
ur

al

Relationships with
external model

elements
They do not exist

Attributes
External models elements
Topics of soft goal

They do not exist

Stages of the life
cycle

Early and late requirements Early requirements From early requirements to
implementation

Dissemination and
standardization

Wide dissemination
Diversity of information sources

Medium dissemination.
Adopted as standard by ITU-T (in
progress)

Emergent dissemination
Existence of a user guide (in Italian)

Tools OME, REDEPEND OME None

Additional elements Examples of case studies in different
domains

Additional functional language (UCM)
Additional method of use (URN)

Software engineering method
Formal TROPOS (with the tool FTT)

Syntactic description Natural language, Graphical notation BNF Textual, Graphical BNF, XML Natural language, Graphical notation

N
on

 s
tru

ct
ur

al

Semantic description Natural Language, Telos Natural Language Natural Language,
UML (model, metamodel, meta-metamodel)

Table 1: Comparative analysis of the three main i* variants

TROPOS there exists a rigorous definition of its model,
meta-model and meta-meta-model in UML.

6. A reference conceptual model for i*
�

In this section, we present a conceptual model (see figure 3)
that has as aim to be a reference framework for the variants of i*
that we have analyzed in the paper, and for those that may
appear in the future. We have constructed the conceptual model
including those concepts common to i*, GRL and Tropos, and
those concepts not common to the three variants but so
important for agent-oriented modelling that should be present in
any other variant that could appear. The reference framework
allows determining the differences of an i* variant respect to the
framework, and thus to know how much different a new variant
that would appear would be from the core of i*.

We propose to describe these differences by means of
operations that make transformations on conceptual models, in a
similar way as done in refactoring [20]. Therefore, to know the
differences among a variant of i* and the reference framework,
it is necessary to determine these operations needed to obtain the
conceptual model of the variant from the reference framework.

In the particular case of the i* variant of Yu [4], the
operations applied to obtain the conceptual model of Figure 2
from the reference framework are the following (for simplicity,
we omit the OCL constraints, which would be expressed by
means of notes):
• Addition. The attributes depender_strengh and

dependee_strengh in the class Dependency are added. The
derived associations /dependency_equivalence (with their
corresponding role names) and /plays are also added.

• Deletion. The class External Element and its relationships
with the classes Dependum and Node are deleted.

• Renaming. The class Dependum is renamed as SR-
Dependum and the class Internal Element is renamed as
SR-Element. The name has-parts is given to the role of the
association named is-part-of.

• The most complex operation is the transformation of the
associative class Relationship of the reference framework
into the associations Means-End and Task-Decomposition
of the i* model, since the transformation implies flattening
the hierarchy. For doing this transformation we apply the
following operations: the subclasses Contribution and
Correlation are suppressed; the derived subclass SR-Task-
Element is added as subclass of the class SR-Element (with
the corresponding attribute constraint); the subclass
Decomposition is suppressed; the associative class Task-
Decomposition Link is added between the classes SR-
Element and SR-Task-Element, with the strength attribute;
the class Means-End is generalized and replaces the class
Relationship, it is renamed as Means-End Link, and the
attribute contribution is added to it.

7. Analysis of other i* variants

The existence of an i* reference framework also allows

analysing and comparing easily new proposals of languages
based on i*, new versions of the existing ones, and even
extensions of i* for concrete domains uses.

A first example of these applications could be to analyse the
proposal of the tool REDEPEND [19], which extends i*
allowing new types of Means-End relationships, Contribution
relationships, and other minor differences. Most of these
differences are included in GRL and Tropos, and hence they
have been considered in constructing the reference framework.

 Yu’s i* GRL TROPOS
Name means-end means-end means-end

Connected
elements * – T (T, O, R) – T (O, NF) – *

T – (T, R)
Means-end

Operation OR OR OR

Name task-decomposition decomposition AND/OR
decomposition

Connected
elements T – * T – * (G, NF) – (G, SG)

T – T
Decomposition

Operation AND AND AND, OR

Name means-end contribution, correlation contribution

Connected
elements

O – O
NF – NF

contribution: (NF, C, L) – (NF, T, C, L)
correlation: (NF, T) – (NF) O, NF – *

Operation Does not exist contribution: AND, OR
correlation: Does not exist Does not exist

Contribution

Attributes +, - Make, Break, Help, Hurt, Some+, Some-,
Equal, Unknown ++, +, -, --

Table 2: Comparative analysis of the relationships among intentional elements in i*

A second example could be to analyse the Formal Tropos
language [18]. Formal Tropos adds to i* temporal specification
primitives, including their elements in the language [21]. On one
hand, it allows specifying cardinality constraints in the
dependencies among intentional elements. On the other hand, it
allows defining a new dependency type (prior-to) to specify
temporal order between intentional elements. These two
extensions can be added to the reference framework defining the
cardinalities as attributes of a dependency, and by defining a
new associative class, named Dependency, respectively.

As a last example, we could analyze existing works that use
i* with extensions and adjusts to adapt the language to their
particular needs. For example, in [22] the interactions between a
software system and its users are analyzed. Therein, the authors
propose new types of dependencies among actors and
intentional elements: responsibility dependencies between an
agent and a goal or a task; authority dependencies between two
agents; audit dependencies between an agent and a goal or a
task; and capability dependencies of an agent respect to a goal
or task. All these new dependencies can be easily included to
our reference framework by adding new subtypes to the
associative class Dependency, and the appropriate integrity
constraints.

8. Conclusions

The goal of this paper is to make a deep analysis of the three

most important variants of the i* language that, nowadays, is
one of the most spread agent-oriented modelling proposals. This
work can be considered useful both to the novice that may get
some support when learning the notation, and to the expert that
may have a summary of the similitudes and differences of the

existing proposals. The most relevant contributions of this paper
are:
• A comparative study of the three most important variants

of i*. This study has been carried out in a rigorous way by
constructing a data conceptual model in UML for each
variant (we have shown one in the paper), and identifying
14 comparison criteria.

• An enumeration of the noises, silences, ambiguities and
contradictions that exist in the available definitions of the
three variants.

• The definition of a conceptual model that constitutes a
reference framework for i*-based languages, that includes
the concepts belonging to the studied variants, and that
helps to contextualize them and others that could appear in
the future.

• The empiric observation that the reference framework
allows also capturing other specific variations existent in
literature.

There exist other works related with the comparative analysis,
evaluation and review of agent- and goal-oriented models [23,
24, 25] but we do not know of any focused on clarifying or
guiding the user concerning the doubts and misunderstandings
that might arise from the existence and particularities of the
different i* variants, neither on formalizing a general framework
for them.

Acknowledgements

This work has been done in the framework of the research

project UPIC, ref. TIN2004-07461-C02-01, supported by the
Spanish Ministerio de Ciencia y Tecnología. Some authors have
grants that partially support their work: C. Ayala, by the Catalan

Actor

Agent Position Role

* * * *

*

0..1

is-part- -of Internal Element
1

boundary

*

* *

{ subset }

head

*

tail

* strengh: { Open, Commited, Critical }

Relationship

Dependable Node Dependum

Dependency

dependee

depender

Intentional Element

{ disjoint, complete }

Node

{ disjoint, incomplete }
root

{ disjoint, incomplete }

{ disjoint, incomplete }

Decomposition Contribution Correlation

{ disjoint, incomplete }

Means-End

External Element

* *

*

*

*

**

playsoccupies

label

Figure 3. i* reference framework

government Generalitat de Catalunya; C. Cares, by the MECE-
SUP FRO0105 Project of the of Chilean government; and G.
Grau, by a UPC research scholarship.

9. References
[1] E. Yu. “Towards Modelling and Reasoning Support for Early-Phase

Requirements Engineering”. Proceedings of the 3rd IEEE Int.
Symp. on Requirements Engineering, Washington, USA, January
6-8, 1997, pp. 226-235.

[2] E. Yu, J. Mylopoulos. “An actor dependency model of
organizational work: with application to business process
reengineering”. Proceedings of the Conference on Organizational
Computing System, Milpitas, California, USA, November 1-4,
1993, pp. 258-268.

[3] A. van Lamsweerde. “Goal-Oriented Requirements Engineering: A
Guided Tour”. Proceedings of the 5th IEEE International
Symposium on Requirements Engineering, Toronto, Canada,
August 27-31, 2001, pp. 249-263.

[4] E. Yu. Modelling Strategic Relationships for Process
Reengineering. PhD. thesis, University of Toronto, 1995.

[5] i* web page, http://www.cs.toronto.edu/km/istar/, last accessed
April 2005.

[6] D. Amyot, G. Mussbacher. “URN: Towards a New Standard for
the Visual Description of Requirements”. Proceedings of the Third
International Workshop on Telecommunications and beyond: The
Broader Applicability of SDL and MSC., Aberystwyth, UK, June
24-26, 2002, pp. 21-37.

[7] GRL web page, http://www.cs.toronto.edu/km/GRL/, last accessed
April 2005.

[8] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, J. Mylopoulos.
“Tropos: An Agent-Oriented Software Development
Methodology”. Journal of Autonomous Agents and Multi-Agent
Systems, Kluwer Academic Publishers Volume 8, Issue 3, May,
2004, pp. 203-236.

[9] F. Sannicoló, A. Perini, and F. Giunchiglia. “The Tropos modelling
language. A User Guide”. Technical report DIT-02-0061,
University of Trento, February 2002.

[10] TROPOS web page, http://www.troposproject.org/, last accessed
April 2005.

[11] B. Meyer. “On Formalisms in Specifications”. IEEE Software, 2
(1), January, 1985, pp. 6-26.

[12] Object Management Group. Unified Modelling Language (UML)
2.0 Final Adopted Specification. OMG document ptc/03-10-14.
October 2003.

[13] J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis. “Telos:
Representing Knowledge about Information Systems”. ACM
Transactions Information Systems, 8 (4), October, 1990, pp. 325-
362.

[14] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos. Non-Functional
Requirements in Software Engineering. Kluwer Academic
Publishers, 2000.

[15] Z.151 (GRL). International Telecommunication Union (ITU).
September, 2003.

[16] OME3 web page, http://www.cs.toronto.edu/km/ome/, last
accessed April 2005.

[17] J. Mylopoulos, M. Kolp, J. Castro, “UML for Agent-Oriented
Software Development: The Tropos Proposal”. Proceedings of 4th
International Conference on The Unified Modelling Language,
Modelling Languages, Concepts, and Tools, Toronto, Canada,
October 1-5, 2001, pp. 422-441.

[18] Formal Tropos web page: http://dit.unitn.it/~ft/doc, last accessed
April 2005.

[19] N. Maiden, P. Pavan, A. Gizikis, O. Clause, H. Kim, X. Zhu.
“Integrating Decision-Making Techniques into Requirements
Engineering”. Proceedings of the 8th International Workshop on
Requirements Engineering: Foundation for Software Quality,
Essen, Germany, September 09-10, 2002.

[20] G. Sunyé, D. Pollet, Y. Le Traon, J.M. Jézéquel. “Refactoring
UML Models”. Proceedings of the 4th International Conference
<<UML>> 2001 – The Unified Modeling Language, Toronto,
Canada, October 1-5, 2001, pp. 134-148.

 [21] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, P.
Traverso. “Specifying and analizing early requirements in
Tropos”. Requirements Engineering Journal, vol. 9, num. 2, 2004,
pp. 132-150.

[22] A. Sutcliffe, S. Minocha. “Linking Business Modelling to Socio-
Technical System Design”. Proceedings of Advanced Information
Systems Engineering, 11th International Conference CAiSE'99,
Heidelberg, Germany, June 14-18, 1999, pp. 73-87.

[23] E. Kavakli. “Modeling organizational goals: analysis of current
methods”. Proceedings of the 2004 ACM symposium on Applied
Computing, Nicosia, Cyprus, March 14-17, 2004, pp. 1339–1343.

[24] C. Silva, R. Pinto, J. Castro, P. Tudesco. “Requirements for Multi-
Agent Systems”. Proceedings of the Workshop em Engenharia de
Requisitos, Piracicaba-SP, Brasil, November 27-28, 2003, pp.198-
212.

[25] R.B.K. Brown, A. Ghose. “Hierarchic Decomposition in Agent
Oriented Conceptual Modelling”. Proceedings of the Fourth
International Conference on Quality Software, Braunschweig,
Germany, September 8-9, 2004, pp. 240-249.

