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Capítol 1

The hydraulic influence matrix

1.1 Introduction

A sluicegate trajectory is the sequence of positions that the sluicegate follows
in a temporal horizon. In the same way, when a channel is regulated by more
than one sluicegate, this is known as a set of sluicegate trajectories.
When determined sluicegate trajectories are applied to a channel, the

flow that results (and which can be predicted using a simulation model)
demonstrates a unique behaviour, which is a function exclusive to the set of
trajectories applied. This univocal relation between the control action and
the response of the flow will apply as long as there is no external disturbance.
In such a case, different disturbances will give different results with the same
set of trajectories.
The behaviour of the flow that results from the application of determined

trajectories of sluice position can be expressed as a sequence of depths,
velocities and/or discharges obtained at certain sections of the channel at
determined instants.
However, if these trajectories are modified slightly, the response of the

system (given by the simulation model) will be different to that obtained
with the unmodified trajectories. And if the disturbance is smaller, the
resemblance of the results will be greater.
Using the hydraulic influence matrix is a simple way to find any change

in behaviour when a modification to the trajectory of sluice positions is
introduced. If all the modifications to the trajectory are placed in a vector
4U , and then multiplying the hydraulic influence matrix by this vector, a
new vector is obtained which includes all the disturbances the flow will suffer
expressed in the form of another vector 4X:

4X = [IM (U)]X4U
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where [IM (U)]X is the hydraulic influence matrix. To obtain this matrix is by
no means trivial and in this chapter I will try to go through the deduction of
its terms. The hydraulic influence matrix is so called because its components
represent the influence of a position of sluicegate on the hydrodynamic varible
at all points of the channel and in all instants of time.
In this chapter, the physical significance that the hydraulic influence

matrix represents is also explained. As the deduction of this is based on the
equations of the simulation model, this chapter has been used to describe,
also, the numerical simulation model employed, which is also the model of
the characteristics.
On the other hand, the so-called sluicegate trajectory is defined mathe-

matically starting from a sequence of sluicegate positions or sluicegate para-
meters.
Starting from the equations of Saint-Venant in their complete form (which

describes free laminar water flow in channels) and starting, also, from the
equations we will call point of control, a set of discrete equations has been
established which allows the behaviour of flow to be calculated starting from
the trajectories of the tested sluicegates. Taking this system of equations
as a base and using an analytical process of direct derivation, the next step
was to establish the calculation of the influence of a sluicegate position on
flow at a determined instant. Later, the way of calculating the evolution
the influences have when they travel along the channel and through time
was fixed. Finally, everything which affects the objective of the chapter: the
”hydraulic influence matrix” was compiled in a specific way.

1.2 The hydraulic influence on a channel
section of a sluicegate movement at a
given moment

1.2.1 Free laminar flow equations

The equations of Barré de Saint-Venant (1871) describe the free laminar
flow of water in prismatic channels and are the result of the application of
the principles of mass conservation and of the quantity of movement in a
controlled volume of short length which is transversal to the direction of flow
along the whole section of the channel. A fairly rigourous deduction of these
equations and for prismatic channels can be found in Walker and Skogerboe
(1987). The resulting set is made up of two partially derived first-order
differential equations and is as follows:
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∂y
∂t
+ v ∂y

∂x
+ A(y)

T (y)
∂v
∂x
= 0

∂v
∂t
+ v ∂v

∂x
+ g ∂y

∂x
= g [S0 − Sf (y, v)]

 (1.1)

where x and t are the independent variables space and time, y is the level of
the free surface regarding the depth of the channel, v is the average velocity
of all particles of a transversal section of the flow, A (y) is the function area
of wet section which depends on the depth, T (y) is maximum width also
dependent on the depth, S0 is the gentle gradient of the channel bed, and
finally, Sf (y, v) is the friction gradient.
The set of equations (1.1) will be applicable to reality if one can suppose

that:

• - the curvature of the laminar is small; with this:
• - the vertical accelerations are disregarded, and
• - the pressure distribution along an axis vertical to the liquid is the
same as in hydrostatic conditions,

• - the slope is supposed sufficiently small that its sin is...
• - the energy dissipation term is be specified throughManning’s equation
which is used in stationary regime, that is to say,

Sf (y, v) = n
2 v|v|
R
4
3
H

with RH =
A(y)
P (y) (1.2)

where n is Manning’s coeffiecient and P (y) is the wetted perimeter
which is a function of the water level, and

the changes in flow conditions are not fast enough to generate wave
fronts.

• These equations cannot be solved analytically, only numerically. Thus,
a set of numeric methods exist which permit the set (1.1), to be
resolved, which can be found, among others, in Gómez (1988).
According to Wylie (1969) all the numerical methods of resolution,
whether they are explicit, implicit or characteristics methods, present
results which are similar when compared to reality, depending more
on the exactness of the starting data than of the different methologies.
Bearing this key fact in mind, this thesis has used the characteristics
method as it helps physical comprehension of the underlying wave
phenomenum in free laminar flow. The choice of a resolution method
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would not characterise that which is exposed in this chapter because it
would be applicable in any other numerical method used.

• Usually, the axes upon which the set (1.1) are based are the classical
ones of space and time (x/t) but if it is based on curves known as
characteristic curves- expressed parametrically with x+ (t) and x− (t)–
that locally fulfill the two following differential equations,

dx+

dt
= v + c (y)

dx−
dt
= v − c (y)

 (1.3)

thus, the set (1.1) is transformed into the following two fully derived
equations

dv
dt
+ g

c(y)
dv
dt
= g [S0 − Sf (y, v)]

dv
dt
− g

c(y)
dv
dt
= g [S0 − Sf (y, v)]

 (1.4)

where the first is valid along the length of the curve x+ (t) and the

second along x− (t) and where c (y) =
r
gA(y)
T (y)

is the speed of the wave.

The good thing about the transformation of the characteristic method is
that the set of partially derived equations (1.1) becomes a totally derived
set (1.4). The difficulty of the method lies in the fact that the ordinary
differential equations (1.4) have to be solved along the characteristic curves or
the local axes that are the solution of the set (1.3). As this last one is a set of
non-linear equations it obliges us to solve the four equations simultaneously.
Fortunately, the curves x+ (t) and x− (t) always intersect, although they are
not orthogonal, and therefore assure hyperbolicity.
In short, solving the set of two partially derived equations (1.1) is the

same as solving the following set of four fully derived equations:

dv
dt
+ g

c(y)
dv
dt
= g [S0 − Sf (y, v)] (a)

dx+

dt
= v + c (y) (b)

dv
dt
− g

c(y)
dv
dt
= g [S0 − Sf (y, v)] (c)

dx−
dt
= v − c (y) (d)


(1.5)

The mathematical process of transformation of set (1.1) to the equivalent
(1.5) is found in many bibliographical references such as Gómez (1988), Solé
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(1996), Duchateau and Zachmann (1998), and Ames (1977) so will not be
discussed further here.
The set of equations (1.5) describes the conditions of flow in a channel

in the same way as the set of equations (1.1) as it adds no new hypothesis
in the transformation. However, set (1.5) is limited in the way it is applied.
The variable x which was initially independent is now dependent on time t,
as it is understood in (1.3); then, (1.5-(a)) will be true only along the curves
which fulfill the EDO (1.5-(b)) and, in the same way (1.5-(c)) will be true
along the solution curves of (1.5-(d)).
The set of equations (1.5) can be represented in the graph x/t as in figure

1.1 where, at the point of intersection R the four equations are verified and
therefore the four unknowns x, t, y and v can be found theoretically. This
way, if flow conditions at points P and Q are known, the position of point R
can be found and integrated numerically, along with the flow conditions.

t

x

P’ R

QP

Q’
x- x+ x+x-

y i v-

Figura 1.1: The dependence domain of point R.

This can be proved thanks to the first of the uniqueness theories developed
by Crandall (1956) in which he shows that if on a curve on the graph x/t
which is not a characteristic curve - as with the line PQ in Figure 1.1-
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the conditions of flow y and v are known, then the set of equations (1.5)
determines its solution with uniqueness in the zone marked PQR; and it is
this zone that we call the dependence domain of point R because the solution
at this point is determined exclusively by the conditions of flow produced at
any point of this domain. That means that any disturbance introduced at
any point of the dependence domain will affect the position of point R and
the conditions of flow.
A complementary concept to the dependence domain is the influence

domain. In Figure 1.2 you can see, for example the influence domain of point
P , that is the set of points of the graph x/t (the area shaded with horizontal
lines) which are seen to be affected by the conditions of flow present at this
point. In the same way, the area shaded with vertical lines is the influence
domain of point Q and obviously, the area shaded with both vertical and
horizontal lines is the influence domain of point R.

t

x

P’ R

QP

Q’

x- x+ x+x-

Figura 1.2: The influence domains of points P, Q and R.

The influence domain of point P is so-called because a variation in the
conditions of flow –yP and vP– at the point xP of the absciss canal at the
moment tP affects the conditions that are produced at the points represented
by the domain, including the points P 0 and R. In the same way point Q
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influences Q0 and R.
Once the concepts of the influence and dependence domains have been

introduced we are able to present the basic objective of the following part.
When a movement is made to the sluicegate, a series of changes to the flow
condition are produced. Firstly, near to the sluicegate itself and then further
away. If the movement is considered a disturbance, then we can speak
of the disturbance influence domain and thus the influence domain of the
sluicegate movement. Therefore: ” the presentation of a form for calculating
and quantifying the tested variation in the conditions of point R –that
we will call 4yR and 4vR– when disturbances are introduced to
points P and Q –which we call 4yP and 4vP and 4yQ and 4vQ,
respectively- is the immediate objective of the following section.”

1.2.2 The discretization of the characteristic equations

As previously commented the set of equations (1.1) and the equivalent
(1.5) have no known analytical solution, and therefore, the use of numeric
techniques has, until present, been compulsary. There are many numerical
methods that can be used, at least in a theoretical manner. With this, in this
thesis I have preferred to use a specific plan of discretization and make the
appropriate mathematical developments on the result of this discretization.
In order to have the longest possible integration time segments without

loss of precision, I have opted for a discretization in finite differences of
second order, called by Gómez 1988 as ”the characteristic curves method.”
This is a partially implied method which considers parts of the value as
parabolic. The need to use this wide ranging plan will be seen more clearly
later. If the method is applied to equations (1.5) and the nomenclature
presented in the diagram in 1.2 is taken into account, then:

vR−vP
tR−tP +

h
θ g
cR
+ (1− θ) g

cP

i
yR−yP
tR−tP = gS0 − g [θSfR + (1− θ)SfP ]

xR−xP
tR−tP = θ [vR + cR] + (1− θ) [vP + cP ]

vR−vQ
tR−tQ −

h
θ g
cR
+ (1− θ) g

cQ

i
yR−yQ
tR−tQ = gS0 − g

h
θSfR + (1− θ)SfQ

i
xR−xQ
tR−tQ = θ [vR − cR] + (1− θ) [vQ − cQ]


(1.6)

where SfR = Sf (yR, vR), SfP = Sf (yP , vP ), SfQ = Sf (yQ, vQ) and 0 ≤ θ ≤ 1
is the coefficient of average time that indicates the type of plan used. This
is to say, when θ = 1 the set is implicit, and when θ = 0 the set is explicit,
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and when θ = 1
2
the plan is in central differences or of characteristic

curves.
If the conditions of flow at points P and Q are known, as we have

commented before, then from the set of four equations (1.6) xP , tP , yP ,
vP and xQ, tQ, yQ, vQ are known and xR, tR, yR and vR remain as unknowns
which can be found by using any of the methods of solving non-linear
equations, such as the Newton-Raphson method. The four equations of (1.6)
can therefore be re-written

f1 ≡ xR − xP − 1
2
(tR − tP ) [vR + cR + vP + cP ] = 0

f2 ≡ (vR − vP ) + g
2
cR+cP
cRcP

(yR − yP ) + g (tR − tP )
³
SfR+SfP

2
− S0

´
= 0

f3 ≡ (vR − vQ)− g
2

cR+cQ
cRcQ

(yR − yQ) + g (tR − tQ)
µ
SfR+SfQ

2
− S0

¶
= 0

f4 ≡ xR − xQ − 1
2
(tR − tQ) [vR − cR + vQ − cQ] = 0


(1.7)

Once the set of equations has been solved, one can ask the following
question: What would have been the solution if, instead of the conditions
(yP , vP )at point P , we had had, for example, (yP +4yP , vP ), that is to say,
when a change in depth is introduced? A question like this is easily answered
and is closely related to the concept of hydraulic influence.
Before answering the question, a brief line is necessary regarding the

significance of hydraulic influence. Therefore, I define hydraulic influence of
the conditions of depth and velocity of a point (as for example point P in
figure 1.1 or 1.2) over the conditions of another point at another instant of
time (as for example point R in the same figures) as the disturbance effect
that is produced on the conditions of point R caused by a small modification
to the conditions of point P . It should be said that the grade of influence
depends on both the conditions of point P and the conditions of point R.
Therefore, the same modification of the conditions at point P will have a
greater disturbance effect on R as the depth and the velocity at P become
shallower and lower. For the time being, this definition can be considered
valid as the concept is more general than that just exposed and I will return
to this later on.
In order to answer the given question now that the definition of hydraulic

influence is known, suppose that all the variables of the set (1.7) depend
implicitly on yP : yR (yP ), vR (yP ), tR (yP ) and xR (yP ) and also suppose that
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the theory of the implicit function is applied, then by solving the set 4× 4:
∂f1
∂xR

∂f1
∂yR

∂f1
∂vR

∂f1
∂tR

∂f2
∂xR

∂f2
∂yR

∂f2
∂vR

∂f2
∂tR

∂f3
∂xR

∂f3
∂yR

∂f3
∂vR

∂f3
∂tR

∂f4
∂xR

∂f4
∂yR

∂f4
∂vR

∂f4
∂tR




∂xR
∂yP
∂yR
∂yP
∂vR
∂yP
∂tR
∂yP

 = −


∂f1
∂yP
∂f2
∂yP

0
0

 (1.8)

the values ∂xR
∂yP
, ∂yR
∂yP
, ∂vR
∂yP

i ∂tR
∂yP

can be found. Obviously the matrix of the set is
assessed at xP , tP , yP , vP , xQ, tQ, yQ and vQ. Linearizing to the proximities
of yP we can write a first order Taylor approximation series.

yR (yP +4yP ) = yR (yP ) + ∂yR
∂yP

4yP +O
³
4y2P

´
(1.9)

This results in the desired altered values for yR. Expressions similar to (1.9)
can be found for xR, vR and tR. It should be said that as the set (1.8) is
the result of the application of the theory of the implicit function on (1.7) it
needs to totally fulfill the condition where the matrix of (1.8) can be inverted.
That is to say, that its determinant is different from zero. It can be shown
that when a flow is present this condition is fullfilled and therefore the values
of the implicit derivatives ∂xR

∂yP
, ∂yR

∂yP
, ∂vR

∂yP
and ∂tR

∂yP
always exist and are in a

unique form. Sets like (1.8) can be formed by the remaining ”disturbable”
variables vP , yQ and vQ. In general, and for future developments, I will refer
to a general parameter φ to denote varibles of flow desciption such as depth,
velocity, physical coefficients, sluicegate position etc. Then, it can be written

[M ]


∂xR
∂φ
∂yR
∂φ
∂vR
∂φ
∂tR
∂φ

 = − [N ]


∂yP
∂φ
∂vP
∂φ
∂yQ
∂φ
∂vQ
∂φ

 (1.10)

where:

[M ] =


∂f1
∂xR

∂f1
∂yR

∂f1
∂vR

∂f1
∂tR

∂f2
∂xR

∂f2
∂yR

∂f2
∂vR

∂f2
∂tR

∂f3
∂xR

∂f3
∂yR

∂f3
∂vR

∂f3
∂tR

∂f4
∂xR

∂f4
∂yR

∂f4
∂vR

∂f4
∂tR



[N ] =


∂f1
∂yP

∂f1
∂vP

0 0
∂f2
∂yP

∂f2
∂vP

0 0

0 0 ∂f3
∂yQ

∂f3
∂vQ

0 0 ∂f4
∂yQ

∂f4
∂vQ


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It is neccessary to note that the set (1.8) is equal to the last when φ = yP
and thus has a more general character. From the physical point of view the
set (1.10) ”moves” or ”modifies” the influence of a parameter φ on the points
P and Q at point R.
The way of calculating the influences shown in this section are closely

linked to the plan of characteristic curves. Usually however, this plan is not
exactly used because it gives the solution of the unknown co-ordinates for
a point R beforehand. These co-ordinates are also the solution of the same
set of equations and normally it is more important to know the solution of
the flow conditions at specific points of the channel and at regular points of
time. To solve this problem there are two possibilities: first solve and then
interpolate, or first interpolate and then solve.The second option will be the
one used in this dissertation and is presented in the next section.

1.2.3 Applying to a structured grid

All what has been said so far has problems for finding the solution in desired
points because xR and tR are the solution to the system. In figure 1.3 you
can see how by placing the characteristic curves net (figure 1.3 a)) on top
of a structured net (figure 1.3 b)) a plan where the variables for points P
and Q can be obtained (figure 1.3 c)). In this way we can obtain the flow
conditions for the fixed point R. Obviously, the same set of equations (1.7)
is solved, but now with the new unknowns xP , yR, vR and xQ. A structured
grid like this one creates a new nomenclature. Thus every variable will have
a double index, where k refers to time and i to space. Therefore, yki and v

k
i

represent the values for water level and average velocity at the co-ordinates
xi = i∆x and tk = k∆t where ∆x and ∆t take predetermined values. As
interpolation has to be also of second order (in order to be coherent with the
numerical plan used) I have used the Lagrange factors (a way of representing
quadratic splines). For a dummy variable z the result is (see representation
in figure 1.4):

sk
³
x, zki−1, z

k
i , z

k
i+1

´
=

=
³
x−xi
∆x

´ ³
x−xi−1
2∆x

´
zki+1 +

³
x−xi−1
∆x

´ ³
x−xi+1
−∆x

´
zki +

³
x−xi
−∆x

´ ³
x−xi+1
−2∆x

´
zki−1

In this way the variables yP , vP , yQ and vQ become functions of xP and xQ,
as shown here

yP (xP ) = s
³
xP , y

k
i−1, y

k
i , y

k
i+1

´
vP (xP ) = s

³
xP , v

k
i−1, v

k
i , v

k
i+1

´
yQ (xQ) = s

³
xQ, y

k
i−1, y

k
i , y

k
i+1

´
vQ (xQ) = s

³
xQ, v

k
i−1, v

k
i , v

k
i+1

´ (1.11)
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t x- x+

O L

Q'P'

R
a)

x

t

O L

R

P’ Q’

k+1

i

b)

k+1
k

i+1ii-1

P Q
R

k-1
∆x ∆x

∆t
∆t

c)

Figura 1.3: The steps for the interpolation onto a structured grid.

From now on it is necessary to determine the set to be solved in order to
find the evolution of the influence of a parameter through a structured grid as
has been done for finding (1.10) from the characteristic curves. Contrary to
what might be expected, finding the ”transfer” of the influences (or evolution
of the influence in time or space) in an interpolation grid simplifies the
problem. The reason for this is that the influence of the general parameter
on the position and moment in time –∂xR

∂φ
= ∂xi

∂φ
, ∂tR
∂φ

= ∂tk+1

∂φ
– loses all

meaning, because we want to find the solution to specific x and y axes
(see figure 1.5). Therefore, if a disturbance is introduced to any hydraulic
variable at the moment in time k, then by solving the four equations (1.7)
with xP , yk+1i , vk+1i and xQ as unknowns, two sets of characteristics are
obtained –x+, x0+ and x−, x0−–, two solutions for point R –

³
yk+1i , vk+1i

´
and

³
yk+1i , vk+1i

´0
– and two sets of interpolated x axes –xP , xQ i xP 0 , xQ0

are obtained, whereas the position of point R remains unaltered.
Applying once more the theory of implicit function to the same equations

(1.7) with the supposition that yki−1, v
k
i−1, y

k
i , v

k
i , y

k
i+1, v

k
i+1, y

k+1
i and vk+1i
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x

z

zi-1
k

zi
k

zi+1
k

xP xQ

zP

zQ

Figura 1.4: Functions of interpolation.

now depend on a general parameter φ, shows a set similar to (1.10):

[M ]



∂xP
∂φ

∂yk+1i

∂φ
∂vk+1i

∂φ
∂xQ
∂φ

 = − [N ] [S]



∂yki−1
∂φ

∂vki−1
∂φ
∂yki
∂φ
∂vki
∂φ

∂yki+1
∂φ

∂vki+1
∂φ


(1.12)

where:
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kk

k+1k+1

k-1k-1

iii-1i-1 i+1i+1

PP
P’P’ QQ

Q’Q’
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Figura 1.5: A pair of sets of characteristic curves passing through point R.

[M ] =



∂f1
∂xP

∂f1
∂yk+1i

∂f1
∂vk+1i

0
∂f2
∂xP

∂f2
∂yk+1i

∂f2
∂vk+1i

0

0 ∂f3
∂yk+1i

∂f3
∂vk+1i

∂f3
∂xQ

0 ∂f4
∂yk+1i

∂f4
∂vk+1i

∂f4
∂xQ



[N ] =


∂f1
∂yP

∂f1
∂vP

0 0
∂f2
∂yP

∂f2
∂vP

0 0

0 0 ∂f3
∂yQ

∂f3
∂vQ

0 0 ∂f4
∂yQ

∂f4
∂vQ



[S] =



∂yP
∂yki−1

0 ∂yP
∂yki

0 ∂yP
∂yki+1

0

0 ∂vP
∂vki−1

0 ∂vP
∂vki

0 ∂vP
∂vki+1

∂yQ
∂yki−1

0
∂yQ
∂yki

0
∂yQ
∂yki+1

0

0
∂vQ
∂vki−1

0
∂vQ
∂vki

0
∂vQ
∂vki+1


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It should be said that of the four values obtained (∂xP
∂φ
, ∂yk+1i

∂φ
, ∂vk+1i

∂φ
and ∂xQ

∂φ
)

we are only interested in keeping (∂y
k+1
i

∂φ
and ∂vk+1i

∂φ
) to find the solution to

k + 2, as the two other values never intervene in the right part of set (1.12).
Of the differences from (1.10) we should underline the presence of the

matrix [S]ki , the values of which can be obtained from (1.11). It should also

be said that from the known values
∂yki−1
∂φ
,
∂vki−1
∂φ
,∂y

k
i

∂φ
,∂v

k
i

∂φ
,
∂yki+1
∂φ

and
∂vki+1
∂φ

at the

moment in time k, ∂yk+1i

∂φ
and ∂vk+1i

∂φ
at the moment in time k+1 are obtained

which shows the concept of influence and dependence domain.
For each point of the structured grid, a set of equations of the type (1.12)

can be solved except for the interior points with sluicegate and the boundary
conditions. The study of these will be analysed in the two following sections.

1.2.4 Sluicegate equations

There are many flow control structures in channels which allow flowmodelling
according to the desire of the lock-keeper. Almost all the structures present
in channels, except the actual walls and floor, can be considered control
structures. The individual study of each of these structures is impossible in
this thesis and does not fall within its aims. However, we will present as an
example a commonly found structure. It is a control point where you can
find a vertically sliding sluicegate, an overflow point and a pumping point,
as seen in figure 1.6. The way this control structure has of interacting with
the flow can be described according to the principles of mass and energy
conservation. These principles establish two mathematical relations between
the flow conditions immediately upstream and downstream of the point,

S (ye)
dye
dt
= A (ye) ve − qb − qs (ye)−A (ys) vs
A (ys) vs = kcu (ye − ys + d)

1
2

)
(1.13)

where:

• S (ye) is the real horizontal area of the reception area upstream of the
sluicegate,

• A (ye) ve is the incoming flow, defined in terms of depth and speed of
entry,

• A (ys) vs is the outgoing flow which continues along the channel,
described in terms of depth and speed of exit,

• qb is the outgoing flow through pumping which is predetermined,
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Figura 1.6: Diagram of a sluice gate with lateral overflow and pumping point.

• qs (ye) = Csas (ye − y0)
3
2 is the outgoing lateral flow via the overflow

point where Cs is the coefficient of the drainage system at the overflow
point, as is the width of the lip and y0 is the height of the lip measured
from the bottom of the channel,

• kc = √2gCcac where Cc is the coefficient of the drainage of the
sluicegate and ac is the width of the sluicegate which is normally
rectangular,

• d is the height of the step, and
• u is the opening of the sluicegate.
This thesis considers that the deposit effect resulting from the presence

of the sluice reception area is completely irrelevant from the control point of
view, and therefore will be ignored from now on.
From the control point of view it is necessary to note the important

difference between both types of lateral outflow: the first, represented by
pumping, is predetermined by the lock-keeper, and the second, represented
by the overflow, depends on the existing depth upstream from the control

15



point and therefore is controlled by this. The difference lies in the fact
that by pumping the desire flow can be produced with the only condition
being having enough water, whereas with the overflow the water obtained
will depend on the depth maintained. Therefore, in this second case the
control will be much more difficult. Apart from the cases in which pumping
is compulsory (due level limitations) the overflow system is preferred because
it has lower energy costs even though it is more difficult to control.

1.2.5 The discretization of the control point equations

The presence of control points in the middle of a channel leads towards
the sub-division of this channel into sections, in a way that there is a section
between two control points, and there is a control point between two sections.
Therefore yk+1n represents the existing water depth at node n in the section
upstream of the control point at the moment in time k + 1, that is to say,
incoming depth ye. In the same way yk1 is defined as the existing water depth
at the first node of the section downstream from the control point at the
same moment in time k + 1, and ys the outgoing depth at the control point
(see figure 1.6). The same can be said for the velocities vk+1n and vk+11 .
If discretization is carried out with time and we rewrite the control point

equations (1.13), join them with the characteristics of (1.7) and then change
the nomenclature, we arrive at the following set of six equations:

f1 ≡ xn − xP − 1
2
∆t

h
vk+1n + ck+1n + vP + cP

i
= 0

f2 ≡
³
vk+1n − vP

´
+ g

2
ck+1n +cP
ck+1n cP

³
yk+1n − yP

´
+ g∆t

µ
Sf

k+1
n +SfP
2

− S0
¶
= 0

f3 ≡
³
vk+11 − vQ

´
− g

2

ck+11 +cQ

ck+11 cQ

³
yk+11 − yQ

´
+ g∆t

µ
Sf

k+1
1

+SfQ
2

− S0
¶
= 0

f4 ≡ xn − xQ − 1
2
∆t

h
vk+11 − ck+11 + vQ − cQ

i
= 0

f5 ≡ A
³
yk+1n

´
vk+1n − qb − qs

³
yk+1n

´
−A

³
yk+11

´
vk+11 = 0

f6 ≡ A
³
yk+11

´
vk+11 − kcu

³
yk+1n − yk+11 + d

´ 1
2 = 0

(1.14)
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Figura 1.7: Graph with discretization of the control point equations.

where

∆t = tk+1 − tP ∆t = tk+1 − tQ
yP (xP ) = s

³
xP , y

k
n−2, y

k
n−1, y

k
n

´
yQ (xQ) = s

³
xQ, y

k+1
1 , yk+12 , yk+13

´
vP (xP ) = s

³
xP , v

k
n−2, v

k
n−1, v

k
n

´
vQ (xQ) = s

³
xQ, v

k+1
1 , vk+12 , vk+13

´
ck+1n = c

³
yk+1n

´
ck+11 = c

³
yk+11

´
Sf

k+1
n = Sf

³
yk+1n , vk+1n

´
Sf

k+1
1 = Sf

³
yk+11 , vk+11

´
and where the unknowns of the set are xP , yk+1n , vk+1n , yk+11 , vk+11 and xQ.
In order to continue with the calculation of the influences of a general

parameter φ, it is necessary to first assume that this parameter defines the
opening of the sluicegate, this is u (φ) , and then assume that the unknowns
xP , yk+1n , vk+1n , yk+11 , vk+11 and xQ also depend on φ. Therefore, applying once
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more the theory of the implied function to the set (1.14) we obtain

[M ]



∂xP
∂φ

∂yk+1n

∂φ
∂vk+1n

∂φ
∂yk+11

∂φ
∂vk+11

∂φ
∂xQ
∂φ


=[N ] [S]



∂ykn−2
∂φ

∂vkn−2
∂φ

∂ykn−1
∂φ

∂vkn−1
∂φ
∂ykn
∂φ
∂vkn
∂φ
∂yk1
∂φ
∂vk1
∂φ
∂yk2
∂φ
∂vk2
∂φ
∂yk3
∂φ
∂vk3
∂φ



+(L) ∂u
∂φ

(1.15)

where:

[M ] = ∂(f1,f2,f3,f4,f5,f6)

∂(xP ,yk+1n ,vk+1n ,yk+11 ,vk+11 ,xQ)

[N ] = − ∂(f1,f2,f3,f4,f5,f6)

∂(xP ,yP ,vP ,yQ,vQ,xQ)

(L) = −
³
0, 0, 0, 0, 0, ∂f6

∂u

´T
[S] =

∂(xP ,yP ,vP ,yQ,vQ,xQ)
∂(ykn−2,vkn−2,ykn−1,vkn−1,ykn,vkn,yk1 ,vk1 ,yk2 ,vk2 ,yk3 ,vk3)

So far we have spoken about the influence a general parameter (φ) has on
the solution without entering into too many details about what it could
represent, and now, for the first time, it appears explicitly in the description
of the sluicegate opening u (φ). Despite the fact that the specific form of this
function is still unknown, the set of equations (1.15) shows that the influence
of the parameter φ on flow conditions at moment in time k+1 is the sum of
the indirect influence of the conditions at moment in time k and the direct
influence of the opening at the moment in time k+1 through the term ∂u

∂φ

¯̄̄k+1
n,1
,

which represents the variation in the sluicegate opening when the parameter
φ changes.
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1.2.6 Sluicegate trajectories

Normally the variable observed in the set is considered as a descriptive
parameter of a physical phenomenum. The calculation process of the
aforementioned parameter usually consists, first of all, of the taking of
measurements of the dependent varibles which make the phenomenum
evident (in our case these will be discharge, velocity and/or depth). After
this it is necessary to adjust the values of these variables in a way that once
introduced in the equations of the model, these equations reflect as close as
possible the measured values. This process is known as the inverse problem
resolution, and in some cases when solving it, it is necessary to have the
”hydraulic influence” of the parameter (usually known in this case as the
”sensitivity matrix”).
One of the new things that this thesis wants to present is to consider that

the unknowns of the inverse problem are the parameters which describe the
trajectories of the sluicegate position. Therefore the aim is to try to find the
sluicegate trajectories (and more specifically, the parameters that describe
these trajectories) that foresee a behaviour more similar to the desired one
rather than to the measured one.
Therefore it is very important to have a tool (like the hydraulic influence

matrix) that permits us to quantify the influence on flow behaviour caused
by a variation in a sluicegate parameter. To continue putting examples, we
have taken the trajectory of a sluicegate as a presentation model but any
other type of control can be used. In irrigation channel control, the duration

temps

Obertura

tk+1tktk-1tk-2

u(k)
u(k+1)u(k-1)

u(k-2)

Figura 1.8: Mathematical representation of a sluicegate trajectory.

time of a sluicegate operation (i.e. a change of position) can be considered
negligible if compared to the rest of the time that the sluicegate remains
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without moving. The reason for this fact is that any movement of sluicegate
has a cost1 and there is the dilemma between achieving the best control and
the least number of operations.
This is the reason why the best form of mathematically representing

the sluicegate trajectory is with a discontinuous temporal function, divided
into sections as seen in figure 1.8. This mathematical representation allows
parameterization of the problem, which is the process of identifying the
variables of the problem. By simply identifying the parameter φ as the
position of the sluicegate u (K) at interval K between the points in times
tK−1 and tK , the process is finished. However, there are other representations
of sluicegate trajectory which can be parameterised but this is not the time
nor place to introduce them.
A sluicegate trajectory is defined as the following vector of parameters

u =
h
u (1) · · · u (K) · · · u (λ)

i
(1.16)

where λ is the last interval in which the function of the sluicegate trajectory
is defined, and in the context of control, this is called prediction horizon.

∆∆ T T

nn

ttKK

∆∆tt

ttK+1K+1

ttK-1K-1
��������������������
��������������������u(K-1)

��������������
��������������u(K)

��������������������
��������������������u(K+1)

11

ttk+1k+1

ttkk
ttk-1k-1

22 33
n-1n-1

n-2n-2

Figura 1.9: Graph of the two time discretizations used.

1Whether the sluice gate is repositioned by an operator (usually the lock keeper) or by
an electric motor (which has a limited period of life), every adjustment has a cost which
can be assessed. Therefore it is necessary to reduce the total number and magnitude of
operations.
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A description of a sluicegate trajectory such as this implies some very
important consequences which are described here:

• In order to solve the problem it will be necessary to use a set of Saint-
Venant equations, for example those described in the set of equations
(1.7). It will be necessary to limit the increase in integrated time∆t for
reasons of stability, as described in the stability conditions of Courant-
Friedrichs-Levi (CFL). This condition says that the maximum increase
allowed is the time it takes a wave to travel the integration area ∆x.
If, for each instant a sluicegate parameter is defined, the total number
of parameters will depend on the CFL, that is to say, on the existing
flow conditions for each instant. Given that, it would be very difficult,
or even impossible, to solve the problem. Therefore it is necessary to
establish a time discretization of the sluicegate trajectory independent
of that of the simulation. To show this difference the superscript K (as
a capital letter) will be used for the time discretization of the sluicegate
trajectories and k (as a small letter) will be used for the discretization
of the simulation, as shown in figure 1.9.

• The form of function by sections represented in figure 1.8 implies ∂u
∂φ
= 1

in the set (1.15). Therefore, from now on, we will talk about the
opening of any sluicegate u (K) during the Kn interval of time instead
of a general parameter φ as used so far (figure 1.9).

• With (1.16) the parameter are given a characteristic of time which
allows us to state:

∂yki
∂u (K)

= 0 if tk < TK

1.2.7 The boundary conditions

To conclude the study of the influence a sluicegate movement has on the
flow conditions at a point in the channel at a specific moment in time, it is
necessary to describe the boundary conditions as well as to find out how the
influences evolve when they arrive at the edge of the channel and ”bounce”.
Crandall (1951) demonstrates a second theory of uniqueness for second order
sets of equations like the one studied in this thesis. With the help of the graph
in figure 1.10, the second theory states the following: If the flow conditions at
a characteristic intersection S are known and if only one variable is known
from the two non-characteristic curves gSP and gSQ, then the solution and
uniqueness is guaranteed in the shaded area gSPRQ.
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Figura 1.10: Graph showing the formulation of the second theory of unique-
ness for second order sets of hyperbolic equations.

The joint application of this theory, and the one mentioned previously,
(see figure 1.1) entitles us to state that by establishing two conditions, one at
each extreme of the studied solution interval, uniqueness can be guaranteed
in the shaded areas of figure 1.11. That is, if flow conditions at points P
and Q on two characteristic curves and any condition of the y axis at both
extremes are known, then the solution for points R and R0 can be obtained.
It should be said that in a subcritical regime (the usual working regime

in irrigation channels, and the only considered in this thesis) a condition for
each extreme of the channel must be established (as stated in the previous
paragraph) because the gradients of the characteristic curves x+ and x− have
opposite signs since the velocity of the wave is higher than the velocity of
the environment it is travelling through. From (1.3) we obtain

dx+

dt
≡ v + c (y) > 0

dx−

dt
≡ v − c (y) < 0

There are a large number of conditions that can be set at the extremes
of a channel. While the previous explanation was simple and attractive
using some specific examples of equations, now it is exactly the opposite.
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Figura 1.11: Graph representing the application of the two uniqueness
theories in flow problem context.

Continuing with the nomenclature of the structured grid, the surrounding
conditions are established as two expressions of the following type

f7
³
yk+11 , vk+11

´
≡ 0 as an upstream condition

f8
³
yk+1n , vk+1n

´
≡ 0 as a downstream condition

(1.17)

Taking the third and fourth equations of the set (1.14) and the first from
(1.17) gives a new set that needs to be solved in order to find the flow
conditions at the upstream limit:

f3 ≡
³
vk+11 − vQ

´
− g

2

ck+11 +cQ

ck+11 cQ

³
yk+11 − yQ

´
+ g∆t

µ
Sf

k+1
1

+SfQ
2

− S0
¶
= 0

f4 ≡ xn − xQ − 1
2
∆t

h
vk+11 − ck+11 + vQ − cQ

i
= 0

f7
³
yk+11 , vk+11

´
≡ 0


(1.18)

By doing the same we can find the set of equations corresponding to the
downstream limits if we take the first and the second equations of (1.14) and
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the second from (1.17), which gives:

f1 ≡ xn − xP − 1
2
∆t

h
vk+1n + ck+1n + vP + cP

i
= 0

f2 ≡
³
vk+1n − vP

´
+ g

2
ck+1n +cP
ck+1n cP

³
yk+1n − yP

´
+ g∆t

µ
Sf

k+1
n +SfP
2

− S0
¶
= 0

f8
³
yk+1n , vk+1n

´
≡ 0


(1.19)

Applying once more the hypothesis that all variables are dependent on a
sluicegate opening u (K) as we did in order to find (1.12) and (1.15), for the
upstream point we can write:

[M ]


∂yk+11

∂u(K)
∂vk+11

∂u(K)
∂xQ
∂u(K)

=[N ] [S]



∂yk1
∂u(K)
∂vk1

∂u(K)
∂yk2

∂u(K)
∂vk2

∂u(K)
∂yk3

∂u(K)
∂vk3

∂u(K)


+(L) (1.20)

where:

[M ] = ∂(f3,f4,f7)

∂(yk+11 ,vk+11 ,xQ)

[N ] = − ∂(f3,f4,f7)

∂(,yQ,vQ,xQ)

(L) = −
³
0, 0, ∂f7

∂u(K)

´T
[S] =

∂(yQ,vQ,xQ)
∂(yk1 ,vk1 ,yk2 ,vk2 ,yk3 ,vk3)

and for the downstream point:

[M ]


∂yk+1n

∂u(K)
∂vk+1n

∂u(K)
∂xP
∂u(K)

=[N ] [S]



∂ykn−2
∂u(K)
∂vkn−2
∂u(K)
∂ykn−1
∂u(K)
∂vkn−1
∂u(K)
∂ykn

∂u(K)
∂vkn

∂u(K)


+(L) (1.21)
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where:

[M ] = ∂(f1,f2,f8)

∂(yk+1n ,vk+1n ,xP )

[N ] = − ∂(f1,f2,f8)
∂(,yP ,vP ,xP )

(L) = −
³
0, 0, ∂f8

∂u(K)

´T
= (0, 0, 0)T

[S] = ∂(yP ,vP ,xP )

∂(ykn−2,vkn−2,ykn−1,vkn−1,ykn,vkn)

1.3 Hydraulic influence of a sluicegate trajec-
tory parameter on the status vector

In the structured grid of figure 1.12 you can see a time-space discretization
of a channel made up of two sections, Section I subdivided into nI − 1 cells
and Section II subdivided into nII−1 cells. In the grid you can also see how
from the solutions for the moment in time k (some of which are represented
by black dots) the solution for all the nS = nI +nII sections (represented by
grey dots) can be found at the moment in time k + 1. Programming logic
allows us to find sequencially the solution at k + 1 for all the computational
nodes, assuming that you identify the type of each of these nodes and you
solve the corresponding set of equations. There is a summary of this in the
following table:

Section Solution at k + 1 Set
Upstream node I i = 1 (1.18)
Interior computational node I i = 2, . . . , nI − 1 (1.7)
Control point I and II nI , 1 (1.14)
Interior computational node II i = 2, . . . , nII − 1 (1.7)
Downstream node II i = nII (1.19)

So far in this summary we have only talked about the solution of the equations
for the simulation. However what is really important here is the study of
the time-space evolution of the influence of any parameter in the trajectory
(1.16).
For each moment of time, the new value of the influence of any sluicegate

parameter u (K) is calculated at each computational node using some of
the previously mentioned sets of equations: (1.12), (1.15), (1.20) or (1.21).
The matrices that make up these sets for each computational node can be

25



tt tt

xx
Tram   I Tram   II

k+1

k-1

k

1 2 3 1 2 3i-1 i i+1 i-1 i i+1nI-2 nI-1 nI nII -2 nII-1 nII

Punt de control

Node computacionalNode computacional

Condició de contorn
(Aigües amunt)

Condició de contorn
(Aigües avall)

Figura 1.12: Diagram to show the kind of computational node according to
the position of each set of equations.

adequately compiled into a single set that can be represented in the following
manner:

∂xk+1

∂u (K)
= [A]

∂xk

∂u (K)
+ b

h
xk+1, u (K)

i
(1.22)

where [A] = A
h
xk+1, xk, u (K)

i
is a square matrix of the order (2× nS) ×

(2× nS) where nS is the total number of sections of the simulation
calculation, b

h
xk+1, u (K)

i
is the direct influence vector of 2×nS components

and x is the status vector of dimension 2× nS and, at the moments in time
k and k + 1, has the value:

xk+1 =
³
yk+11 vk+11 · · · · · · yk+1i vk+1i · · · · · · yk+1nS

vk+1nS

´T
xk =

³
yk1 vk1 · · · · · · yki vki · · · · · · yknS vknS

´T
(1.23)

The set of equations (1.22) shows that the influence of the sluicegate
parameter u (K) on the status vector at the moment in time k + 1 is the
total of the new values of the influence at the moment in time k plus the
direct influence of u (K) on the status vector at k + 1. With this, if instead
of implementing sluicegate position u (K) in the channel you implemented a
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slightly modified one (u (K)+∆u (K)) then the status vector at the moment
in time k + 1 would be xk+1 + ∂xk+1

∂u(K)
∆u (K). If we look at the diagram in

TK

TK+1

u(K)

tk
tk+1

tk+2

tk+3

tk+4

Temps

u(K+1)

u(K-1)
Espai

Figura 1.13: The evolution of the influence of the sluicegate parameter u (K)
through time and space. The grey dots correspond to the points where there
is no influence: ∂xki

∂u(K)
= 0 and the black dots where there is influence:

∂xki
∂u(K)

6= 0.

figure 1.13, we need to make the following considerations:

• When tk+1 < TK , then ∂xk+1

∂u(K)
= 0 and there is no need to give new

values because the influence domain of a parameter backwards in time
is nil.

• When tk+1 = TK , the set of equations (1.22) becomes
∂xk+1

∂u (K)
= b

h
xk+1, u (K)

i
if tk = TK

since ∂xk

∂u(K)
= 0. This set is useful to find the initial value of the

influence of the parameter u (K) on the flow conditions xk+1, that is to
say, the direct influence.
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• The fulfilled set of equations (1.22) is the one used when TK < tk+1 ≤
TK+1:

∂xk+1

∂u (K)
= [A]

∂xk

∂u (K)
+ b

h
xk+1, u (K)

i
• Finally, when tk+1 > TK+1 the set (1.22) loses the direct influence of
the parameter and becomes

∂xk+1

∂u (K)
= [A]

∂xk

∂u (K)

After determining the values that the status vector takes by applying
the corresponding sets of equations, the influence domain of the parameter
u (K) can be considered described and quantified. This is what the black
dots in figure 1.13 represent. In the same figure 1.13 you can also see
how the influence on the characteristic curves evolves and how the influence
domain of the parameter through the characteristic curves widens through
time. We should highlight the indices in capital letters which refer to the
time discretization adopted by the definition of the sluicegate trajectory and
the indices in small letters of the discretization of the simulation. Both
measurements of time are related to the travel time of a disturbance, this is
to say, to the gradient of the characteristic curves with Courant’s condition,
as previously explained and represented in figure 1.9.
We can illustrate still further the concept of the influence of a parameter

of sluicegate trajectory on the status vector, this is to say on all the sections
of the channel and on all the moments in time. Look at a numerical example
based on a simulation carried out on a 28Km long channel with eight control
points or sluicegates. In the example there is a control point 18000m from
the start of the channel which has a sluicegate that has a trajectory like
the one defined in (1.16). The value of the influence of the parameter u(22)
(which corresponds to the existing opening between the moments in time
T 22 = 22×4T = 22×300s = 6600s and T 23 = 23×4T = 23×300s = 6900s
from the definition of the sluicegate trajectory divided into sections of
∆T = 300s) was calculated with the status vector corresponding to the
moments in time 6900s, 7200s and 7500s, this is, x6900, x7200 and x7500. The
results can be seen in figure 1.14 where you can see how the influence of the
parameter u(22) evolves some moments after. After considering this graph,
we need to point out that :

• A small movement of the sluicegate influences the flow conditions,
both upstream and downstream, as would be expected in a subcritical
regime.
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Figura 1.14: An example of the evolution of the influence on the depths of
sluice gate position u (22) (corresponding to the moments in time between
6600s and6900s) on the status vector at the moments in time 6900s, 7200s
and 7500s.

• The further the influence travels in time and space the smaller it
becomes. This can be seen as a gentler curve of influence.

• If, for example, a change in the opening occurs (that is, a ∆u(22) > 0)
there will be a drop in depth that will travel upstream and an increase in
depth downstream. The opposite will be true if the opening is reduced
(this is, ∆u(22) < 0).

The graph in figure 1.14 is a profile taken at three determined moments
in time for the influence of the parameter u (22), that is to say, the influence
of the sluicegate opening between the moments in time 6600s and 6900s. If
all the profiles of the influence of this parameter on the status vector at all
moments in time, this is to say on the whole simulation domain (that goes
from 0s to 15000s and from 0m to 28000m) are drawn, and the part that
goes from the moment in time 6300s to 15000s is considered, the result can
be seen in the image in figure 1.15.
If we consider the image in figure 1.15, there are a number of things that

we need to comment on:

• We notice ”influence leftover” that remains in the whole influence
domain and makes it impossible to return to the initial state (grey
colour) until a considerable time after the moment 6900s, where the
direct influence disappears.
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Figura 1.15: Influence of the depths of the sluicegate position u (22) =
u ([6600s, 6900s]) on all points of the simulation domain. The grey area
represents the absence of influence, the lighter tones represent the negative
influences (drops in level) and the darkest tones the positive influences
(increases in level).

• We also notice the influence arrives at the following control point, a
part ”bounces” (changes direction) and another part continues in the
same direction.

As in the definition of the simulation vector XkF
kI+1

2, all the values of the
status vector xk were compiled from the initial moment k = kI to the final
state k = kF ,

XkF
kI+1

(u) =
h
xkI (u)T · · · xk (u)T · · · xkF (u)T

iT
(1.24)

we can now compile into only one vector, in a similar way to before, all the
values of the influence of a parameter of any sluicegate trajectory u (K) on

2See chapter 3.
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the status vector. This new vector we will call the vector of influence of a
parameter on the simulation vector

∂XkF
kI+1

(u)

∂u (K)
=
·

∂xkI (u)
∂u(K)

T ∂xkI+1(u)
∂u(K)

T · · · ∂xk(u)
∂u(K)

T · · · ∂xkF−1(u)
∂u(K)

T ∂xkF (u)
∂u(K)

T
¸T

(1.25)

1.4 The hydraulic influence matrix

1.4.1 Definition

Having arrived at this point, it is possible to define compilation that leads
us to what we will call ”the hydraulic influence matrix”. If all the vectors of
influence meet on the simulation vector (1.25) of all the defining parameters
of the trajectory j of any sluicegate (1.16), the following hydraulic influence
matrix denoted by [IM ]j is obtained

[IM (u)]j =
·

∂X
kF
kI+1

∂uj(1)

∂X
kF
kI+1

∂uj(2)
· · · ∂X

kF
kI+1

∂uj(K)
· · · ∂X

kF
kI+1

∂uj(λ−1)
∂X

kF
kI+1

∂uj(λ)

¸
=

=



∂xkI
∂uj(1)

∂xkI
∂uj(2)

· · · ∂xkI
∂uj(K)

· · · ∂xkI
∂uj(λ−1)

∂xkI
∂uj(λ)

∂xkI+1

∂uj(1)
∂xkI+1

∂uj(2)
· · · ∂xkI+1

∂uj(K)
· · · ∂xkI+1

∂uj(λ−1)
∂xkI+1

∂uj(λ)
...

. . .
...

...
∂xk

∂uj(1)
∂xk

∂uj(2)
∂xk

∂uj(K)
∂xk

∂uj(λ−1)
∂xk

∂uj(λ)
...

...
. . .

...
...

∂xkF−1
∂uj(1)

∂xkF−1
∂uj(2)

· · · ∂xkF−1
∂uj(K)

· · · ∂xkF−1
∂uj(λ−1)

∂xkF−1
∂uj(λ)

∂xkF
∂uj(1)

∂xkF
∂uj(2)

· · · ∂xkF
∂uj(K)

· · · ∂xkF
∂uj(λ−1)

∂xkF
∂uj(λ)


(1.26)

The following points should be noted for this matrix:

• The number of rows is much higher than the number of columns. This
is because:

— Each term ∂xk

∂uj(K)
is a vector which contains 2× nS rows.

— The temporal discretization of the simulation4tk is much smaller
than that of the sluicegate trajectory 4TK .

• Not all the terms have a value different from zero. As previously
commented, all the terms ∂xk

∂uj(K)
which fulfil tk < TK are null. The

arrangement of (1.26) shows that the ”not null” terms of the matrix
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are found in blocks in the sub-diagonal triangular part as 4tk <<
4TK , this is to say kF − kI >> λ.

• When there are many sluicegates that control a channel, the hydraulic
influence matrix for each needs to be compiled into one. In this case
the hydraulic influence matrix becomes:

[IM (U)]X =

" "
∂X

kF
kI+1

(U)

∂u1(1)
· · · ∂X

kF
kI+1

(U)

∂unC (1)

#
· · ·

"
∂X

kF
kI+1

(U)

∂u1(λ)
· · · ∂X

kF
kI+1

(U)

∂unC (λ)

# #
(1.27)

where the subindex X denotes the hydraulic influence matrix on the
simulation vector; nC is the total number of sluicegates and U =³
uT1 , . . . , u

T
nC

´T
is the vector of the compilation of all the sluicegate

trajectories.

1.4.2 The discrete observer

In most cases we only need to know the values of the simulation and the
influence of specific points of the channel and instants in time. In the
representation shown in figure 1.16 it is possible to see an example of
two channel sections with two control sluicegates. For the discretization
of the simulation, the graph shows that there are a number of sections of
nS = nI + nII and that the result of the simulation has given (remember
that this depends on the Courant condition) a total number time segments
nT = kF −kI . As for the discretization of the sluicegate trajectories it should
be said that it has a number of sluicegates nC = 2, each one with a defined
trajectory through four intervals λ = 4. As a result the total number of
parameters becomes nU = λ× nC = 8. It can also be seen in the graph that
there is a line of nE points –points coloured in grey– for which information
is required.
Therefore the dimensions of the vectors and matrices shown in this

chapter are the following:

• The dimension of the simulation vector XkF
kI+1

: nX = 2× nT × nS
• The dimension of the trajectories vector U : nU = λ× nC = 8
• The dimension of the hydraulic influence matrix on the simulation
vector [IM (U)]X : nX× nU (= 2× nT × nS × nU)

• The result of the simulation at certain study points Y kFkI+1 (U): nY
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Figura 1.16: An example to show the difference between the time discretiza-
tion of the sluicegate trajectories and that of the simulation.

• The dimension of the hydraulic influence matrix on the discrete
observer set [IM (U)]Y : nY × nU

In order to express this information mathematically, a new matrix needs
to be introduced called ”discrete observer matrix”, denoted as [C] in the
control literature. This matrix is made up exclusively of ”zeros” and ”ones”,
so they represent, respectively, the simulated behaviour at certain points of
the channel and at certain moments in time, and the influence matrix of the
trajectories at these points.

Y kFkI+1 (U) = [C]XkF
kI+1

(U) (1.28)

[IM (U)]Y = [C] [IM (U)]X (1.29)

1.4.3 Verification of the Hydraulic influence matrix
[IM (U)]X: a numerical point of view

In order to demonstrate the fact that the influence of the sluicegate
parameters depend also on the actual flow conditions in the channel, it is
necessary to explain a test that was carried out when checking the part of
the programme where the hydraulic influence matrix was calculated. The
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description of this test also gives another point of view, a numerical one, on
the influence concept, which is why it is introduced in this chapter.
If a simulation vector is calculated (XkF

kI+1
(U)) using specific sluice-

gate trajectories U and then it is simulated again after changing some

term of U (∆U =
h
0 · · · ∆uj (K) · · · 0

iT
) obtaining the new re-

sult XkF
kI+1

(U +∆U), then the difference between the simulation vectors
(XkF

kI+1
(U +∆U) − XkF

kI+1
(U)) can be attributed to the absolute influence

of the changed parameter (uj (K)) at each point of the simulation domain.
Furthermore, it needs to be verified that

∂XkF
kI+1

(U)

∂uj (K)
≈ X

kF
kI+1

(U +∆U)−XkF
kI+1

(U)

k∆Uk (1.30)

where the terms on the left-hand side are the columns of the hydraulic
influence matrix [IM (U)]X found analytically and those on the right-hand
side, numerically.
All the results obtained in the numerous verification tests (∀K = 1, . . . ,λ

and ∀j = 1, . . . , nC) applied to specific examples had a margin of error lower
than 10−6, which provided a high level of exactitude in the calculation of the
terms of the hydraulic influence matrix.
It is clear, therefore, that the concept of hydraulic influence of some

sluicegate trajectories on the simulation vector is absolutely related to the
state of the channel. This is to say it is a non-lineal characteristic as such..

1.4.4 Requisits of the hydraulic influence matrix

The most important characteristic that the hydraulic influence matrix must
have in the form [IM (U)]Y is that it is not a singular matrix. This requisit
is justified by the fact that in the optimisation process, the matrix has to be
inverted through its pseudo-inversion (see algorithms from sections 5.3.3 and
5.4.3). In other words, if we want to know that the modification ∆U that
has to be introduced into the opening of a sluicegate trajectory U that is
necessary to rectify an undesired change of the behaviour ∆Y , it is necessary
to solve the pseudo-inversion

∆U =
n
[IM (U)]

T
Y [IM (U)]Y

o−1
[IM (U)]

T
Y ∆Y (1.31)

where
n
[IM (U)]

T
Y [IM (U)]Y

o−1
is the so-called pseudo-inverse matrix, ∆Y =

Y kFkI+1 (U +∆U)−Y kFkI+1 (U) is the undesired change in behaviour. Therefore,
if the hydraulic influence matrix is not singular, then the pseudo-inversion
will be able to be inverted and the set of equations (1.31) can be solved.
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Figura 1.17: An example of a sluicegate parameter which has no influence on
any point.

Apart from being a bad definition of the discrete observer matrix, the
hydraulic influence matrix can become singular when a position uj (K) of
the sluicegate j has no influence on any of the nY points of Y

kF
kI+1

(U), which
is expressed as

∂Y kFkI+1 (U)

∂uj (K)
= 0 (1.32)

This is to say, a whole column of [IM (U)]Y is full of ”zeros”. This is
demonstrated in figure 1.17. In this example it can be seen how the parameter
uj (KF ) has no influence on the levels Yi and Yi−1. This is the result of a
faulty setting of the discrete observer matrix: It would be necessary for at
least one value of Yi to be in the influence domain of uj (KF ) to make the
hydraulic influence matrix singular.
As a final conclusion, it can be said that the study of the hydraulic

influence matrix could allow the establishment of the control parameters,
such as the determination of the testing period. With this matrix,
it is possible to find the stability condition of the algorithms that use
the predictive control strategy, and which depends on the ”inversion
charateristic” of the influence matrix (and more specifically, on its condition).
It is also possible to study the time period from the action on the system (the
repositioning of the sluicegate) to the response. To summarise, it would be
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possible to carry out a study on the sensitivity of the system to modifications
of the sluicegate position, etcetera. However, the study of this is not included
in this thesis, but should be mentioned.

1.4.5 Example

In order to help clarify ideas, I would like to give a simple example of how,
from a specific discretization problem, we will arrive to the hydraulic influence
matrix compilation (see figure 1.18). The discretization in the example in
the figure has two channel sections, each of them with a control sluicegate
upstream nC = 2. The space discretization is done through eight cells, which
become ns = 10 sections (from section ”A” to ”J”). The time discretization
4t, which depends on the condition CFL, will be nT = 16, where kI = 0 and
kF = 16. Therefore the simulation vector will have nX = 2× nT × nS = 320
components and the value will be

XkF
kI+1

(U) = X16
1 (U) =

³
y1A v1A · · · vki vki · · · y16J v16J

´T
(1.33)

A definition exists for the sluicegate trajectories with 4T = 4 × 4t
formed by 4 sections (λ = 4) for each sluicegate. Therefore, it will have
nU = λ × nC = 8 unknowns which will define the following trajectories
vector

U =
³
u1 (1) u2 (1) u1 (2) u2 (2) u1 (3) u2 (3) u1 (4) u2 (4)

´T
(1.34)

With this, the Jacobian matrix is expressed as follows:

h
∇UX16

1 (U)
i
(16×320) =



∂y1A
∂u1(1)

∂v1A
∂u1(1)

· · · ∂yki
∂u1(1)

∂vki
∂u1(1)

· · · ∂y16J
∂u1(1)

∂v16J
∂u1(1)

∂y1A
∂u2(1)

∂v1A
∂u2(1)

∂yki
∂u2(1)

∂vki
∂u2(1)

∂y16J
∂u2(1)

∂v16J
∂u2(1)

...
. . .

...
...

∂y1A
∂uj(K)

∂v1A
∂uj(K)

· · · ∂yki
∂uj(K)

∂vki
∂uj(K)

· · · ∂y16J
∂uj(K)

∂v16J
∂uj(K)

...
...

. . .
...

∂y1A
∂u1(4)

∂v1A
∂u1(4)

∂yki
∂u1(4)

∂vki
∂u1(4)

∂y16J
∂u1(4)

∂v16J
∂u1(4)

∂y1A
∂u2(4)

∂v1A
∂u2(4)

· · · ∂yki
∂u2(4)

∂vki
∂u2(4)

· · · ∂y16J
∂u2(4)

∂v16J
∂u2(4)


(1.35)

We must say that this matrix is full of ”zeros” because, for example, the
terms ∂y1A

∂u1(4)
, ∂v1A

∂u1(4)
, ∂y1A

∂u2(4)
and ∂v1A

∂u2(4)
are exactly 0, which means that the

sluicegate positions u1 (4) and u2 (4) have no influence on the depths and
velocities at the moment of time k = 1. Whatsmore, the terms that are not
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Figura 1.18: Representation of a numerical example of the hydraulic influence
matrix compilation.

null discover the influence domain of each sluicegate position along the whole
channel. Therefore, the first expression of the hydraulic influence matrix will
be:

[IM (U)]X =
h
∇UX16

1 (U)
iT

(1.36)

On the other hand, we want to obtain a behaviour reference which is most
similar to a desired behaviour defined in terms of depth, for example, in the
nY = 16 points of the axes x/t in the graph in figure 1.18. This desired
behaviour can be expressed by specifying Y ∗ from (??):

Y ∗ =
³
y4E y

4
J y

8
E y

8
J y

12
E y

12
J y

16
A y

16
B y

16
C y

16
D y

16
E y

16
F y

16
G y

16
H y

16
I y

16
J

´T
(1.37)

It is necessary to note that the last 10 components of the vector Y ∗ ( which
define the state of the depths at k = 16) represent the final state at which
we want to arrive, and the rest of the components represent the trajectory
that we want to follow for passing from the initial state to the final one.
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Similarly the vector Y 161 is full of the values predicted by the model;

Y 161 (U) =
³
y4E y

4
J y

8
E y

8
J y

12
E y

12
J y

16
A y

16
B y

16
C y

16
D y

16
E y

16
F y

16
G y

16
H y

16
I y

16
J

´T
(1.38)

and can be found by defining the discrete observer matrix of (??) specified
in the following statement;

Y 161 = [C]X16
1 (U) (1.39)

where the composition of the matrix [C](16×320) is left to the reader.
Finally, the second expression of the hydraulic influence matrix [IM (U)]Y ,

which is a (16× 8) matrix, can be written
[IM (U)]Y = [C] [IM (U)]X (1.40)

or

[IM (U)]Y =

=



∂y4E
∂u1(1)

∂y4E
∂u2(1)

0
∂y4E

∂u2(2)
0 0 0 0

∂y4J
∂u1(1)

∂y4J
∂u2(1)

0 0 0 0 0 0
∂y8E

∂u1(1)

∂y8E
∂u2(1)

∂y8E
∂u1(2)

∂y8E
∂u2(2)

0
∂y8E

∂u2(3)
0 0

∂y8J
∂u1(1)

∂y8J
∂u2(1)

∂y8J
∂u1(2)

∂y8J
∂u2(2)

0 0 0 0
∂ y12E
∂u1(1)

∂ y12E
∂u2(1)

∂ y12E
∂u1(2)

∂ y12E
∂u2(2)

∂ y12E
∂u1(3)

∂ y12E
∂u2(3)

0
∂ y12E
∂u2(4)

∂y12J
∂u1(1)

∂y12J
∂u2(1)

∂y12J
∂u1(2)

∂y12J
∂u2(2)

∂y12J
∂u1(3)

∂y12J
∂u2(3)

0 0
∂y16A
∂u1(1)

∂y16A
∂u2(1)

∂y16A
∂u1(2)

∂y16A
∂u2(2)

∂y16A
∂u1(3)

∂y16A
∂u2(3)

∂y16A
∂u1(4)

∂y16A
∂u2(4)

∂y16B
∂u1(1)

∂y16B
∂u2(1)

∂y16B
∂u1(2)

∂y16B
∂u2(2)

∂y16B
∂u1(3)

∂y16B
∂u2(3)

∂y16B
∂u1(4)

∂y16B
∂u2(4)

∂y16C
∂u1(1)

∂y16C
∂u2(1)

∂y16C
∂u1(2)

∂y16C
∂u2(2)

∂y16C
∂u1(3)

∂y16C
∂u2(3)

∂y16C
∂u1(4)

∂y16C
∂u2(4)

∂y16D
∂u1(1)

∂y16D
∂u2(1)

∂y16D
∂u1(2)

∂y16D
∂u2(2)

∂y16D
∂u1(3)

∂y16D
∂u2(3)

∂y16D
∂u1(4)

∂y16D
∂u2(4)

∂y16E
∂u1(1)

∂y16E
∂u2(1)

∂y16E
∂u1(2)

∂y16E
∂u2(2)

∂y16E
∂u1(3)

∂y16E
∂u2(3)

∂y16E
∂u1(4)

∂y16E
∂u2(4)

∂y16F
∂u1(1)

∂y16F
∂u2(1)

∂y16F
∂u1(2)

∂y16F
∂u2(2)

∂y16F
∂u1(3)

∂y16F
∂u2(3)

∂y16F
∂u1(4)

∂y16F
∂u2(4)

∂y16G
∂u1(1)

∂y16G
∂u2(1)

∂y16G
∂u1(2)

∂y16G
∂u2(2)

∂y16G
∂u1(3)

∂y16G
∂u2(3)

∂y16G
∂u1(4)

∂y16G
∂u2(4)

∂y16H
∂u1(1)

∂y16H
∂u2(1)

∂y16H
∂u1(2)

∂y16H
∂u2(2)

∂y16H
∂u1(3)

∂y16H
∂u2(3)

∂y16H
∂u1(4)

∂y16H
∂u2(4)

∂y16I
∂u1(1)

∂y16I
∂u2(1)

∂y16I
∂u1(2)

∂y16I
∂u2(2)

∂y16I
∂u1(3)

∂y16I
∂u2(3)

∂y16I
∂u1(4)

∂y16I
∂u2(4)

∂y16J
∂u1(1)

∂y16J
∂u2(1)

∂y16J
∂u1(2)

∂y16J
∂u2(2)

∂y16J
∂u1(3)

∂y16J
∂u2(3)

∂y16J
∂u1(4)

∂y16J
∂u2(4)



(1.41)

After seeing this hydraulic influence matrix, it should be said that the null
elements in (1.41) are identical. The rest can also be null by numerical
dependence but not by definition.
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If the matrix is defined as such, it is evident that the discrete observer
matrix has been chosen adequately for the hydraulic influence matrix to have
a complete range, this is to say, range 8. There is nothing wrong if a line of
(1.41) is all null, but if a column is null then the range of the matrix cannot
be 8. Therfore, it is not possible for a pseudo-inverse matrix to exist, and as
a consequence the set of equations de-stabilised. To conclude, the choice of
matrix [C] is of vital importance for the stability of the algorithms presented
previously.
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